
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.067GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572elvtarle

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three inbound windows plus a configuration window on PCI Express
- Four inbound windows plus a default window on Serial RapidIO®
- Four outbound windows plus default translation for PCI Express
- Eight outbound windows plus default translation for Serial RapidIO with segmentation and sub-segmentation support
- Two 64-bit DDR2/DDR3 memory controllers
 - Programmable timing supporting DDR2 and DDR3 SDRAM
 - 64-bit data interface per controller
 - Four banks of memory supported, each up to 4 Gbytes, for a maximum of 16 Gbytes per controller
 - DRAM chip configurations from 64 Mbits to 4 Gbits with x8/x16 data ports
 - Full ECC support
 - Page mode support
 - Up to 32 simultaneous open pages for DDR2 or DDR3
 - Contiguous or discontiguous memory mapping
 - Cache line, page, bank, and super-bank interleaving between memory controllers
 - Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
 - Sleep mode support for self-refresh SDRAM
 - On-die termination support when using DDR2 or DDR3
 - Supports auto refreshing
 - On-the-fly power management using CKE signal
 - Registered DIMM support
 - Fast memory access through JTAG port
 - 1.8-V SSTL_1.8 compatible I/O
 - Support 1.5-V operation for DDR3. The detail is TBD pending on official release of appropriate industry specifications.
 - Support for battery-backed main memory
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts per processor with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high resolution timers/counters per processor that can generate interrupts
 - Supports a variety of other internal interrupt sources

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings	1
-----------------------------------	---

	Characteristic	Symbol	Range	Unit	Notes
Core supply voltag	e	V _{DD}	-0.3 to 1.21	V	
PLL supply voltage	3	AV _{DD}	V _{DD} -0.3 to 1.21 V		_
Core power supply	ofor SerDes transceivers	SV _{DD}	-0.3 to 1.21	V	_
Pad power supply	for SerDes transceivers	XV _{DD}	-0.3 to 1.21	V	_
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	-0.3 to 1.98	V	_
Controller I/O supply voltage	DDR3 SDRAM Interface	_	-0.3 to 1.65		—
Three-speed Ether management volta	rnet I/O, FEC management interface, MII ge	LV _{DD} (for eTSEC1 and eTSEC2)	-0.3 to 3.63 -0.3 to 2.75	V	2
		TV _{DD} (for eTSEC3 and eTSEC4, FEC)	-0.3 to 3.63 -0.3 to 2.75	—	2
DUART, system co I/O voltage	ontrol and power management, I ² C, and JTAG	OV _{DD}	-0.3 to 3.63	V	—
Local bus and GPI	O I/O voltage	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	_
Input voltage	DDR2 and DDR3 SDRAM interface signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	3
	DDR2 and DDR3 SDRAM interface reference	MV _{REF} n	-0.3 to (GV _{DD} /2 + 0.3)	V	—
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	-0.3 to (LV _{DD} + 0.3) -0.3 to (TV _{DD} + 0.3)	V	3
	Local bus and GPIO signals	BV _{IN}	–0.3 to (BV _{DD} + 0.3)	—	—
	DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3
Storage temperatu	re range	T _{STG}	–55 to 150	°C	—

Notes:

1. Functional operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

The 3.63V maximum is only supported when the port is configured in GMII, MII, RMII or TBI modes; otherwise the 2.75V maximum applies. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.

3. (M,L,O)V_{IN} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

DDR2 and DDR3 SDRAM Controller

Table 11. DDR2 SDRAM Interface DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	_

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

- 2. $MV_{REF}n$ is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on $MV_{REF}n$ may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to that far end signal termination is made and is expected to be equal to MV_{REF}*n*. This rail should track variations in the DC level of MV_{REF}*n*.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the recommended operating conditions for the DDR SDRAM controller of the MPC8572E when interfacing to DDR3 SDRAM.

Parameter/Condition	Symbol	Min	Typical	Max	Unit
I/O supply voltage	GV _{DD}	1.425	1.575	V	1
I/O reference voltage	MV _{REF} n	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
Input high voltage	V _{IH}	$MV_{REF}n + 0.100$	GV _{DD}	V	—
Input low voltage	V _{IL}	GND	MV _{REF} <i>n</i> - 0.100	V	—
Output leakage current	I _{OZ}	-50	50	μΑ	3

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

2. $MV_{REF}n$ is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on $MV_{REF}n$ may not exceed ±1% of the DC value.

3. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 13 provides the DDR SDRAM controller interface capacitance for DDR2 and DDR3.

Table 13. DDR2 and DDR3 SDRAM Interface Capacitance for GV_{DD}(typ)=1.8 V and 1.5 V

Parameter/Condition	Symbol	Min	Typical	Мах	Unit
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1, 2
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1, 2

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V (for DDR2), f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

2. This parameter is sampled. GV_{DD} = 1.5 V ± 0.075 V (for DDR3), f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.175 V.

Table 18. DDR2 and DDR3 SDRAM Interface Output AC Timing Specifications (continued)At recommended operating conditions with GV_{DD} of 1.8 V ± 5% for DDR2 or 1.5 V ± 5% for DDR3.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
800 MHz		0.917	_		
667 MHz		1.10	_		
533 MHz		1.48	—		
400 MHz		1.95	—		
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
800 MHz		0.917	—		
667 MHz		1.10	_		
533 MHz		1.48	_		
400 MHz		1.95	_		
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
800 MHz		0.917	_		
667 MHz		1.10			
533 MHz		1.48	_		
400 MHz	t _{DDKHCS}	1.95		ns	3
MCS[n] output hold with respect to MCK	t _{DDKHCX}			ns	3
800 MHz		0.917	—		
667 MHz		1.10	—		
533 MHz		1.48	—		
400 MHz		1.95	—		
MCK to MDQS Skew	t _{DDKHMH}			ns	4
800 MHz		-0.375	0.375		
<= 667 MHz		-0.6	0.6		
MDQ/MECC/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ps	5
800 MHz		375	—		
667 MHz		450	_		
533 MHz		538	—		
400 MHz		700	—		
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
800 MHz		375	—		
667 MHz		450	_		

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

7.2 DUART AC Electrical Specifications

Table 22 provides the AC timing parameters for the DUART interface.

Table 22. DUART AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3V ± 5%.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB} /1,048,576	baud	1, 2
Maximum baud rate	f _{CCB} /16	baud	1, 2, 3
Oversample rate	16	_	1, 4

Notes:

1. Guaranteed by design

- 2. f_{CCB} refers to the internal platform clock frequency.
- 3. Actual attainable baud rate is limited by the latency of interrupt processing.
- 4. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

This section provides the AC and DC electrical characteristics for the enhanced three-speed Ethernet controller.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—FIFO/GMII/MII/TBI/RGMII/RTBI/RMII Electrical Characteristics

The electrical characteristics specified here apply to all FIFO mode, gigabit media independent interface (GMII), media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), and reduced media independent interface (RMII) signals except management data input/output (MDIO) and management data clock (MDC), and serial gigabit media independent interface (SGMII). The RGMII, RTBI and FIFO mode interfaces are defined for 2.5 V, while the GMII, MII, RMII, and TBI interfaces can operate at both 2.5 V and 3.3V.

The GMII, MII, or TBI interface timing is compliant with IEEE 802.3. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3 (12/10/2000). The RMII interface follows the RMII Consortium RMII Specification Version 1.2 (3/20/1998).

The electrical characteristics for MDIO and MDC are specified in Section 9, "Ethernet Management Interface Electrical Characteristics."

The electrical characteristics for SGMII is specified in Section 8.3, "SGMII Interface Electrical Characteristics." The SGMII interface conforms (with exceptions) to the Serial-GMII Specification Version 1.8.

Table 24, MIL GMIL	RMIL RGI	/III. TBI. RTB	I, and FIFO DC Electrica	Characteristics	(continued)
	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ooninaca)

Parameters	Symbol	Min	Мах	Unit	Notes
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	_	10	μΑ	1, 2,3
Input low current (V _{IN} = GND)	Ι _{ΙL}	-15	_	μΑ	3

Note:

¹ LV_{DD} supports eTSECs 1 and 2.

 2 TV_{DD} supports eTSECs 3 and 4 or FEC.

 3 Note that the symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1.

8.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII and RTBI are presented in this section.

8.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, because they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back on the TSEC*n*_GTX_CLK pin (while transmit data appears on TSEC*n*_TXD[7:0], for example). It is intended that external receivers capture eTSEC transmit data using the clock on TSEC*n*_GTX_CLK as a source-synchronous timing reference. Typically, the clock edge that launched the data can be used, because the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver. Note that there is a relationship between the maximum FIFO speed and the platform (CCB) frequency. For more information see Section 4.5, "Platform to eTSEC FIFO Restrictions."

Table 25 and Table 26 summarize the FIFO AC specifications.

Table 25. FIFO Mode Transmit AC Timing Specification

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5V ± 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit
TX_CLK, GTX_CLK clock period ¹	t _{FIT}	5.3	8.0	100	ns
TX_CLK, GTX_CLK duty cycle	t _{FITH} /t _{FIT}	45	50	55	%

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

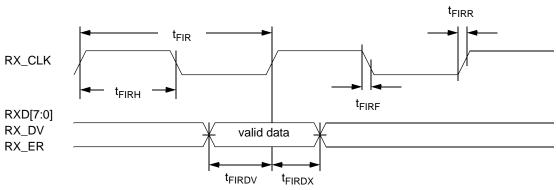


Figure 8. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 27 provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	_	_	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.5	_	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} 2	_	_	1.0	ns
GTX_CLK data clock fall time (80%-20%)	t_{GTXF}^2		1	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

described in Section 21.5, "Connection Recommendations," as long as such termination does not violate the desired POR configuration requirement on these pins, if applicable.

When operating in SGMII mode, the eTSEC EC_GTX_CLK125 clock is not required for this port. Instead, SerDes reference clock is required on SD2_REF_CLK and SD2_REF_CLK pins.

8.3.1 DC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

The characteristics and DC requirements of the separate SerDes reference clock are described in Section 15, "High-Speed Serial Interfaces (HSSI)."

8.3.2 AC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

Table 37 lists the SGMII SerDes reference clock AC requirements. Note that SD2_REF_CLK and SD2_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

Symbol	Parameter Description	Min	Typical	Max	Units	Notes
t _{REF}	REFCLK cycle time	_	10 (8)		ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles			100	ps	—
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	—	50	ps	—

Table 37. SD2_REF_CLK and SD2_REF_CLK AC Requirements

Note:

1.8 ns applies only when 125 MHz SerDes2 reference clock frequency is selected through cfg_srds_sgmii_refclk during POR.

10 Local Bus Controller (eLBC)

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8572E.

10.1 Local Bus DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V}$ DC.

Parameter	Symbol	Min	Мах	Unit
Supply voltage 3.3V	BV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	—	±5	μΑ
High-level output voltage (BV _{DD} = min, I _{OH} = −2 mA)	V _{OH}	BV _{DD} – 0.2	_	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	—	0.2	V

 Table 46. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Table 47 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 V DC$.

Table 47. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 2.5V	BV _{DD}	2.37	2.63	V
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.7	V
Input current	I _{IH}	_	10	μΑ
$(BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD})$	۱ _{IL}		-15	
High-level output voltage ($BV_{DD} = min, I_{OH} = -1 mA$)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

JTAG

Table 53. JTAG AC Timing Specifications (Independent of SYSCLK) ¹ (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	3 3	19 9	ns	5, 6

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 36). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design.

Figure 36 provides the AC test load for TDO and the boundary-scan outputs.

Figure 36. AC Test Load for the JTAG Interface

Figure 37 provides the JTAG clock input timing diagram.

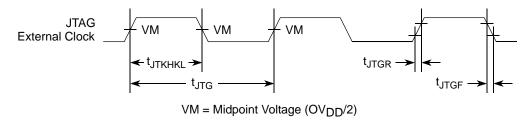


Figure 37. JTAG Clock Input Timing Diagram

Figure 38 provides the $\overline{\text{TRST}}$ timing diagram.

High-Speed Serial Interfaces (HSSI)

clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

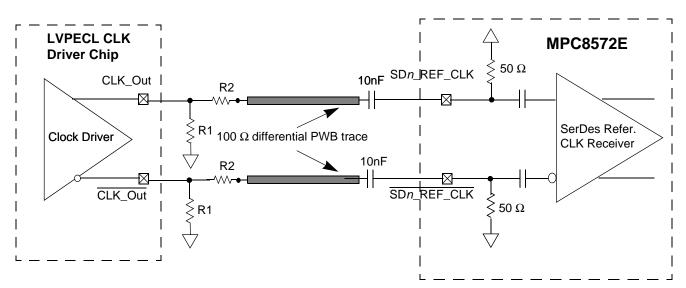
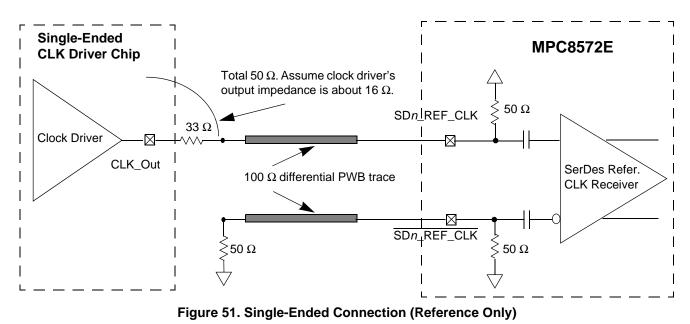



Figure 50. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 51 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with MPC8572E SerDes reference clock input's DC requirement.

15.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100KHz can be tracked by the PLL and data recovery loops and

Table 66. Short Run Transmitter AC Timing Specifications—2.5 GBaud (continued)

Characteristic	Symbol	Ra	nge	Unit	Notes
Characteristic	Symbol	Min	Мах	Onic	NOICS
Multiple Output skew	S _{MO}	_	1000	-	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/- 100 ppm

Table 67. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Ra	nge	Unit	Notes
	Symbol	Min	Мах	Onic	NOICS
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	—
Deterministic Jitter	J _D	_	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	_
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	+/– 100 ppm

Table 68. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Symbol	Ra	nge	Unit	Notes
Characteristic	Symbol	Min	Мах		NOLES
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	+/- 100 ppm

Package Description

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
IRQ_OUT	Interrupt Output	U24	0	OV _{DD}	2, 4
	1588	3			
TSEC_1588_CLK	Clock In	AM22	I	LV _{DD}	
TSEC_1588_TRIG_IN	Trigger In	AM23	I	LV _{DD}	_
TSEC_1588_TRIG_OUT	Trigger Out	AA23	0	LV _{DD}	5, 9
TSEC_1588_CLK_OUT	Clock Out	AC23	0	LV _{DD}	5, 9
TSEC_1588_PULSE_OUT1	Pulse Out1	AA22	0	LV _{DD}	5, 9
TSEC_1588_PULSE_OUT2	Pulse Out2	AB23	0	LV _{DD}	5, 9
	Ethernet Managem	ent Interface 1			
EC1_MDC	Management Data Clock	AL30	0	LV _{DD}	5, 9
EC1_MDIO	Management Data In/Out	AM25	I/O	LV _{DD}	
	Ethernet Managem	ent Interface 3			
EC3_MDC	Management Data Clock	AF19	0	TV _{DD}	5, 9
EC3_MDIO	Management Data In/Out	AF18	I/O	TV _{DD}	
	Ethernet Managem	ent Interface 5			
EC5_MDC	Management Data Clock	AF14	0	TV _{DD}	21
EC5_MDIO	Management Data In/Out	AF15	I/O	TV _{DD}	
	Gigabit Ethernet R	eference Clock			
EC_GTX_CLK125	Reference Clock	AM24	Ι	LV _{DD}	32
	Three-Speed Ether	net Controller 1			
TSEC1_RXD[7:0]/FIFO1_RXD[7:0]	Receive Data	AM28, AL28, AM26, AK23, AM27, AK26, AL29, AM30	I	LV _{DD}	1
TSEC1_TXD[7:0]/FIFO1_TXD[7:0]	Transmit Data	AC20, AD20, AE22, AB22, AC22, AD21, AB21, AE21	0	LV _{DD}	1, 5, 9
TSEC1_COL/FIFO1_TX_FC	Collision Detect/Flow Control	AJ23	Ι	LV _{DD}	1
TSEC1_CRS/FIFO1_RX_FC	Carrier Sense/Flow Control	AM31	I/O	LV _{DD}	1, 16
TSEC1_GTX_CLK	Transmit Clock Out	AK27	0	LV _{DD}	
TSEC1_RX_CLK/FIFO1_RX_C LK	Receive Clock	AL25	I	LV _{DD}	1

				Power	
Signal	Signal Name	Package Pin Number	Pin Type	Supply	Notes
TSEC1_RX_DV/FIFO1_RX_D V/FIFO1_RXC[0]	Receive Data Valid	AL24	I	LV _{DD}	1
TSEC1_RX_ER/FIFO1_RX_E R/FIFO1_RXC[1]	Receive Data Error	AM29	I	LV _{DD}	1
TSEC1_TX_CLK/FIFO1_TX_C LK	Transmit Clock In	AB20	I	LV _{DD}	1
TSEC1_TX_EN/FIFO1_TX_EN /FIFO1_TXC[0]	Transmit Enable	AJ24	0	LV _{DD}	1, 22
TSEC1_TX_ER/FIFO1_TX_ER R/FIFO1_TXC[1]	Transmit Error	AK25	0	LV _{DD}	1, 5, 9
	Three-Speed Ether	net Controller 2			
TSEC2_RXD[7:0]/FIFO2_RXD[7:0]/FIFO1_RXD[15:8]	Receive Data	AG22, AH20, AL22, AG20, AK21, AK22, AJ21, AK20	I	LV _{DD}	1
TSEC2_TXD[7:0]/FIFO2_TXD[7:0]/FIFO1_TXD[15:8]	Transmit Data	AH21, AF20, AC17, AF21, AD18, AF22, AE20, AB18	0	LV _{DD}	1, 5, 9, 24
TSEC2_COL/FIFO2_TX_FC	Collision Detect/Flow Control	AE19	Ι	LV _{DD}	1
TSEC2_CRS/FIFO2_RX_FC	Carrier Sense/Flow Control	AJ20	I/O	LV _{DD}	1, 16
TSEC2_GTX_CLK	Transmit Clock Out	AE18	0	LV _{DD}	—
TSEC2_RX_CLK/FIFO2_RX_C LK	Receive Clock	AL23	I	LV _{DD}	1
TSEC2_RX_DV/FIFO2_RX_D V/FIFO1_RXC[2]	Receive Data Valid	AJ22	I	LV _{DD}	1
TSEC2_RX_ER/FIFO2_RX_E R	Receive Data Error	AD19	I	LV _{DD}	1
TSEC2_TX_CLK/FIFO2_TX_C LK	Transmit Clock In	AC19	I	LV _{DD}	1
TSEC2_TX_EN/FIFO2_TX_EN /FIFO1_TXC[2]	Transmit Enable	AB19	0	LV _{DD}	1, 22
TSEC2_TX_ER/FIFO2_TX_ER R	Transmit Error	AB17	0	LV _{DD}	1, 5, 9
	Three-Speed Ethern	net Controller 3			
TSEC3_TXD[3:0]/FEC_TXD[3: 0]/FIFO3_TXD[3:0]	Transmit Data	AG18, AG17, AH17, AH19	0	TV _{DD}	1, 5, 9
TSEC3_RXD[3:0]/FEC_RXD[3: 0]/FIFO3_RXD[3:0]	Receive Data	AG16, AK19, AD16, AJ19	Ι	TV _{DD}	1

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes		
MSRCID[0:1]	Memory Debug Source Port ID	U27, T29	0	OV _{DD}	5, 9, 30		
MSRCID[2:4]	Memory Debug Source Port ID	U28, W24, W28	0	OV _{DD}	21		
MDVAL	Memory Debug Data Valid	V26	0	OV _{DD}	2, 21		
CLK_OUT	Clock Out	U32	0	OV _{DD}	11		
	Clock	κ					
RTC	Real Time Clock	V25	I	OV _{DD}	—		
SYSCLK	System Clock	Y32	I	OV _{DD}	—		
DDRCLK	DDR Clock	AA29	I	OV _{DD}	31		
JTAG							
тск	Test Clock	T28	I	OV _{DD}			
TDI	Test Data In	T27	I	OV _{DD}	12		
TDO	Test Data Out	T26	0	OV _{DD}	—		
TMS	Test Mode Select	U26	I	OV _{DD}	12		
TRST	Test Reset	AA32	I	OV _{DD}	12		
DFT							
L1_TSTCLK	L1 Test Clock	V32	I	OV _{DD}	18		
L2_TSTCLK	L2 Test Clock	V31	I	OV _{DD}	18		
LSSD_MODE	LSSD Mode	N24	I	OV _{DD}	18		
TEST_SEL	Test Select 0	K28	I	OV _{DD}	18		
Power Management							
ASLEEP	Asleep	P28	0	OV _{DD}	9, 15, 21		

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes		
	Power and Ground Signals						
GND	Ground	A18, A25, A29, C3, C6, C9, C12, C15, C20, C22, E5, E8, E11, E14, F3, G7, G10, G13, G16, H5, H21, J3, J9, J12, J18, K7, L5, L13, L15, L16, L21, M3, M9, M12, M14, M16, M18, N7, N13, N15, N17, N19, N21, N23, P5, P12, P14, P16, P20, P22, R3, R9, R11, R13, R15, R17, R19, R21, R23, R26, T7, T12, T14, T16, T18, T20, T22, T30, U5, U11, U13, U15, U16, U17, U19, U21, U23, U25, V3, V9, V12, V14, V16, V18, V20, V22, W7, W11, W13, W15, W17, W19, W21, W27, W32, Y5, Y12, Y14, Y16, Y18, Y20, AA3, AA9, AA13, AA15, AA17, AA19, AA21, AA30, AB7, AB26, AC5, AC11, AC13, AD3, AD9, AD14, AD17, AD22, AE7, AE13, AF5, AF11, AG3, AG9, AG15, AG19, AH7, AH13, AH22, AJ5, AJ11, AJ17, AK3, AK9, AK15, AK24, AL7, AL13, AL19, AL26					
XGND_SRDS1	SerDes Transceiver Pad GND (xpadvss)	C23, C27, D23, D25, E23, E26, F23, F24, G23, G27, H23, H25, J23, J26, K23, K24, L27, M25	—		—		
XGND_SRDS2	SerDes Transceiver Pad GND (xpadvss)	AD23, AD25, AE23, AE27, AF23, AF24, AG23, AG26, AH23, AH25, AJ27		_			

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SGND_SRDS1	SerDes Transceiver Core Logic GND (xcorevss)	C28, C32, D30, E31, F28, F29, G32, H28, H30, J28, K29, L32, M30, N31, P29, R32	_	_	_
SGND_SRDS2	SerDes Transceiver Core Logic GND (xcorevss)	AE28, AE30, AF28, AF32, AG28, AG30, AH28, AJ28, AJ31, AL32	_	_	
AGND_SRDS1	SerDes PLL GND	J31	—	—	_
AGND_SRDS2	SerDes PLL GND	AH31	—	—	_
OVDD	General I/O Supply	U31, V24, V28, Y31, AA27, AB25, AB29	—	OVDD	_
LVDD	TSEC 1&2 I/O Supply	AC18, AC21, AG21, AL27	—	LVDD	_
TVDD	TSEC 3&4 I/O Supply	AC15, AE16, AH18	—	TVDD	_
GVDD	SSTL_1.8 DDR Supply	B2, B5, B8, B11, B14, D4, D7, D10, D13, E2, F6, F9, F12, G4, H2, H8, H11, H14, J6, K4, K10, K13, L2, L8, M6, N4, N10, P2, P8, R6, T4, T10, U2, U8, V6, W4, W10, Y2, Y8, AA6, AB4, AB10, AC2, AC8, AD6, AD12, AE4, AE10, AF2, AF8, AG6, AG12, AH4, AH10, AH16, AJ2, AJ8, AJ14, AK6, AK12, AK18, AL4, AL10, AL16, AM2		GVDD	_
BVDD	Local Bus and GPIO Supply	A26, A30, B21, D16, D21, F18, G20, H17, J22, K15, K20	—	BVDD	_

Clocking

Binary Value of LA[29:31] Signals	CCB:SYSCLK Ratio		
000	4:1		
001	5:1		
010	6:1		
011	8:1		
100	10:1		
101	12:1		
110	Reserved		
111	Reserved		

Table 79. CCB Clock Ratio

19.3 e500 Core PLL Ratio

The clock speed for each e500 core can be configured differently, determined by the values of various signals at power up.

Table 80 describes the clock ratio between e500 Core0 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LBCTL, LALE and LGPL2/LOE/LFRE at power up, as shown in Table 80.

Binary Value of LBCT <u>L, LALE,</u> LGPL2/LOE/LFRE Signals	e500 Core0:CCB Clock Ratio	Binary Value of LBCT <u>L, LALE,</u> LGPL2/LOE/LFRE Signals	e500 Core0:CCB Clock Ratio
000	Reserved	100	2:1
001	Reserved	101	5:2 (2.5:1)
010	Reserved	110	3:1
011	3:2 (1.5:1)	111	7:2 (3.5:1)

Table 80. e500 Core0 to CCB Clock Ratio

System Design Information

Figure 62 shows the PLL power supply filter circuits.

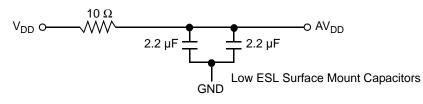
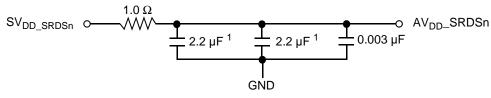



Figure 62. PLL Power Supply Filter Circuit

NOTE

It is recommended to have the minimum number of vias in the AV_{DD} trace for board layout. For example, zero vias might be possible if the AV_{DD} filter is placed on the component side. One via might be possible if it is placed on the opposite of the component side. Additionally, all traces for AV_{DD} and the filter components should be low impedance, 10 to 15 mils wide and short. This includes traces going to GND and the supply rails they are filtering.

The AV_{DD}_SRDSn signal provides power for the analog portions of the SerDesn PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDSn ball to ensure it filters out as much noise as possible. The ground connection should be near the AV_{DD}_SRDSn ball. The 0.003- μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide and direct.

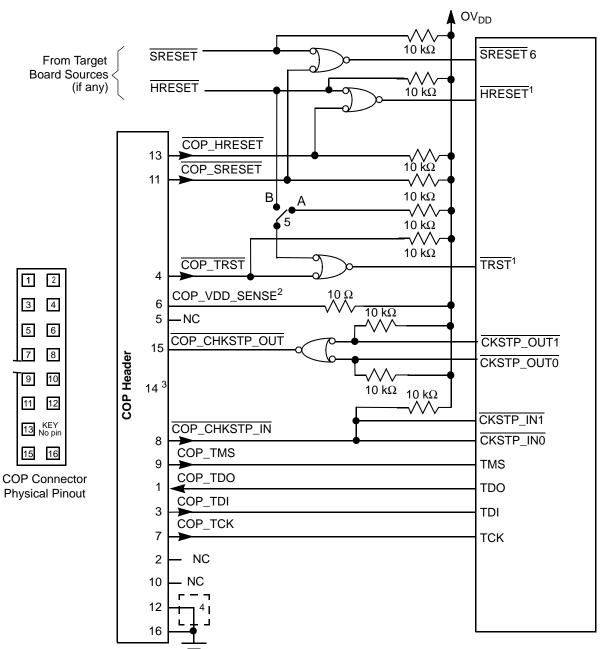
1. An 0805 sized capacitor is recommended for system initial bring-up.

Figure 63. SerDes PLL Power Supply Filter

NOTE

AV_{DD}_SRDSn should be a filtered version of SV_{DD}_SRDSn.

NOTE


Signals on the SerDesn interface are fed from the XV_{DD} -SRDS*n* power plane.

21.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads.

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 cores.