E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572epxauld

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three PCI Express controllers
 - PCI Express 1.0a compatible
 - Supports x8, x4, x2, and x1 link widths (see following bullet for specific width configuration options)
 - Auto-detection of number of connected lanes
 - Selectable operation as root complex or endpoint
 - Both 32- and 64-bit addressing
 - 256-byte maximum payload size
 - Virtual channel 0 only
 - Full 64-bit decode with 36-bit wide windows
- Pin multiplexing for the high-speed I/O interfaces supports one of the following configurations:
 - Single x8/x4/x2/x1 PCI Express
 - Dual x4/x2/x1 PCI Express
 - Single x4/x2/x1 PCI Express and dual x2/x1 PCI Express
 - Single 1x/4x Serial RapidIO and single x4/x2/x1 PCI Express
- Power management
 - Supports power saving modes: doze, nap, and sleep
 - Employs dynamic power management, that automatically minimizes power consumption of blocks when they are idle
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the eight counters
 - Supports duration and quantity threshold counting
 - Permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1[™] compatible, JTAG boundary scan
- 1023 FC-PBGA package

NOTE

From a system standpoint, if any of the I/O power supplies ramp prior to the VDD core supply, the I/Os associated with that I/O supply may drive a logic one or zero during power-on reset, and extra current may be drawn by the device.

3 Power Characteristics

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with out the L in its part ordering is shown in Table 4.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12.3	17.8	18.5	W
533	1200	12.3	17.8	18.5	W
533	1333	16.3	22.8	24.5	W
600	1500	17.3	23.9	25.9	W

Table 4	MPC8572F	Power	Dissir	nation ¹
		I OWEI	Diagih	Jation

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

 $^2~$ Typical-65 is based on V_DD = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

⁴ Maximum is based on V_{DD} = 1.1 V, T_j = 105 °C, running a smoke test.

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with the L in its port ordering is shown in Table 5.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12	15	15.8	W
533	1200	12	15.5	16.3	W
533	1333	12	15.9	16.9	W
600	1500	13	18.7	20.0	W

Table 5. MPC8572EL Power Dissipation ¹

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

² Typical-65 is based on V_{DD} = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

 $^4\,$ Maximum is based on V_{DD} = 1.1 V, T_i = 105 °C, running a smoke test.

4.3 eTSEC Gigabit Reference Clock Timing

Table 7 provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications for the MPC8572E.

Table 7. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 3.3V ± 5% or 2.5V ± 5%

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	—	125	—	MHz	—
EC_GTX_CLK125 cycle time	t _{G125}	—	8	—	ns	_
EC_GTX_CLK125 rise and fall time L/TV_DD=2.5V L/TV_DD=3.3V	t _{G125R} , t _{G125F}	_	_	0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	2, 3

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for L/TV_{DD}=2.5V, and from 0.6V and 2.7V for L/TV_{DD}=3.3V.

- 2. Timing is guaranteed by design and characterization.
- 3. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated by the TSEC*n*_GTX_CLK. See Section 8.2.6, "RGMII and RTBI AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

4.4 DDR Clock Timing

Table 8 provides the DDR clock (DDRCLK) AC timing specifications for the MPC8572E.

Table 8. DDRCLK AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3V ± 5%.

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
DDRCLK frequency	f _{DDRCLK}	66	—	100	MHz	1
DDRCLK cycle time	t _{DDRCLK}	10.0	—	15.15	ns	_
DDRCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
DDRCLK duty cycle	t _{KHK} /t _{DDRCLK}	40	—	60	%	3

RESET Initialization

Table 8. DDRCLK AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3V ± 5%.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
DDRCLK jitter	_			+/- 150	ps	4, 5, 6

Notes:

- 1. **Caution:** The DDR complex clock to DDRCLK ratio settings must be chosen such that the resulting DDR complex clock frequency does not exceed the maximum or minimum operating frequencies. Refer to Section 19.4, "DDR/DDRCLK PLL Ratio," for ratio settings.
- 2. Rise and fall times for DDRCLK are measured at 0.6 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The DDRCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track DDRCLK drivers with the specified jitter.
- 6. For spread spectrum clocking, guidelines are +0% to -1% down spread at a modulation rate between 20 kHz and 60 kHz on DDRCLK.

4.5 Platform to eTSEC FIFO Restrictions

Note the following eTSEC FIFO mode maximum speed restrictions based on platform (CCB) frequency.

For FIFO GMII modes (both 8 and 16 bit) and 16-bit encoded FIFO mode:

FIFO TX/RX clock frequency <= platform clock (CCB) frequency/4.2

For example, if the platform (CCB) frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 127 MHz.

For 8-bit encoded FIFO mode:

FIFO TX/RX clock frequency <= platform clock (CCB) frequency/3.2

For example, if the platform (CCB) frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 167 MHz.

4.6 Other Input Clocks

For information on the input clocks of other functional blocks of the platform, such as SerDes and eTSEC, see the respective sections of this document.

5 **RESET** Initialization

Table 9 describes the AC electrical specifications for the RESET initialization timing.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μs	2
Minimum assertion time for SRESET	3	—	SYSCLKs	1

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Figure 18. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.2.7 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.7.1 RMII Transmit AC Timing Specifications

Table 35 shows the RMII transmit AC timing specifications.

Table 35. RMII Transmit AC Timing Specifications

```
At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V \pm 5%.
```

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TSECn_TX_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
TSECn_TX_CLK duty cycle	t _{RMTH}	35	50	65	%
TSECn_TX_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps
Rise time TSECn_TX_CLK (20%-80%)	t _{RMTR}	1.0	—	2.0	ns
Fall time TSECn_TX_CLK (80%–20%)	t _{RMTF}	1.0	—	2.0	ns

described in Section 21.5, "Connection Recommendations," as long as such termination does not violate the desired POR configuration requirement on these pins, if applicable.

When operating in SGMII mode, the eTSEC EC_GTX_CLK125 clock is not required for this port. Instead, SerDes reference clock is required on SD2_REF_CLK and SD2_REF_CLK pins.

8.3.1 DC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

The characteristics and DC requirements of the separate SerDes reference clock are described in Section 15, "High-Speed Serial Interfaces (HSSI)."

8.3.2 AC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK

Table 37 lists the SGMII SerDes reference clock AC requirements. Note that SD2_REF_CLK and SD2_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

Symbol	Parameter Description	Min	Typical	Max	Units	Notes
t _{REF}	REFCLK cycle time		10 (8)	_	ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles		_	100	ps	_
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50		50	ps	

Table 37. SD2_REF_CLK and SD2_REF_CLK AC Requirements

Note:

1.8 ns applies only when 125 MHz SerDes2 reference clock frequency is selected through cfg_srds_sgmii_refclk during POR.

Local Bus Controller (eLBC)

Figure 31. Local Bus Signals (PLL Bypass Mode)

Local Bus Controller (eLBC)

Figure 35. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%. All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 2).

Parameter	Symbol ¹	Min	Мах	Unit
Capacitive load for each bus line	Cb	—	400	pF

Notes:

NXP Semiconductors

- 1. The symbols used for timing specifications herein follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the t_{I2C} clock reference (K) going to the t_{I2C} clock reference (K) going to the t_{I2C} timing (I2) for the time that the data with respect to the t_{I2C} symbolizes I²C timing (I2) for the time that the data with respect to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the t_{I2C} clock reference (K) going to the t_{I2C} clock reference (K) going to the t_{I2C} timing (I2) for the time that the data with respect to the t_{I2C} clock reference (K) going to the t_{I2C} clock reference (K) going to the t_{I2C} timing (I2) for the time that the data with respect to the STOP condition (P) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time.}
- 2. As a transmitter, the MPC8572E provides a delay time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP condition. When the MPC8572E acts as the I2C bus master while transmitting, the MPC8572E drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the MPC8572E would not cause unintended generation of START or STOP condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the MPC8572E as transmitter, application note AN2919 referred to in note 4 below is recommended.
- 3. The maximum t_{I2OVKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. The requirements for I²C frequency calculation must be followed. Refer to Freescale application note AN2919, *Determining the I²C Frequency Divider Ratio for SCL*.

Figure 40 provides the AC test load for the I^2C .

Figure 40. I²C AC Test Load

Figure 41 shows the AC timing diagram for the I^2C bus.

Figure 41. I²C Bus AC Timing Diagram

Table 58 provides the DC electrical characteristics for the GPIO interface operating at $BV_{DD} = 1.8 \text{ V DC}$. Table 58. GPIO DC Electrical Characteristics (1.8 V DC)

Parameter	Symbol	Min	Max	Unit
Supply voltage 1.8V	BV _{DD}	1.71	1.89	V
High-level input voltage	V _{IH}	0.65 x BV _{DD}	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.35 x BV _{DD}	V
Input current $(BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD})$	I _{IN}	TBD	TBD	μΑ
High-level output voltage $(I_{OH} = -100 \ \mu A)$	V _{OH}	BV _{DD} – 0.2	—	V
High-level output voltage $(I_{OH} = -2 \text{ mA})$	V _{OH}	BV _{DD} – 0.45	—	V
Low-level output voltage $(I_{OL} = 100 \ \mu A)$	V _{OL}	_	0.2	V
Low-level output voltage (I _{OL} = 2 mA)	V _{OL}	_	0.45	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

14.2 GPIO AC Electrical Specifications

Table 59 provides the GPIO input and output AC timing specifications.

Table 59. GPIO Input AC Timing Specifications¹

Parameter	Symbol	Тур	Unit	Notes
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns	2

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYSCLK. Timings are measured at the pin.
- 2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

Figure 42 provides the AC test load for the GPIO.

High-Speed Serial Interfaces (HSSI)

Figure 53. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol based on application usage. Refer to the following sections for detailed information:

- Section 8.3.2, "AC Requirements for SGMII SD2_REF_CLK and SD2_REF_CLK"
- Section 16.2, "AC Requirements for PCI Express SerDes Reference Clocks"
- Section 17.2, "AC Requirements for Serial RapidIO SD1_REF_CLK and SD1_REF_CLK"

15.2.4.1 Spread Spectrum Clock

SD1_REF_CLK/SD1_REF_CLK are designed to work with a spread spectrum clock (+0 to -0.5% spreading at 30-33 KHz rate is allowed), assuming both ends have same reference clock. For better results, a source without significant unintended modulation should be used.

SD2_REF_CLK/SD2_REF_CLK are not to be used with, and should not be clocked by, a spread spectrum clock source.

15.3 SerDes Transmitter and Receiver Reference Circuits

Figure 54 shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 54. SerDes Transmitter and Receiver Reference Circuits

The DC and AC specification of SerDes data lanes are defined in each interface protocol section below (PCI Express, Serial Rapid IO or SGMII) in this document based on the application usage:

- Section 8.3, "SGMII Interface Electrical Characteristics"
- Section 16, "PCI Express"

• Section 17, "Serial RapidIO"

Note that external AC Coupling capacitor is required for the above three serial transmission protocols with the capacitor value defined in specification of each protocol section.

16 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8572E.

16.1 <u>DC Requirements</u> for PCI Express SD1_REF_CLK and SD1_REF_CLK

For more information, see Section 15.2, "SerDes Reference Clocks."

16.2 AC Requirements for PCI Express SerDes Reference Clocks

 Table 61 lists AC requirements.

Symbol	Parameter Description	Min	Typical	Max	Units	Notes
t _{REF}	REFCLK cycle time	_	10		ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles	_	_	100	ps	
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	—	50	ps	—

Table 61. SD1_REF_CLK and SD1_REF_CLK AC Requirements

Notes:

1. Typical cycle time is based on PCI Express Card Electromechanical Specification Revision 1.0a.

16.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm) of each other at all times. This is specified to allow bit rate clock sources with a +/-300 ppm tolerance.

16.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this device. For further details as well as the specifications of the transport and data link layer, Use the PCI Express Base Specification. REV. 1.0a document.

16.4.1 Differential Transmitter (TX) Output

Table 62 defines the specifications for the differential output at all transmitters (TXs). The parameters are specified at the component pins.

PCI Express

Symbol	Parameter	Min	Nominal	Мах	Units	Comments
T _{RX-EYE} -MEDIAN-to-MAX -JITTER	Maximum time between the jitter median and maximum deviation from the median.		_	0.3	UI	Jitter is defined as the measurement variation of the crossing points ($V_{RX-DIFFp-p}$ = 0 V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2, 3 and 7.
V _{RX-CM-ACp}	AC Peak Common Mode Input Voltage	_	_	150	mV	
RL _{RX-DIFF}	Differential Return Loss	15	_	_	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at +300 mV and -300 mV, respectively. See Note 4
RL _{RX-CM}	Common Mode Return Loss	6	—	_	dB	Measured over 50 MHz to 1.25 GHz with the D+ and D- lines biased at 0 V. See Note 4
Z _{RX-DIFF-DC}	DC Differential Input Impedance	80	100	120	Ω	RX DC Differential mode impedance. See Note 5
Z _{RX-DC}	DC Input Impedance	40	50	60	Ω	Required RX D+ as well as D- DC Impedance (50 ± 20% tolerance). See Notes 2 and 5.
Z _{RX-HIGH-IMP-DC}	Powered Down DC Input Impedance	200 k	—	_	Ω	Required RX D+ as well as D- DC Impedance when the Receiver terminations do not have power. See Note 6.
V _{RX} -IDLE-DET-DIFFp-p	Electrical Idle Detect Threshold	65	—	175	mV	V _{RX-IDLE-DET-DIFFp-p} = 2* V _{RX-D+} -V _{RX-D} - Measured at the package pins of the Receiver
T _{RX-IDLE-DET-DIFF-} ENTERTIME	Unexpected Electrical Idle Enter Detect Threshold Integration Time			10	ms	An unexpected Electrical Idle ($V_{RX-DIFFp-p} < V_{RX-IDLE-DET-DIFFp-p}$) must be recognized no longer than $T_{RX-IDLE-DET-DIFF-ENTERING}$ to signal an unexpected idle condition.

Table 63. Differential Receiver (RX) Input Specifications (continued)

Serial RapidIO

Characteristic	Characteristic Symbol		nge	Unit	Notos
	Symbol	Min	Мах	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver
Multiple Input Skew	S _{MI}	_	22	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER	—	10 ⁻¹²	—	—
Unit Interval	UI	320	320	ps	+/- 100 ppm

Table 74. Receiver AC Timing Specifications—3.125 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100Ω resistive +/- 5% differential to 2.5 GHz.

17.8.2 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of IEEE 802.3ae.

17.8.3 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive +/- 5% differential to 2.5 GHz.

17.8.4 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in Section 17.6, "Receiver Specifications," and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 60 and Table 75. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 17.6, "Receiver Specifications," is then added to the signal and the test load is replaced by the receiver being tested.

18 Package Description

This section describes package parameters, pin assignments, and dimensions.

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes	
SD2_RX[3:0]	Receive Data (negative)	AK31, AJ29, AF29, AE31	I	XV _{DD_SR} DS2	—	
SD2_TX[3]	SGMII Tx Data eTSEC4	AH26	0	XV _{DD_SR} DS2	—	
SD2_TX[2]	SGMII Tx Data eTSEC3	AG24	0	XV _{DD_SR} DS2	—	
SD2_TX[1]	SGMII Tx Data eTSEC2	AE24	0	XV _{DD_SR} DS2	—	
SD2_TX[0]	SGMII Tx Data eTSEC1	AD26	0	XV _{DD_SR} DS2	_	
SD2_TX[3:0]	Transmit Data (negative)	AH27, AG25, AE25, AD27	0	XV _{DD_SR} DS2	—	
SD2_PLL_TPD	PLL Test Point Digital AH32		0	XV _{DD_SR} DS2	17	
SD2_REF_CLK	PLL Reference Clock AG32		I	XV _{DD_SR} DS2	—	
SD2_REF_CLK	PLL Reference Clock Complement	AG31	I	XV _{DD_SR} DS2	—	
Reserved	—	AF26, AF27	—	—	28	
	General-Purpose	Input/Output				
GPINOUT[0:7]	General Purpose Input / Output	B27, A28, B31, A32, B30, A31, B28, B29	I/O	BV _{DD}	_	
	System Co	ontrol				
HRESET	Hard Reset	AC31	I	OV _{DD}	_	
HRESET_REQ	Hard Reset Request	L23	0	OV _{DD}	21	
SRESET	Soft Reset	P24	I	OV _{DD}		
CKSTP_IN0	Checkstop In Processor 0	N26	I	OV _{DD}		
CKSTP_IN1	Checkstop In Processor 1	N25	I	OV _{DD}	_	
CKSTP_OUT0	Checkstop Out Processor 0	U29	0	OV _{DD}	2, 4	
CKSTP_OUT1	Checkstop Out Processor 1	T25	0	OV _{DD}	2, 4	
Debug						
TRIG_IN	Trigger In	P26	I	OV _{DD}	_	
TRIG_OUT/READY_P0/QUIES	Trigger Out / Ready Processor 0/ Quiesce	P25	0	OV _{DD}	21	
READY_P1	Ready Processor 1	N28	0	OV _{DD}	5, 9	

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SD1_IMP_CAL_RX	SerDes1 Rx Impedance Calibration	B32	I	200Ω (±1%) to GND	_
SD1_IMP_CAL_TX	SerDes1 Tx Impedance Calibration	T32	I	100Ω (±1%) to GND	_
SD1_PLL_TPA	SerDes1 PLL Test Point Analog	J30	0	AVDD_S RDS analog	17
SD2_IMP_CAL_RX	SerDes2 Rx Impedance Calibration	AC32	Ι	$\begin{array}{c} 200\Omega \\ (\pm1\%) \text{ to} \\ \text{GND} \end{array}$	_
SD2_IMP_CAL_TX	SerDes2 Tx Impedance Calibration	AM32	Ι	100Ω (±1%) to GND	_
SD2_PLL_TPA	SerDes2 PLL Test Point Analog	AH30	0	AVDD_S RDS analog	17
TEMP_ANODE	Temperature Diode Anode	AA31	—	internal diode	14
TEMP_CATHODE	Temperature Diode Cathode	AB31	_	internal diode	14
No Connection Pins					

Table 76. MPC8572E Pinout Listing (continued)

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
- 25 When exercise in DDD2 mode, connect Dr. MDIC[0] to exercise the 2.0 (full exercise the mode) or 20.4.0 (hold exercise the second					

25. When operating in DDR2 mode, connect Dn_MDIC[0] to ground through 18.2-Ω (full-strength mode) or 36.4-Ω (half-strength mode) precision 1% resistor, and connect Dn_MDIC[1] to GVDD through 18.2-Ω (full-strength mode) or 36.4-Ω (half-strength mode) precision 1% resistor. When operating in DDR3 mode, connect Dn_MDIC[0] to ground through 20-Ω (full-strength mode) or 40-Ω (half-strength mode) precision 1% resistor, and connect Dn_% resistor, and connect Dn_MDIC[1] to GVDD through 20-Ω (full-strength mode) or 40-Ω (half-strength mode) precision 1% resistor. These pins are used for automatic calibration of the DDR IOs.

- 26. These pins should be connected to XVDD_SRDS1.
- 27. These pins should be pulled to ground (XGND_SRDS1) through a 300- Ω (±10%) resistor.
- 28. These pins should be left floating.
- 29. These pins should be pulled up to TVDD through a 2–10 K Ω resistor.
- 30. These pins have other manufacturing or debug test functions. It is recommended to add both pull-up resistor pads to OVDD and pull-down resistor pads to GND on board to support future debug testing when needed.
- 31. DDRCLK input is only required when the MPC8572E DDR controller is running in asynchronous mode. When the DDR controller is configured to run in synchronous mode via POR setting cfg_ddr_pll[0:2]=111, the DDRCLK input is not required. It is recommended to tie it off to GND when DDR controller is running in synchronous mode. See the MPC8572E PowerQUICC[™] III Integrated Host Processor Family Reference Manual Rev.0, Table 4-3 in section 4.2.2 "Clock Signals", section 4.4.3.2 "DDR PLL Ratio" and Table 4-10 "DDR Complex Clock PLL Ratio" for more detailed description regarding DDR controller operation in asynchronous and synchronous modes.
- 32. EC_GTX_CLK125 is a 125-MHz input clock shared among all eTSEC ports in the following modes: GMII, TBI, RGMII and RTBI. If none of the eTSEC ports is operating in these modes, the EC_GTX_CLK125 input can be tied off to GND.
- 33. These pins should be pulled to ground (GND).
- 34. These pins are sampled at POR for General Purpose configuration use by software. Their value has no impact on the functionality of the hardware.

Table 81 describes the clock ratio between e500 Core1 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LWE[0]/LBS[0]/LFWE, UART_SOUT[1], and READY_P1 signals at power up, as shown in Table 81.

<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio	<u>Bina</u> ry V <u>alue</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio
000	Reserved	100	2:1
001	Reserved	101	5:2 (2.5:1)
010	010 Reserved		3:1
011	3:2 (1.5:1)	111	7:2 (3.5:1)

Table 81.	e500	Core1	to	ССВ	Clock	Ratio

19.4 DDR/DDRCLK PLL Ratio

The dual DDR memory controller complexes can be synchronous with, or asynchronous to, the CCB, depending on configuration.

Table 82 describes the clock ratio between the DDR memory controller complexes and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock. The DDR memory controller complexes clock frequency is equal to the DDR data rate.

When synchronous mode is selected, the memory buses are clocked at half the CCB clock rate. The default mode of operation is for the DDR data rate for both DDR controllers to be equal to the CCB clock rate in synchronous mode, or the resulting DDR PLL rate in asynchronous mode.

In asynchronous mode, the DDR PLL rate to DDRCLK ratios listed in Table 82 reflects the DDR data rate to DDRCLK ratio, because the DDR PLL rate in asynchronous mode means the DDR data rate resulting from DDR PLL output.

Note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode. MPC8572E does not support running one DDR controller in synchronous mode and the other in asynchronous mode.

Binary Value of TSEC_1588_CLK_OUT, TSEC_1588_PULSE_OUT1, TSEC_1588_PULSE_OUT2 Signals	DDR:DDRCLK Ratio
000	3:1
001	4:1
010	6:1
011	8:1
100	10:1

Table 82. DDR Clock Ratio

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8572E.

21.1 System Clocking

The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 19.2, "CCB/SYSCLK PLL Ratio." The MPC8572E includes seven PLLs, with the following functions:

- Two core PLLs have ratios that are individually configurable. Each e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 19.3, "e500 Core PLL Ratio."
- The DDR complex PLL generates the clocking for the DDR controllers.
- The local bus PLL generates the clock for the local bus.
- The PLL for the SerDes1 module is used for PCI Express and Serial Rapid IO interfaces.
- The PLL for the SerDes2 module is used for the SGMII interface.

21.2 Power Supply Design

21.2.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins $(AV_{DD}PLAT, AV_{DD}CORE0, AV_{DD}CORE1, AV_{DD}DDR, AV_{DD}LBIU, AV_{DD}SRDS1 and AV_{DD}SRDS2 respectively).$ The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 62, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 1023 FC-PBGA footprint, without the inductance of vias.