

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCPBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8572epxaule

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three inbound windows plus a configuration window on PCI Express
- Four inbound windows plus a default window on Serial RapidIO®
- Four outbound windows plus default translation for PCI Express
- Eight outbound windows plus default translation for Serial RapidIO with segmentation and sub-segmentation support
- Two 64-bit DDR2/DDR3 memory controllers
 - Programmable timing supporting DDR2 and DDR3 SDRAM
 - 64-bit data interface per controller
 - Four banks of memory supported, each up to 4 Gbytes, for a maximum of 16 Gbytes per controller
 - DRAM chip configurations from 64 Mbits to 4 Gbits with x8/x16 data ports
 - Full ECC support
 - Page mode support
 - Up to 32 simultaneous open pages for DDR2 or DDR3
 - Contiguous or discontiguous memory mapping
 - Cache line, page, bank, and super-bank interleaving between memory controllers
 - Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
 - Sleep mode support for self-refresh SDRAM
 - On-die termination support when using DDR2 or DDR3
 - Supports auto refreshing
 - On-the-fly power management using CKE signal
 - Registered DIMM support
 - Fast memory access through JTAG port
 - 1.8-V SSTL_1.8 compatible I/O
 - Support 1.5-V operation for DDR3. The detail is TBD pending on official release of appropriate industry specifications.
 - Support for battery-backed main memory
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts per processor with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high resolution timers/counters per processor that can generate interrupts
 - Supports a variety of other internal interrupt sources

Figure 1 shows the MPC8572E block diagram.

2 **Electrical Characteristics**

This section provides the AC and DC electrical specifications for the MPC8572E. The MPC8572E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

The Fast Ethernet Controller (FEC) operates in MII mode only, and complies with the AC and DC electrical characteristics specified in this chapter for MII. Note that if FEC is used, eTSEC 3 and 4 are only available in SGMII mode.

8.1.1 eTSEC DC Electrical Characteristics

All MII, GMII, RMII, and TBI drivers and receivers comply with the DC parametric attributes specified in Table 23 and Table 24. All RGMII, RTBI and FIFO drivers and receivers comply with the DC parametric attributes specified in Table 24. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Min	Max	Unit	Notes
Supply voltage 3.3 V	LV _{DD} TV _{DD}	3.13	3.47	V	1, 2
Output high voltage $(LV_{DD}/TV_{DD} = Min, IOH = -4.0 mA)$	VOH	2.40	LV _{DD} /TV _{DD} + 0.3	V	—
Output low voltage $(LV_{DD}/TV_{DD} = Min, IOL = 4.0 mA)$	VOL	GND	0.50	V	—
Input high voltage	V _{IH}	2.0	$LV_{DD}/TV_{DD} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.90	V	—
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	_	40	μΑ	1, 2,3
Input low current (V _{IN} = GND)	Ι _{ΙL}	-600	_	μA	3

Table 23.	GMII.	MII. RMII.	and TBI DC	Electrical	Characteristics
	. ,	,		Liootiioui	0114140101101100

Notes:

¹ LV_{DD} supports eTSECs 1 and 2.

 2 TV_{DD} supports eTSECs 3 and 4 or FEC.

 3 The symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1.

Table 24. MII, GMII, RMII, RGMII, TBI, RTBI, and FIFO DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit	Notes
Supply voltage 2.5 V	LV _{DD/} TV _{DD}	2.37	2.63	V	1,2
Output high voltage ($LV_{DD}/TV_{DD} = Min, IOH = -1.0 mA$)	V _{OH}	2.00	$LV_{DD}/TV_{DD} + 0.3$	V	—
Output low voltage $(LV_{DD}/TV_{DD} = Min, I_{OL} = 1.0 mA)$	V _{OL}	GND – 0.3	0.40	V	—
Input high voltage	V _{IH}	1.70	$LV_{DD}/TV_{DD} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.70	V	—

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Table 39 lists the SGMII DC receiver electrical characteristics.

Parameter		Symbol	Min	Тур	Max	Unit	Notes	
Supply Voltage		XV _{DD_SRDS2}	1.045	1.1	1.155	V	_	
DC Input voltage range		—		N/A			1	
Input differential voltage	LSTS = 0	V _{RX_DIFFp-p}	100	—	1200	mV	2, 4	
LSTS = 1			175	—				
Loss of signal threshold	LSTS = 0	VLOS	30	—	100	mV	3, 4	
	LSTS = 1		65	—	175			
Input AC common mode v	oltage	V _{CM_ACp-p}		—	100	mV	5	
Receiver differential input impedance		Z _{RX_DIFF}	80	100	120	Ω		
Receiver common mode input impedance		Z _{RX_CM}	20	—	35	Ω	—	
Common mode input volta	ige	V _{CM}	_	V _{xcorevss}	_	V	6	

Table 39. SGMII DC Receiver Electrical Characteristics

Note:

1. Input must be externally AC-coupled.

2. V_{RX DIFFp-p} is also referred to as peak to peak input differential voltage

3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in PCI Express. Refer to PCI Express Differential Receiver (RX) Input Specifications section for further explanation.

4. The LSTS shown in the table refers to the LSTSAB or LSTSEF bit field of MPC8572E's SerDes 2 Control Register.

5. $V_{\mbox{CM_ACp-p}}$ is also referred to as peak to peak AC common mode voltage.

6. On-chip termination to SGND_SRDS2 (xcorevss).

10 Local Bus Controller (eLBC)

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8572E.

10.1 Local Bus DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V}$ DC.

Parameter	Symbol	Min	Max	Unit
Supply voltage 3.3V	BV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	_	±5	μA
High-level output voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	BV _{DD} – 0.2	—	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.2	V

 Table 46. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Table 47 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 V DC$.

Table 47. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 2.5V	BV _{DD}	2.37	2.63	V
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.7	V
Input current	I _{IH}	—	10	μΑ
$(BV_{IN} = 0 V \text{ of } BV_{IN} = BV_{DD})$	Ι _{ΙL}		-15	
High-level output voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Local Bus Controller (eLBC)

Figure 30 through Figure 35 show the local bus signals.

Figure 30. Local Bus Signals, Non-Special Signals Only (PLL Enabled)

Table 52 describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$ with PLL disabled.

Table 52. Local Bus General Timing Parameters—PLL Bypassed

At recommended operating conditions with $\mathsf{BV}_{\mathsf{DD}}$ of 3.3 V ± 5%

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	12		ns	2
Local bus duty cycle	t _{LBKH} /t _{LBK}	43	57	%	—
Internal launch/capture clock to LCLK delay	t _{LBKHKT}	2.3	4.0	ns	
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	5.8	—	ns	4, 5
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKL2}	5.7	—	ns	4, 5
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	-1.3	_	ns	4, 5

Local Bus Controller (eLBC)

Figure 32. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

Figure 39. Boundary-Scan Timing Diagram

13 I²C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8572E.

13.1 I²C DC Electrical Characteristics

Table 54 provides the DC electrical characteristics for the I^2C interfaces.

5

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times \text{OV}_{DD}$ and $0.9 \times \text{OV}_{DD}(\text{max})$	I	-10	10	μA	3

6. Differential Waveform

- 1. The differential waveform is constructed by subtracting the inverting signal ($\overline{SDn_TX}$, for example) from the non-inverting signal (SDn_TX , for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 52 as an example for differential waveform.
- 2. Common Mode Voltage, V_{cm}

The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, $V_{cm_out} = (V_{SDn_TX} + V_{\overline{SDn_TX}})/2 = (A + B) / 2$, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. Sometimes, it may be even different between the receiver input and driver output circuits within the same component. It is also referred as the DC offset in some occasion.

Figure 43. Differential Voltage Definitions for Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, because the differential signaling environment is fully symmetrical, the transmitter output's differential swing (V_{OD}) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and –500 mV, in other words, V_{OD} is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (V_{DIFFp}) is 500 mV. The peak-to-peak differential voltage (V_{DIFFp}) is 1000 mV p-p.

15.2 SerDes Reference Clocks

The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SD1_REF_CLK and

High-Speed Serial Interfaces (HSSI)

clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 50. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

Figure 51 shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with MPC8572E SerDes reference clock input's DC requirement.

15.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low phase noise and cycle-to-cycle jitter. Phase noise less than 100KHz can be tracked by the PLL and data recovery loops and

PCI Express

Table 62. Differential Transmitter	(TX) Output Specifications
------------------------------------	----------------------------

Symbol	Parameter	Min	Nominal	Max	Units	Comments
UI	Unit Interval	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for Spread Spectrum Clock dictated variations. See Note 1.
V _{TX-DIFFp-p}	Differential Peak-to-Peak Output Voltage	0.8	—	1.2	V	$V_{TX-DIFFp-p} = 2^* V_{TX-D+} - V_{TX-D-} $ See Note 2.
V _{TX-DE-RATIO}	De- Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 2.
T _{TX-EYE}	Minimum TX Eye Width	0.70	—	—	UI	The maximum Transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.		_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX Output Rise/Fall Time	0.125	—	—	UI	See Notes 2 and 5
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	_	—	20	mV	
V _{TX-CM-DC-ACTIVE-} IDLE-DELTA	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	_	100	mV	$\label{eq:logical_state} \begin{array}{l} V_{TX}\text{-}CM\text{-}DC (during L0) - V_{TX}\text{-}CM\text{-}Idle\text{-}DC (During Electrical Idle)} <= 100 \text{ mV} \\ V_{TX}\text{-}CM\text{-}DC = DC_{(avg)} \text{ of } V_{TX}\text{-}D\text{+} + V_{TX}\text{-}D\text{-} /2 \text{ [L0]} \\ V_{TX}\text{-}CM\text{-}Idle\text{-}DC = DC_{(avg)} \text{ of } V_{TX}\text{-}D\text{+} + V_{TX}\text{-}D\text{-} /2 \\ \text{[Electrical Idle]} \\ \text{See Note 2.} \end{array}$
V _{TX-CM} -DC-LINE-DELTA	Absolute Delta of DC Common Mode between D+ and D–	0	_	25	mV	$\begin{split} V_{\text{TX-CM-DC-D+}} - V_{\text{TX-CM-DC-D-}} &<= 25 \text{ mV} \\ V_{\text{TX-CM-DC-D+}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D+}} \\ V_{\text{TX-CM-DC-D-}} = DC_{(\text{avg})} \text{ of } V_{\text{TX-D-}} \\ \text{See Note 2.} \end{split}$
V _{TX-IDLE} -DIFFp	Electrical Idle differential Peak Output Voltage	0	—	20	mV	$V_{TX-IDLE-DIFFp} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} \le 20$ mV See Note 2.
V _{TX-RCV-DETECT}	The amount of voltage change allowed during Receiver Detection			600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance Receiver is present. See Note 6.

Serial RapidIO

Characteristic	Symbol	Ra	nge	Unit	Notos
	Symbol	Min	Мах	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver
Multiple Input Skew	S _{MI}	_	22	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER	—	10 ⁻¹²	—	—
Unit Interval	UI	320	320	ps	+/- 100 ppm

Table 74. Receiver AC Timing Specifications—3.125 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Figure 59. Single Frequency Sinusoidal Jitter Limits

17.7 Receiver Eye Diagrams

For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding Bit Error Rate specification (Table 72, Table 73, and Table 74) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the Receiver Input Compliance Mask shown in Figure 60 with the parameters specified in Table 75. The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the device replaced with a 100- Ω +/– 5% differential resistive load.

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
D1_MCAS	Column Address Strobe	AC9	0	GV _{DD}	
D1_MRAS	Row Address Strobe	AB12	0	GV _{DD}	
D1_MCKE[0:3]	Clock Enable	M8, L9, T9, N8	0	GV _{DD}	11
D1_MCS[0:3]	Chip Select	AB9, AF10, AB11, AE11	0	GV _{DD}	_
D1_MCK[0:5]	Clock	V7, E13, AH11, Y9, F14, AG10	0	GV _{DD}	
D1_MCK[0:5]	Clock Complements	Y10, E12, AH12, AA11, F13, AG11	0	GV _{DD}	
D1_MODT[0:3]	On Die Termination	AD10, AF12, AC10, AE12	0	GV _{DD}	_
D1_MDIC[0:1]	Driver Impedance Calibration	E15, G14	I/O	GV _{DD}	25
	DDR SDRAM Mem	ory Interface 2		•	
D2_MDQ[0:63]	Data	A6, B7, C5, D5, A7, C8, D8, D6, C4, A3, D3, D2, B4, A4, B1, C1, E3, E1, G2, G6, D1, E4, G5, G3, J4, J2, P4, R5, H3, H1, N5, N3, Y6, Y4, AC3, AD2, V5, W5, AB2, AB3, AD5, AE3, AF6, AG7, AC4, AD4, AF4, AF7, AH5, AJ1, AL2, AM3, AH3, AH6, AM1, AL3, AK5, AL5, AJ7, AK7, AK4, AM4, AL6, AM7	I/O	GV _{DD}	_
D2_MECC[0:7]	Error Correcting Code	J5, H7, L7, N6, H4, H6, M4, M5	I/O	GV _{DD}	
D2_MAPAR_ERR	Address Parity Error	N1	Ι	GV _{DD}	
D2_MAPAR_OUT	Address Parity Out	W2	0	GV _{DD}	
D2_MDM[0:8]	Data Mask	A5, B3, F4, J1, AA4, AE5, AK1, AM5, K5	0	GV _{DD}	
D2_MDQS[0:8]	Data Strobe	B6, C2, F5, L4, AB5, AF3, AL1, AM6, L6	I/O	GV _{DD}	_
D2_MDQS[0:8]	Data Strobe	C7, A2, F2, K3, AA5, AE6, AK2, AJ6, K6	I/O	GV _{DD}	—
D2_MA[0:15]	Address	W1, U4, U3, T1, T2, T3, R1, R2, T5, R4, Y3, P1, N2, AF1, M2, M1	0	GV _{DD}	_

Table 76. MPC8572E Pinout Listing (continued)

Package Description

Table 76. MPC8572E Pinout Listing (continue	d)
---	----

Signal	Signal Name	Signal Name Package Pin Number		Power Supply	Notes
D2_MBA[0:2]	Bank Select	Y1, W3, P3	0	GV _{DD}	_
D2_MWE	Write Enable	AA2	0	GV _{DD}	_
D2_MCAS	Column Address Strobe	AD1	0	GV _{DD}	_
D2_MRAS	Row Address Strobe	AA1	0	GV _{DD}	_
D2_MCKE[0:3]	Clock Enable	L3, L1, K1, K2	0	GV _{DD}	11
D2_MCS[0:3]	Chip Select	AB1, AG2, AC1, AH2	0	GV _{DD}	_
D2_MCK[0:5]	Clock	V4, F7, AJ3, V2, E7, AG4	0	GV _{DD}	—
D2_MCK[0:5]	Clock Complements	V1, F8, AJ4, U1, E6, AG5	0	GV _{DD}	—
D2_MODT[0:3]	On Die Termination	AE1, AG1, AE2, AH1	0	GV _{DD}	_
D2_MDIC[0:1]	Driver Impedance Calibration	F1, G1	I/O	GV _{DD}	25
	Local Bus Contro	ller Interface			
LAD[0:31]	Muxed Data/Address	M22, L22, F22, G22, F21, G21, E20, H22, K22, K21, H19, J20, J19, L20, M20, M19, E22, E21, L19, K19, G19, H18, E18, G18, J17, K17, K14, J15, H16, J14, H15, G15	I/O	BV _{DD}	34
LDP[0:3]	Data Parity	M21, D22, A24, E17	I/O	BV _{DD}	_
LA[27]	Burst Address	J21	0	BV _{DD}	5, 9
LA[28:31]	Port Address	F20, K18, H20, G17	0	BV _{DD}	5, 7, 9
LCS[0:4]	Chip Selects	B23, E16, D20, B25, A22	0	BV _{DD}	10
LCS[5]/DMA2_DREQ[1]	Chip Selects / DMA Request	D19	I/O	BV _{DD}	1, 10
LCS[6]/DMA2_DACK[1]	Chip Selects / DMA Ack	E19	0	BV _{DD}	1, 10
LCS[7]/DMA2_DDONE[1]	Chip Selects / DMA Done	C21	0	BV _{DD}	1, 10
LWE[0]/LBS[0]/LFWE	Write Enable / Byte Select	D17	0	BV _{DD}	5, 9
LWE[1]/LBS[1]	Write Enable / Byte Select	F15	0	BV _{DD}	5, 9
LWE[2]/LBS[2]	Write Enable / Byte Select	B24	0	BV _{DD}	5, 9
LWE[3]/LBS[3]	Write Enable / Byte Select	D18	0	BV _{DD}	5, 9
LALE	Address Latch Enable	F19	0	BV _{DD}	5, 8, 9
LBCTL	Buffer Control	L18	0	BV _{DD}	5, 8, 9

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
MSRCID[0:1]	Memory Debug Source Port ID	U27, T29	0	OV _{DD}	5, 9, 30
MSRCID[2:4]	Memory Debug Source Port ID	U28, W24, W28	0	OV _{DD}	21
MDVAL	Memory Debug Data Valid	V26	0	OV _{DD}	2, 21
CLK_OUT	Clock Out	U32	0	OV _{DD}	11
	Clock	(
RTC	Real Time Clock	V25	I	OV _{DD}	—
SYSCLK	System Clock	Y32	I	OV _{DD}	_
DDRCLK	DDR Clock	AA29	I	OV _{DD}	31
JTAG					
тск	Test Clock	T28	I	OV _{DD}	
TDI	Test Data In	T27	I	OV _{DD}	12
TDO	Test Data Out	T26	0	OV _{DD}	—
TMS	Test Mode Select	U26	I	OV _{DD}	12
TRST	Test Reset	AA32	I	OV _{DD}	12
	DFT				
L1_TSTCLK	L1 Test Clock	V32	I	OV _{DD}	18
L2_TSTCLK	L2 Test Clock	V31	I	OV _{DD}	18
LSSD_MODE	LSSD Mode	N24	I	OV _{DD}	18
TEST_SEL	Test Select 0	K28	I	OV _{DD}	18
	Power Mana	gement			
ASLEEP	Asleep	P28	0	OV _{DD}	9, 15, 21

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
VDD	Core, L2, Logic Supply	L14, M13, M15, M17, N12, N14, N16, N20, N22, P11, P13, P15, P17, P19, P21, P23, R12, R14, R16, R18, R20, R22, T13, T15, T19, T21, T23, U12, U14, U18, U20, U22, V13, V15, V17, V19, V21, W12, W14, W16, W18, W20, W22, Y13, Y15, Y17, Y19, Y21, AA12, AA14, AA16, AA18, AA20, AB13		VDD	
SVDD_SRDS1	SerDes Core 1 Logic Supply (xcorevdd)	C31, D29, E28, E32, F30, G28, G31, H29, K30, L31, M29, N32, P30	_	_	_
SVDD_SRDS2	SerDes Core 2 Logic Supply (xcorevdd)	AD32, AF31, AG29, AJ32, AK29, AK30	_	—	_
XVDD_SRDS1	SerDes1 Transceiver Supply (xpadvdd)	C26, D24, E27, F25, G26, H24, J27, K25, L26, M24, N27	_	_	_
XVDD_SRDS2	SerDes2 Transceiver Supply (xpadvdd)	AD24, AD28, AE26, AF25, AG27, AH24, AJ26	_		_
AVDD_LBIU	Local Bus PLL Supply	A19	_	—	19
AVDD_DDR	DDR PLL Supply	AM20	_	—	19
AVDD_CORE0	CPU PLL Supply	B18	_		19
AVDD_CORE1	CPU PLL Supply	A17	_	—	19
AVDD_PLAT	Platform PLL Supply	AB32	_		19
AVDD_SRDS1	SerDes1 PLL Supply	J29	_	_	19
AVDD_SRDS2	SerDes2 PLL Supply	AH29	_	—	19
SENSEVDD	VDD Sensing Pin	N18	_	—	13
SENSEVSS	GND Sensing Pin	P18	—	—	13
	Analog Si	gnals			
MVREF1	SSTL_1.8 Reference Voltage	C16	I	GV _{DD} /2	_
MVREF2	SSTL_1.8 Reference Voltage	AM19	I	GV _{DD} /2	_

Table 76. MPC8572E Pinout Listing (continued)

Table 81 describes the clock ratio between e500 Core1 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LWE[0]/LBS[0]/LFWE, UART_SOUT[1], and READY_P1 signals at power up, as shown in Table 81.

<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio	<u>Bina</u> ry V <u>alue</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio	
000	Reserved	100	2:1	
001	Reserved	101	5:2 (2.5:1)	
010	Reserved	110	3:1	
011	3:2 (1.5:1)	111	7:2 (3.5:1)	

Table 81.	e500	Core1	to	ССВ	Clock	Ratio

19.4 DDR/DDRCLK PLL Ratio

The dual DDR memory controller complexes can be synchronous with, or asynchronous to, the CCB, depending on configuration.

Table 82 describes the clock ratio between the DDR memory controller complexes and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock. The DDR memory controller complexes clock frequency is equal to the DDR data rate.

When synchronous mode is selected, the memory buses are clocked at half the CCB clock rate. The default mode of operation is for the DDR data rate for both DDR controllers to be equal to the CCB clock rate in synchronous mode, or the resulting DDR PLL rate in asynchronous mode.

In asynchronous mode, the DDR PLL rate to DDRCLK ratios listed in Table 82 reflects the DDR data rate to DDRCLK ratio, because the DDR PLL rate in asynchronous mode means the DDR data rate resulting from DDR PLL output.

Note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode. MPC8572E does not support running one DDR controller in synchronous mode and the other in asynchronous mode.

Binary Value of TSEC_1588_CLK_OUT, TSEC_1588_PULSE_OUT1, TSEC_1588_PULSE_OUT2 Signals	DDR:DDRCLK Ratio
000	3:1
001	4:1
010	6:1
011	8:1
100	10:1

Table 82. DDR Clock Ratio

This noise must be prevented from reaching other components in the MPC8572E system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the device. These decoupling capacitors should receive their power from separate V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes1 and SerDes2 blocks require a clean, tightly regulated source of power (SV_{DD} _SRDSn and XV_{DD} _SRDSn) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a 1- μ F ceramic chip capacitor from each SerDes supply (SV_{DD}_SRDSn and XV_{DD}_SRDSn) to the board ground plane on each side of the device. This should be done for all SerDes supplies.
- Third, between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

21.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active low inputs should be tied to V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , as required. All unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected. Power and ground connections must be made to all external V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND pins of the device.

System Design Information

Figure 65. COP Connector Physical Pinout