



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | PowerPC e500                                                            |
| Number of Cores/Bus Width       | 2 Core, 32-Bit                                                          |
| Speed                           | 1.5GHz                                                                  |
| Co-Processors/DSP               | Signal Processing; SPE, Security; SEC                                   |
| RAM Controllers                 | DDR2, DDR3                                                              |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | -                                                                       |
| Ethernet                        | 10/100/1000Mbps (4)                                                     |
| SATA                            | -                                                                       |
| USB                             | -                                                                       |
| Voltage - I/O                   | 1.5V, 1.8V, 2.5V, 3.3V                                                  |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                      |
| Security Features               | Cryptography, Random Number Generator                                   |
| Package / Case                  | 1023-BFBGA, FCBGA                                                       |
| Supplier Device Package         | 1023-FCBGA (33x33)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572ecpxavne |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Overview

- Multiplexed 32-bit address and data bus operating at up to 150 MHz
- Eight chip selects support eight external slaves
- Up to 8-beat burst transfers
- The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
- Three protocol engines available on a per-chip select basis:
  - General-purpose chip select machine (GPCM)
  - Three user programmable machines (UPMs)
  - NAND Flash control machine (FCM)
- Parity support
- Default boot ROM chip select with configurable bus width (8, 16, or 32 bits)
- Four enhanced three-speed Ethernet controllers (eTSECs)
  - Three-speed support (10/100/1000 Mbps)
  - Four IEEE Std 802.3®, 802.3u, 802.3x, 802.3z, 802.3ac, 802.3ab-compatible controllers
  - Support for various Ethernet physical interfaces:
    - 1000 Mbps full-duplex IEEE 802.3 GMII, IEEE 802.3z TBI, RTBI, RGMII, and SGMII
    - 10/100 Mbps full and half-duplex IEEE 802.3 MII, IEEE 802.3 RGMII, and RMII
  - Flexible configuration for multiple PHY interface configurations
  - TCP/IP acceleration and QoS features available
    - IP v4 and IP v6 header recognition on receive
    - IP v4 header checksum verification and generation
    - TCP and UDP checksum verification and generation
    - Per-packet configurable acceleration
    - Recognition of VLAN, stacked (Q-in-Q) VLAN, 802.2, PPPoE session, MPLS stacks, and ESP/AH IP-security headers
    - Supported in all FIFO modes
  - Quality of service support:
    - Transmission from up to eight physical queues
    - Reception to up to eight physical queues
  - Full- and half-duplex Ethernet support (1000 Mbps supports only full duplex):
    - IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or software-programmed PAUSE frame generation and recognition)
  - Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and IEEE Std 802.1<sup>TM</sup> virtual local area network (VLAN) tags and priority
  - VLAN insertion and deletion
    - Per-frame VLAN control word or default VLAN for each eTSEC
    - Extracted VLAN control word passed to software separately
  - Retransmission following a collision



# 4 Input Clocks

# 4.1 System Clock Timing

Table 6 provides the system clock (SYSCLK) AC timing specifications for the MPC8572E.

### Table 6. SYSCLK AC Timing Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3V ± 5%.

| Parameter/Condition       | Symbol                            | Min | Typical | Мах     | Unit | Notes   |
|---------------------------|-----------------------------------|-----|---------|---------|------|---------|
| SYSCLK frequency          | f <sub>SYSCLK</sub>               | 33  | —       | 133     | MHz  | 1       |
| SYSCLK cycle time         | t <sub>SYSCLK</sub>               | 7.5 | —       | 30.3    | ns   | —       |
| SYSCLK rise and fall time | t <sub>KH</sub> , t <sub>KL</sub> | 0.6 | 1.0     | 1.2     | ns   | 2       |
| SYSCLK duty cycle         | t <sub>KHK</sub> /tsysclk         | 40  | —       | 60      | %    | 3       |
| SYSCLK jitter             | —                                 | —   | —       | +/- 150 | ps   | 4, 5, 6 |

Notes:

1. **Caution:** The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 19.2, "CCB/SYSCLK PLL Ratio," and Section 19.3, "e500 Core PLL Ratio," for ratio settings.

- 2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The SYSCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter.
- 6. For spread spectrum clocking, guidelines are +0% to -1% down spread at a modulation rate between 20 kHz and 60 kHz on SYSCLK.

# 4.2 Real Time Clock Timing

The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter specification. The minimum pulse width of the RTC signal should be greater than 2x the period of the CCB clock. That is, minimum clock high time is  $2 \times t_{CCB}$ , and minimum clock low time is  $2 \times t_{CCB}$ . There is no minimum RTC frequency; RTC may be grounded if not needed.



**RESET** Initialization

Table 8. DDRCLK AC Timing Specifications (continued)

At recommended operating conditions with  $OV_{DD}$  of 3.3V ± 5%.

| Parameter/Condition | Symbol | Min | Typical | Max     | Unit | Notes   |
|---------------------|--------|-----|---------|---------|------|---------|
| DDRCLK jitter       | _      |     |         | +/- 150 | ps   | 4, 5, 6 |

Notes:

- 1. **Caution:** The DDR complex clock to DDRCLK ratio settings must be chosen such that the resulting DDR complex clock frequency does not exceed the maximum or minimum operating frequencies. Refer to Section 19.4, "DDR/DDRCLK PLL Ratio," for ratio settings.
- 2. Rise and fall times for DDRCLK are measured at 0.6 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The DDRCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track DDRCLK drivers with the specified jitter.
- 6. For spread spectrum clocking, guidelines are +0% to -1% down spread at a modulation rate between 20 kHz and 60 kHz on DDRCLK.

# 4.5 Platform to eTSEC FIFO Restrictions

Note the following eTSEC FIFO mode maximum speed restrictions based on platform (CCB) frequency.

For FIFO GMII modes (both 8 and 16 bit) and 16-bit encoded FIFO mode:

FIFO TX/RX clock frequency <= platform clock (CCB) frequency/4.2

For example, if the platform (CCB) frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 127 MHz.

For 8-bit encoded FIFO mode:

FIFO TX/RX clock frequency <= platform clock (CCB) frequency/3.2

For example, if the platform (CCB) frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 167 MHz.

# 4.6 Other Input Clocks

For information on the input clocks of other functional blocks of the platform, such as SerDes and eTSEC, see the respective sections of this document.

# 5 **RESET** Initialization

Table 9 describes the AC electrical specifications for the RESET initialization timing.

### **Table 9. RESET Initialization Timing Specifications**

| Parameter/Condition               | Min | Мах | Unit    | Notes |
|-----------------------------------|-----|-----|---------|-------|
| Required assertion time of HRESET | 100 | —   | μs      | 2     |
| Minimum assertion time for SRESET | 3   | —   | SYSCLKs | 1     |



# Table 18. DDR2 and DDR3 SDRAM Interface Output AC Timing Specifications (continued)At recommended operating conditions with $GV_{DD}$ of 1.8 V ± 5% for DDR2 or 1.5 V ± 5% for DDR3.

| Parameter                                      | Symbol <sup>1</sup>                         | Min    | Мах   | Unit | Notes |
|------------------------------------------------|---------------------------------------------|--------|-------|------|-------|
| 800 MHz                                        |                                             | 0.917  | —     |      |       |
| 667 MHz                                        |                                             | 1.10   | —     |      |       |
| 533 MHz                                        |                                             | 1.48   | —     |      |       |
| 400 MHz                                        |                                             | 1.95   | —     |      |       |
| ADDR/CMD output hold with respect to MCK       | t <sub>DDKHAX</sub>                         |        |       | ns   | 3     |
| 800 MHz                                        |                                             | 0.917  | —     |      |       |
| 667 MHz                                        |                                             | 1.10   | —     |      |       |
| 533 MHz                                        |                                             | 1.48   | —     |      |       |
| 400 MHz                                        |                                             | 1.95   | —     |      |       |
| MCS[n] output setup with respect to MCK        | t <sub>DDKHCS</sub>                         |        |       | ns   | 3     |
| 800 MHz                                        |                                             | 0.917  | —     |      |       |
| 667 MHz                                        |                                             | 1.10   | —     |      |       |
| 533 MHz                                        |                                             | 1.48   | —     |      |       |
| 400 MHz                                        | t <sub>DDKHCS</sub>                         | 1.95   | _     | ns   | 3     |
| MCS[n] output hold with respect to MCK         | t <sub>DDKHCX</sub>                         |        |       | ns   | 3     |
| 800 MHz                                        |                                             | 0.917  | —     |      |       |
| 667 MHz                                        |                                             | 1.10   | —     |      |       |
| 533 MHz                                        |                                             | 1.48   | —     |      |       |
| 400 MHz                                        |                                             | 1.95   | —     |      |       |
| MCK to MDQS Skew                               | t <sub>DDKHMH</sub>                         |        |       | ns   | 4     |
| 800 MHz                                        |                                             | -0.375 | 0.375 |      |       |
| <= 667 MHz                                     |                                             | -0.6   | 0.6   |      |       |
| MDQ/MECC/MDM output setup with respect to MDQS | t <sub>DDKHDS,</sub><br>t <sub>DDKLDS</sub> |        |       | ps   | 5     |
| 800 MHz                                        |                                             | 375    | _     |      |       |
| 667 MHz                                        |                                             | 450    | _     |      |       |
| 533 MHz                                        |                                             | 538    | _     |      |       |
| 400 MHz                                        |                                             | 700    | _     |      |       |
| MDQ/MECC/MDM output hold with respect to MDQS  | t <sub>DDKHDX,</sub><br>t <sub>DDKLDX</sub> |        |       | ps   | 5     |
| 800 MHz                                        |                                             | 375    | —     |      |       |
| 667 MHz                                        |                                             | 450    | _     |      |       |



#### DDR2 and DDR3 SDRAM Controller

Figure 6 provides the AC test load for the DDR2 and DDR3 Controller bus.



Figure 6. DDR2 and DDR3 Controller bus AC Test Load

# 6.2.3 DDR2 and DDR3 SDRAM Differential Timing Specifications

This section describes the DC and AC differential electrical specifications for the DDR2 and DDR3 SDRAM controller interface of the MPC8572E.



VID specifies the input differential voltage |VTR - VCP| required for switching, where VTR is the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK or MDQS).

Table 19 provides the differential specifications for the MPC8572E differential signals MDQS/ $\overline{MDQS}$  and MCK/ $\overline{MCK}$  when in DDR2 mode.

| Parameter/Condition                 | Symbol            | Min        | Мах                           | Unit | Notes |
|-------------------------------------|-------------------|------------|-------------------------------|------|-------|
| DC Input Signal Voltage             | V <sub>IN</sub>   | -0.3       | GV <sub>DD</sub> + 0.3        | V    | _     |
| DC Differential Input Voltage       | V <sub>ID</sub>   |            | —                             | mV   |       |
| AC Differential Input Voltage       | V <sub>IDAC</sub> | _          | —                             | mV   | _     |
| DC Differential Output Voltage      | V <sub>OH</sub>   | _          | —                             | mV   | _     |
| AC Differential Output Voltage      | V <sub>OHAC</sub> | JEDEC: 0.5 | JEDEC: GV <sub>DD</sub> + 0.6 | V    | _     |
| AC Differential Cross-point Voltage | V <sub>IXAC</sub> | _          | —                             | mV   | _     |
| Input Midpoint Voltage              | V <sub>MP</sub>   |            | _                             | mV   |       |

Table 19. DDR2 SDRAM Differential Electrical Characteristics



Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

# 7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface.

### Table 22. DUART AC Timing Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3V ± 5%.

| Parameter         | Value                       | Unit | Notes   |
|-------------------|-----------------------------|------|---------|
| Minimum baud rate | f <sub>CCB</sub> /1,048,576 | baud | 1, 2    |
| Maximum baud rate | f <sub>CCB</sub> /16        | baud | 1, 2, 3 |
| Oversample rate   | 16                          | _    | 1, 4    |

### Notes:

1. Guaranteed by design

- 2. f<sub>CCB</sub> refers to the internal platform clock frequency.
- 3. Actual attainable baud rate is limited by the latency of interrupt processing.
- 4. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet controller.

# 8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—FIFO/GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all FIFO mode, gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC), and serial gigabit media independent interface (SGMII). The RGMII, RTBI and FIFO mode interfaces are defined for 2.5 V, while the GMII, MII, RMII, and TBI interfaces can operate at both 2.5 V and 3.3V.

The GMII, MII, or TBI interface timing is compliant with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998).

The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

The electrical characteristics for SGMII is specified in Section 8.3, "SGMII Interface Electrical Characteristics." The SGMII interface conforms (with exceptions) to the Serial-GMII Specification Version 1.8.



# 8.3.4 SGMII AC Timing Specifications

This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver characteristics are measured at the transmitter outputs ( $SD2_TX[n]$  and  $\overline{SD2_TX[n]}$ ) or at the receiver inputs ( $SD2_RX[n]$  and  $\overline{SD2_RX[n]}$ ) as depicted in Figure 25, respectively.

# 8.3.4.1 SGMII Transmit AC Timing Specifications

Table 40 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

### Table 40. SGMII Transmit AC Timing Specifications

At recommended operating conditions with  $XV_{DD\_SRDS2}$  = 1.1V ± 5%.

| Parameter                           | Symbol            | Min    | Тур | Мах    | Unit   | Notes |
|-------------------------------------|-------------------|--------|-----|--------|--------|-------|
| Deterministic Jitter                | JD                | —      | _   | 0.17   | UI p-p | _     |
| Total Jitter                        | JT                | —      | _   | 0.35   | UI p-p | —     |
| Unit Interval                       | UI                | 799.92 | 800 | 800.08 | ps     | 1     |
| V <sub>OD</sub> fall time (80%-20%) | tfall             | 50     | —   | 120    | ps     | —     |
| V <sub>OD</sub> rise time (20%-80%) | t <sub>rise</sub> | 50     | —   | 120    | ps     | —     |

Notes:

1. Each UI is 800 ps  $\pm$  100 ppm.

# 8.3.4.2 SGMII Receive AC Timing Specifications

Table 41 provides the SGMII receive AC timing specifications. Source synchronous clocking is not supported. Clock is recovered from the data. Figure 24 shows the SGMII receiver input compliance mask eye diagram.

### Table 41. SGMII Receive AC Timing Specifications

At recommended operating conditions with  $XV_{DD\_SRDS2} = 1.1V \pm 5\%$ .

| Parameter                                          | Symbol          | Min    | Тур | Max               | Unit   | Notes |
|----------------------------------------------------|-----------------|--------|-----|-------------------|--------|-------|
| Deterministic Jitter Tolerance                     | JD              | 0.37   | _   | _                 | UI p-p | 1     |
| Combined Deterministic and Random Jitter Tolerance | JDR             | 0.55   | _   | _                 | UI p-p | 1     |
| Sinusoidal Jitter Tolerance                        | JSIN            | 0.1    | _   | _                 | UI p-p | 1     |
| Total Jitter Tolerance                             | JT              | 0.65   | _   | _                 | UI p-p | 1     |
| Bit Error Ratio                                    | BER             | —      | _   | 10 <sup>-12</sup> | —      | _     |
| Unit Interval                                      | UI              | 799.92 | 800 | 800.08            | ps     | 2     |
| AC Coupling Capacitor                              | C <sub>TX</sub> | 5      | _   | 200               | nF     | 3     |

Notes:

1. Measured at receiver.

2. Each UI is 800 ps  $\pm$  100 ppm.

3. The external AC coupling capacitor is required. It is recommended to be placed near the device transmitter outputs.

4. See RapidIO 1x/4x LP Serial Physical Layer Specification for interpretation of jitter specifications.



# 8.4 eTSEC IEEE Std 1588<sup>™</sup> AC Specifications

Figure 26 shows the data and command output timing diagram.



Figure 26. eTSEC IEEE 1588 Output AC Timing

<sup>1</sup> The output delay is count starting rising edge if t<sub>T1588CLKOUT</sub> is non-inverting. Otherwise, it is count starting falling edge.

Figure 27 shows the data and command input timing diagram.





## Table 42 provides the IEEE 1588 AC timing specifications.

# Table 42. eTSEC IEEE 1588 AC Timing Specifications

At recommended operating conditions with  $LV_{DD}/TV_{DD}$  of 3.3 V ± 5% or 2.5 V ± 5%

| Parameter/Condition                | Symbol                                           | Min                     | Тур | Max                    | Unit | Note |
|------------------------------------|--------------------------------------------------|-------------------------|-----|------------------------|------|------|
| TSEC_1588_CLK clock period         | t <sub>T1588CLK</sub>                            | 3.3                     | —   | T <sub>TX_CLK</sub> *9 | ns   | 1    |
| TSEC_1588_CLK duty cycle           | t <sub>T1588CLKH</sub><br>/t <sub>T1588CLK</sub> | 40                      | 50  | 60                     | %    | —    |
| TSEC_1588_CLK peak-to-peak jitter  | t <sub>T1588CLKINJ</sub>                         | —                       | —   | 250                    | ps   | —    |
| Rise time eTSEC_1588_CLK (20%-80%) | t <sub>T1588CLKINR</sub>                         | 1.0                     | —   | 2.0                    | ns   | —    |
| Fall time eTSEC_1588_CLK (80%-20%) | t <sub>T1588CLKINF</sub>                         | 1.0                     | —   | 2.0                    | ns   | —    |
| TSEC_1588_CLK_OUT clock period     | t <sub>T1588</sub> CLKOUT                        | 2*t <sub>T1588CLK</sub> | —   | _                      | ns   | _    |

### MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7

NXP Semiconductors



# 10 Local Bus Controller (eLBC)

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8572E.

# **10.1** Local Bus DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the local bus interface operating at  $BV_{DD} = 3.3 \text{ V}$  DC.

| Parameter                                                                      | Symbol           | Min                    | Max                    | Unit |
|--------------------------------------------------------------------------------|------------------|------------------------|------------------------|------|
| Supply voltage 3.3V                                                            | BV <sub>DD</sub> | 3.13                   | 3.47                   | V    |
| High-level input voltage                                                       | V <sub>IH</sub>  | 2                      | BV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                        | V <sub>IL</sub>  | -0.3                   | 0.8                    | V    |
| Input current<br>( $BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$ )         | I <sub>IN</sub>  | _                      | ±5                     | μA   |
| High-level output voltage<br>(BV <sub>DD</sub> = min, I <sub>OH</sub> = -2 mA) | V <sub>OH</sub>  | BV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage<br>(BV <sub>DD</sub> = min, I <sub>OL</sub> = 2 mA)   | V <sub>OL</sub>  | _                      | 0.2                    | V    |

 Table 46. Local Bus DC Electrical Characteristics (3.3 V DC)

#### Note:

1. Note that the symbol  $BV_{IN}$ , in this case, represents the  $BV_{IN}$  symbol referenced in Table 1.

Table 47 provides the DC electrical characteristics for the local bus interface operating at  $BV_{DD} = 2.5 V DC$ .

Table 47. Local Bus DC Electrical Characteristics (2.5 V DC)

| Parameter                                                                      | Symbol           | Min       | Мах                    | Unit |
|--------------------------------------------------------------------------------|------------------|-----------|------------------------|------|
| Supply voltage 2.5V                                                            | BV <sub>DD</sub> | 2.37      | 2.63                   | V    |
| High-level input voltage                                                       | V <sub>IH</sub>  | 1.70      | BV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                                                        | V <sub>IL</sub>  | -0.3      | 0.7                    | V    |
| Input current                                                                  | I <sub>IH</sub>  | —         | 10                     | μΑ   |
| $(BV_{IN} = 0 V \text{ of } BV_{IN} = BV_{DD})$                                | Ι <sub>ΙL</sub>  |           | -15                    |      |
| High-level output voltage<br>(BV <sub>DD</sub> = min, I <sub>OH</sub> = -1 mA) | V <sub>OH</sub>  | 2.0       | BV <sub>DD</sub> + 0.3 | V    |
| Low-level output voltage<br>(BV <sub>DD</sub> = min, I <sub>OL</sub> = 1 mA)   | V <sub>OL</sub>  | GND – 0.3 | 0.4                    | V    |

Note:

1. The symbol  $BV_{IN}$ , in this case, represents the  $BV_{IN}$  symbol referenced in Table 1.



#### Local Bus Controller (eLBC)

Figure 30 through Figure 35 show the local bus signals.



Figure 30. Local Bus Signals, Non-Special Signals Only (PLL Enabled)

Table 52 describes the general timing parameters of the local bus interface at  $BV_{DD} = 3.3 \text{ V DC}$  with PLL disabled.

### Table 52. Local Bus General Timing Parameters—PLL Bypassed

At recommended operating conditions with  $BV_{DD}$  of 3.3 V ± 5%

| Parameter                                             | Symbol <sup>1</sup>                 | Min  | Мах | Unit | Notes |
|-------------------------------------------------------|-------------------------------------|------|-----|------|-------|
| Local bus cycle time                                  | t <sub>LBK</sub>                    | 12   |     | ns   | 2     |
| Local bus duty cycle                                  | t <sub>LBKH</sub> /t <sub>LBK</sub> | 43   | 57  | %    | —     |
| Internal launch/capture clock to LCLK delay           | t <sub>LBKHKT</sub>                 | 2.3  | 4.0 | ns   |       |
| Input setup to local bus clock (except LGTA/LUPWAIT)  | t <sub>LBIVKH1</sub>                | 5.8  | —   | ns   | 4, 5  |
| LGTA/LUPWAIT input setup to local bus clock           | t <sub>LBIVKL2</sub>                | 5.7  | —   | ns   | 4, 5  |
| Input hold from local bus clock (except LGTA/LUPWAIT) | t <sub>LBIXKH1</sub>                | -1.3 | _   | ns   | 4, 5  |



# **11** Programmable Interrupt Controller

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain asserted for at least 3 system clocks (SYSCLK periods).

# 12 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8572E.

Table 53 provides the JTAG AC timing specifications as defined in Figure 37 through Figure 39.

| Table 53. JTAG | AC Timina                               | Specifications | (Independent | t of SYSCLK) | 1 |
|----------------|-----------------------------------------|----------------|--------------|--------------|---|
|                | / · · · · · · · · · · · · · · · · · · · | opeenieanene   | (            |              |   |

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 5%.

| Parameter                                            | Symbol <sup>2</sup>                        | Min      | Max      | Unit | Notes |
|------------------------------------------------------|--------------------------------------------|----------|----------|------|-------|
| JTAG external clock frequency of operation           | f <sub>JTG</sub>                           | 0        | 33.3     | MHz  | —     |
| JTAG external clock cycle time                       | t <sub>JTG</sub>                           | 30       | _        | ns   | —     |
| JTAG external clock pulse width measured at 1.4 V    | t <sub>JTKHKL</sub>                        | 15       | —        | ns   | —     |
| JTAG external clock rise and fall times              | t <sub>JTGR</sub> & t <sub>JTGF</sub>      | 0        | 2        | ns   | 6     |
| TRST assert time                                     | t <sub>TRST</sub>                          | 25       | —        | ns   | 3     |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>0   |          | ns   | 4     |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI  | t <sub>JTDXKH</sub><br>t <sub>JTIXKH</sub> | 20<br>25 |          | ns   | 4     |
| Valid times:<br>Boundary-scan data<br>TDO            | t <sub>jtkldv</sub><br>t <sub>jtklov</sub> | 4<br>4   | 20<br>25 | ns   | 5     |
| Output hold times:<br>Boundary-scan data<br>TDO      | t <sub>jtkldx</sub><br>t <sub>jtklox</sub> | 30<br>30 |          | ns   | 5     |

1<sup>2</sup>C

# Table 54. I<sup>2</sup>C DC Electrical Characteristics (continued)

| Capacitance for each I/O pin | CI | _ | 10 | pF |  |
|------------------------------|----|---|----|----|--|
|                              |    |   |    |    |  |

### Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8572E PowerQUICC<sup>™</sup> III Integrated Host Processor Family Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if  $\mathsf{OV}_\mathsf{DD}$  is switched off.

# 13.2 I<sup>2</sup>C AC Electrical Specifications

Table 55 provides the AC timing parameters for the  $I^2C$  interfaces.

# Table 55. I<sup>2</sup>C AC Electrical Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 5%. All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 2).

| Parameter                                                                                    | Symbol <sup>1</sup> | Min                  | Max              | Unit             |
|----------------------------------------------------------------------------------------------|---------------------|----------------------|------------------|------------------|
| SCL clock frequency                                                                          | f <sub>I2C</sub>    | 0                    | 400              | kHz <sup>4</sup> |
| Low period of the SCL clock                                                                  | t <sub>I2CL</sub>   | 1.3                  | _                | μs               |
| High period of the SCL clock                                                                 | t <sub>I2CH</sub>   | 0.6                  | _                | μs               |
| Setup time for a repeated START condition                                                    | t <sub>I2SVKH</sub> | 0.6                  |                  | μs               |
| Hold time (repeated) START condition (after this period, the first clock pulse is generated) | t <sub>I2SXKL</sub> | 0.6                  | —                | μs               |
| Data setup time                                                                              | t <sub>I2DVKH</sub> | 100                  | _                | ns               |
| Data input hold time:<br>CBUS compatible masters<br>I <sup>2</sup> C bus devices             | t <sub>i2DXKL</sub> | $\overline{0^2}$     |                  | μs               |
| Data output delay time                                                                       | t <sub>I2OVKL</sub> | —                    | 0.9 <sup>3</sup> | μs               |
| Setup time for STOP condition                                                                | t <sub>I2PVKH</sub> | 0.6                  | —                | μs               |
| Bus free time between a STOP and START condition                                             | t <sub>I2KHDX</sub> | 1.3                  | —                | μs               |
| Noise margin at the LOW level for each connected device (including hysteresis)               | V <sub>NL</sub>     | $0.1 \times OV_{DD}$ | —                | V                |
| Noise margin at the HIGH level for each connected device (including hysteresis)              | V <sub>NH</sub>     | $0.2 \times OV_{DD}$ | —                | V                |

### High-Speed Serial Interfaces (HSSI)

— To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn\_REF\_CLK) through the same source impedance as the clock input (SDn\_REF\_CLK) in use.







Figure 46. Differential Reference Clock Input DC Requirements (External AC-Coupled)



Figure 47. Single-Ended Reference Clock Input DC Requirements



# 15.2.3 Interfacing With Other Differential Signaling Levels

- With on-chip termination to SGND\_SRDS*n* (xcorevss), the differential reference clocks inputs are HCSL (High-Speed Current Steering Logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (Low Voltage Differential Signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, additionally to AC-coupling.

### NOTE

Figure 48 to Figure 51 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the MPC8572E SerDes reference clock receiver requirement provided in this document.



Serial RapidIO

# 17.1 <u>DC Requirements</u> for Serial RapidIO SD1\_REF\_CLK and SD1\_REF\_CLK

For more information, see Section 15.2, "SerDes Reference Clocks."

# 17.2 <u>AC Requirements</u> for Serial RapidIO SD1\_REF\_CLK and SD1\_REF\_CLK

Figure 64lists the AC requirements.

| Table 64. SD <i>n</i> _ | _REF_CL | K and SD <i>n</i> _ | _REF_0 | CLK AC | Requirements |
|-------------------------|---------|---------------------|--------|--------|--------------|

| Symbol             | Parameter Description                                                                    | Min | Typical | Мах | Units | Comments                                                         |
|--------------------|------------------------------------------------------------------------------------------|-----|---------|-----|-------|------------------------------------------------------------------|
| t <sub>REF</sub>   | REFCLK cycle time                                                                        | —   | 10(8)   | —   | ns    | 8 ns applies only to serial RapidIO with 125-MHz reference clock |
| t <sub>REFCJ</sub> | REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles | _   | —       | 80  | ps    | _                                                                |
| t <sub>REFPJ</sub> | Phase jitter. Deviation in edge location with respect to mean edge location              | -40 | -       | 40  | ps    | _                                                                |

# 17.3 Equalization

With the use of high speed serial links, the interconnect media causes degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are as follows:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

# 17.4 Explanatory Note on Transmitter and Receiver Specifications

AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described.

The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002.

XAUI has similar application goals to serial RapidIO, as described in Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—FIFO/GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics." The goal of this standard is that electrical designs for Serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.



| Signal       | Signal Name                  | Package Pin Number                                                                                                                                                                                                                                                                                                                | Pin Type | Power<br>Supply  | Notes |
|--------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------|
| D1_MCAS      | Column Address Strobe        | AC9                                                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> |       |
| D1_MRAS      | Row Address Strobe           | AB12                                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> |       |
| D1_MCKE[0:3] | Clock Enable                 | M8, L9, T9, N8                                                                                                                                                                                                                                                                                                                    | 0        | GV <sub>DD</sub> | 11    |
| D1_MCS[0:3]  | Chip Select                  | AB9, AF10, AB11,<br>AE11                                                                                                                                                                                                                                                                                                          | 0        | GV <sub>DD</sub> | _     |
| D1_MCK[0:5]  | Clock                        | V7, E13, AH11, Y9,<br>F14, AG10                                                                                                                                                                                                                                                                                                   | 0        | GV <sub>DD</sub> |       |
| D1_MCK[0:5]  | Clock Complements            | Y10, E12, AH12, AA11,<br>F13, AG11                                                                                                                                                                                                                                                                                                | 0        | GV <sub>DD</sub> |       |
| D1_MODT[0:3] | On Die Termination           | AD10, AF12, AC10,<br>AE12                                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> | _     |
| D1_MDIC[0:1] | Driver Impedance Calibration | E15, G14                                                                                                                                                                                                                                                                                                                          | I/O      | GV <sub>DD</sub> | 25    |
|              | DDR SDRAM Mem                | ory Interface 2                                                                                                                                                                                                                                                                                                                   |          | •                |       |
| D2_MDQ[0:63] | Data                         | A6, B7, C5, D5, A7, C8,<br>D8, D6, C4, A3, D3,<br>D2, B4, A4, B1, C1, E3,<br>E1, G2, G6, D1, E4,<br>G5, G3, J4, J2, P4, R5,<br>H3, H1, N5, N3, Y6, Y4,<br>AC3, AD2, V5, W5,<br>AB2, AB3, AD5, AE3,<br>AF6, AG7, AC4, AD4,<br>AF4, AF7, AH5, AJ1,<br>AL2, AM3, AH3, AH6,<br>AM1, AL3, AK5, AL5,<br>AJ7, AK7, AK4, AM4,<br>AL6, AM7 | I/O      | GV <sub>DD</sub> | _     |
| D2_MECC[0:7] | Error Correcting Code        | J5, H7, L7, N6, H4, H6,<br>M4, M5                                                                                                                                                                                                                                                                                                 | I/O      | GV <sub>DD</sub> |       |
| D2_MAPAR_ERR | Address Parity Error         | N1                                                                                                                                                                                                                                                                                                                                | Ι        | GV <sub>DD</sub> |       |
| D2_MAPAR_OUT | Address Parity Out           | W2                                                                                                                                                                                                                                                                                                                                | 0        | GV <sub>DD</sub> |       |
| D2_MDM[0:8]  | Data Mask                    | A5, B3, F4, J1, AA4,<br>AE5, AK1, AM5, K5                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> |       |
| D2_MDQS[0:8] | Data Strobe                  | B6, C2, F5, L4, AB5,<br>AF3, AL1, AM6, L6                                                                                                                                                                                                                                                                                         | I/O      | GV <sub>DD</sub> | _     |
| D2_MDQS[0:8] | Data Strobe                  | C7, A2, F2, K3, AA5,<br>AE6, AK2, AJ6, K6                                                                                                                                                                                                                                                                                         | I/O      | GV <sub>DD</sub> | —     |
| D2_MA[0:15]  | Address                      | W1, U4, U3, T1, T2, T3,<br>R1, R2, T5, R4, Y3, P1,<br>N2, AF1, M2, M1                                                                                                                                                                                                                                                             | 0        | GV <sub>DD</sub> | _     |

### Table 76. MPC8572E Pinout Listing (continued)



| Table 76. MPC8572E Pinout Listing (continued) |
|-----------------------------------------------|
|-----------------------------------------------|

| Signal      | Signal Name                 | Package Pin Number | Pin Type | Power<br>Supply  | Notes     |  |  |  |  |  |
|-------------|-----------------------------|--------------------|----------|------------------|-----------|--|--|--|--|--|
| MSRCID[0:1] | Memory Debug Source Port ID | U27, T29           | 0        | OV <sub>DD</sub> | 5, 9, 30  |  |  |  |  |  |
| MSRCID[2:4] | Memory Debug Source Port ID | U28, W24, W28      | 0        | OV <sub>DD</sub> | 21        |  |  |  |  |  |
| MDVAL       | Memory Debug Data Valid     | V26                | 0        | OV <sub>DD</sub> | 2, 21     |  |  |  |  |  |
| CLK_OUT     | Clock Out                   | U32                | 0        | OV <sub>DD</sub> | 11        |  |  |  |  |  |
|             | Clock                       |                    |          |                  |           |  |  |  |  |  |
| RTC         | Real Time Clock             | V25                | I        | OV <sub>DD</sub> | —         |  |  |  |  |  |
| SYSCLK      | System Clock                | Y32                | I        | OV <sub>DD</sub> | _         |  |  |  |  |  |
| DDRCLK      | DDR Clock                   | AA29               | I        | OV <sub>DD</sub> | 31        |  |  |  |  |  |
|             | JTAG                        |                    |          |                  |           |  |  |  |  |  |
| тск         | Test Clock                  | T28                | I        | OV <sub>DD</sub> |           |  |  |  |  |  |
| TDI         | Test Data In                | T27                | I        | OV <sub>DD</sub> | 12        |  |  |  |  |  |
| TDO         | Test Data Out               | T26                | 0        | OV <sub>DD</sub> | —         |  |  |  |  |  |
| TMS         | Test Mode Select            | U26                | I        | OV <sub>DD</sub> | 12        |  |  |  |  |  |
| TRST        | Test Reset                  | AA32               | I        | OV <sub>DD</sub> | 12        |  |  |  |  |  |
|             | DFT                         |                    |          |                  |           |  |  |  |  |  |
| L1_TSTCLK   | L1 Test Clock               | V32                | I        | OV <sub>DD</sub> | 18        |  |  |  |  |  |
| L2_TSTCLK   | L2 Test Clock               | V31                | I        | OV <sub>DD</sub> | 18        |  |  |  |  |  |
| LSSD_MODE   | LSSD Mode                   | N24                | I        | OV <sub>DD</sub> | 18        |  |  |  |  |  |
| TEST_SEL    | Test Select 0               | K28                | I        | OV <sub>DD</sub> | 18        |  |  |  |  |  |
|             | Power Mana                  | gement             |          |                  |           |  |  |  |  |  |
| ASLEEP      | Asleep                      | P28                | 0        | OV <sub>DD</sub> | 9, 15, 21 |  |  |  |  |  |



Package Description

| Signal                   | Signal Name                             | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pin Type | Power<br>Supply | Notes |  |  |  |
|--------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------|--|--|--|
| Power and Ground Signals |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                 |       |  |  |  |
| GND                      | Ground                                  | A18, A25, A29, C3, C6,<br>C9, C12, C15, C20,<br>C22, E5, E8, E11, E14,<br>F3, G7, G10, G13,<br>G16, H5, H21, J3, J9,<br>J12, J18, K7, L5, L13,<br>L15, L16, L21, M3, M9,<br>M12, M14, M16, M18,<br>N7, N13, N15, N17,<br>N19, N21, N23, P5,<br>P12, P14, P16, P20,<br>P22, R3, R9, R11, R13,<br>R15, R17, R19, R21,<br>R23, R26, T7, T12,<br>T14, T16, T18, T20,<br>T22, T30, U5, U11,<br>U13, U15, U16, U17,<br>U19, U21, U23, U25,<br>V3, V9, V12, V14, V16,<br>V18, V20, V22, W7,<br>W11, W13, W15, W17,<br>W19, W21, W27, W32,<br>Y5, Y12, Y14, Y16,<br>Y18, Y20, AA3, AA9,<br>AA13, AA15, AA17,<br>AA19, AA21, AA30,<br>AB7, AB26, AC5,<br>AC11, AC13, AD3,<br>AD9, AD14, AD17,<br>AD22, AE7, AE13,<br>AF5, AF11, AG3, AG9,<br>AG15, AG19, AH7,<br>AH13, AH22, AJ5,<br>AJ11, AJ17, AK3, AK9,<br>AK15, AK24, AL7,<br>AL13, AL19, AL26 |          |                 |       |  |  |  |
| XGND_SRDS1               | SerDes Transceiver Pad GND<br>(xpadvss) | C23, C27, D23, D25,<br>E23, E26, F23, F24,<br>G23, G27, H23, H25,<br>J23, J26, K23, K24,<br>L27, M25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _        |                 |       |  |  |  |
| XGND_SRDS2               | SerDes Transceiver Pad GND<br>(xpadvss) | AD23, AD25, AE23,<br>AE27, AF23, AF24,<br>AG23, AG26, AH23,<br>AH25, AJ27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        | _               |       |  |  |  |

### Table 76. MPC8572E Pinout Listing (continued)



Package Description

| Signal     | Signal Name                              | Package Pin Number                                                                                                                                                                                                                                                                                                        | Pin Type | Power<br>Supply     | Notes |
|------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|-------|
| VDD        | Core, L2, Logic Supply                   | L14, M13, M15, M17,<br>N12, N14, N16, N20,<br>N22, P11, P13, P15,<br>P17, P19, P21, P23,<br>R12, R14, R16, R18,<br>R20, R22, T13, T15,<br>T19, T21, T23, U12,<br>U14, U18, U20, U22,<br>V13, V15, V17, V19,<br>V21, W12, W14, W16,<br>W18, W20, W22, Y13,<br>Y15, Y17, Y19, Y21,<br>AA12, AA14, AA16,<br>AA18, AA20, AB13 | _        | VDD                 |       |
| SVDD_SRDS1 | SerDes Core 1 Logic Supply<br>(xcorevdd) | C31, D29, E28, E32,<br>F30, G28, G31, H29,<br>K30, L31, M29, N32,<br>P30                                                                                                                                                                                                                                                  | _        | _                   | _     |
| SVDD_SRDS2 | SerDes Core 2 Logic Supply<br>(xcorevdd) | AD32, AF31, AG29,<br>AJ32, AK29, AK30                                                                                                                                                                                                                                                                                     | _        |                     | _     |
| XVDD_SRDS1 | SerDes1 Transceiver Supply (xpadvdd)     | C26, D24, E27, F25,<br>G26, H24, J27, K25,<br>L26, M24, N27                                                                                                                                                                                                                                                               | _        | _                   | _     |
| XVDD_SRDS2 | SerDes2 Transceiver Supply (xpadvdd)     | AD24, AD28, AE26,<br>AF25, AG27, AH24,<br>AJ26                                                                                                                                                                                                                                                                            | _        | _                   | _     |
| AVDD_LBIU  | Local Bus PLL Supply                     | A19                                                                                                                                                                                                                                                                                                                       | _        | _                   | 19    |
| AVDD_DDR   | DDR PLL Supply                           | AM20                                                                                                                                                                                                                                                                                                                      | _        | _                   | 19    |
| AVDD_CORE0 | CPU PLL Supply                           | B18                                                                                                                                                                                                                                                                                                                       | _        | _                   | 19    |
| AVDD_CORE1 | CPU PLL Supply                           | A17                                                                                                                                                                                                                                                                                                                       | _        |                     | 19    |
| AVDD_PLAT  | Platform PLL Supply                      | AB32                                                                                                                                                                                                                                                                                                                      | _        | _                   | 19    |
| AVDD_SRDS1 | SerDes1 PLL Supply                       | J29                                                                                                                                                                                                                                                                                                                       | _        | _                   | 19    |
| AVDD_SRDS2 | SerDes2 PLL Supply                       | AH29                                                                                                                                                                                                                                                                                                                      | _        |                     | 19    |
| SENSEVDD   | VDD Sensing Pin                          | N18                                                                                                                                                                                                                                                                                                                       | _        |                     | 13    |
| SENSEVSS   | GND Sensing Pin                          | P18                                                                                                                                                                                                                                                                                                                       | _        |                     | 13    |
|            | Analog Si                                | gnals                                                                                                                                                                                                                                                                                                                     |          |                     |       |
| MVREF1     | SSTL_1.8 Reference Voltage               | C16                                                                                                                                                                                                                                                                                                                       | I        | GV <sub>DD</sub> /2 |       |
| MVREF2     | SSTL_1.8 Reference Voltage               | AM19                                                                                                                                                                                                                                                                                                                      | I        | GV <sub>DD</sub> /2 | —     |

## Table 76. MPC8572E Pinout Listing (continued)



# 22 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 22.1, "Part Numbers Fully Addressed by this Document."

# 22.1 Part Numbers Fully Addressed by this Document

Table 86 through Table 88 provide the Freescale part numbering nomenclature for the MPC8572E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

| MPC                          | nnnn               | е                       | t                                      | 1                              | рр                                                                                                                   | ffm                                                                                                                                                                                                                                  | r                                                               |
|------------------------------|--------------------|-------------------------|----------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Product<br>Code <sup>1</sup> | Part<br>Identifier | Security<br>Engine      | Temperature                            | Power                          | Package<br>Sphere<br>Type <sup>2</sup>                                                                               | Processor Frequency/<br>DDR Data Rate <sup>3</sup>                                                                                                                                                                                   | Silicon<br>Revision                                             |
| MPC<br>PPC                   | 8572               | E = Included            | Blank = 0 to 105°C<br>C = −40 to 105°C | Blank =<br>Standard<br>L = Low | PX =<br>Leaded,<br>FC-PBGA<br>VT = Pb-free,<br>FC-PBGA <sup>4</sup><br>VJ = Fully<br>Pb-free<br>FC-PBGA <sup>5</sup> | AVN =<br>1500-MHz processor;<br>800 MT/s DDR data rate<br>AUL =<br>1333-MHz processor;<br>667 MT/s DDR data rate<br>ATL =<br>1200-MHz processor;<br>667 MT/s DDR data rate<br>ARL =<br>1067-MHz processor;<br>667 MT/s DDR data rate | E = Ver. 2.2.1<br>(SVR =<br>0x80E8_0022)<br>SEC included        |
|                              |                    | Blank = Not<br>included |                                        |                                |                                                                                                                      |                                                                                                                                                                                                                                      | E = Ver. 2.2.1<br>(SVR =<br>0x80E0_0022)<br>SEC not<br>included |

Notes:

- <sup>1</sup> MPC stands for "Qualified."
- PPC stands for "Prototype"
- <sup>2</sup> See Section 18, "Package Description," for more information on the available package types.
- <sup>3</sup> Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.
- 4. The VT part number is ROHS-compliant with the permitted exception of the C4 die bumps.
- 5. The VJ part number is entirely lead-free. This includes the C4 die bumps.