E·XFL

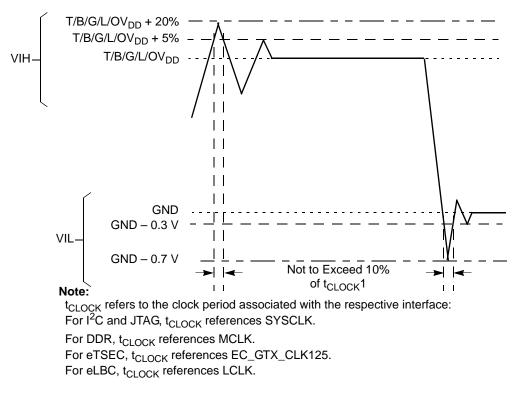
Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in


Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.5GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572epxavnb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8572E.

Figure 2. Overshoot/Undershoot Voltage for TV_{DD}/BV_{DD}/GV_{DD}/LV_{DD}/OV_{DD}

The core voltage must always be provided at nominal 1.1 V. (See Table 2 for actual recommended core voltage.) Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. TV_{DD} , BV_{DD} , OV_{DD} , and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR2 and DDR3 SDRAM interface uses differential receivers referenced by the externally supplied $MV_{REF}n$ signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL_1.8 electrical signaling standard for DDR2 or 1.5-V electrical signaling for DDR3. The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.

Figure 4 shows the DDR2 and DDR3 SDRAM Interface output timing for the MCK to MDQS skew measurement (tDDKHMH).

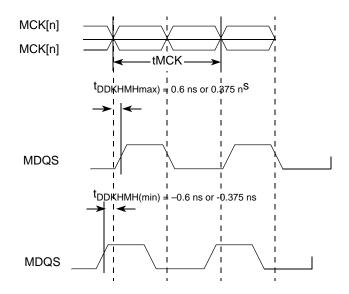


Figure 4. Timing Diagram for tDDKHMH

Figure 5 shows the DDR2 and DDR3 SDRAM Interface output timing diagram.

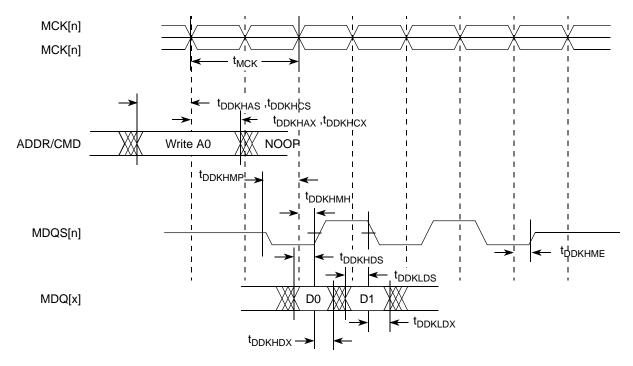


Figure 5. DDR2 and DDR3 SDRAM Interface Output Timing Diagram

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

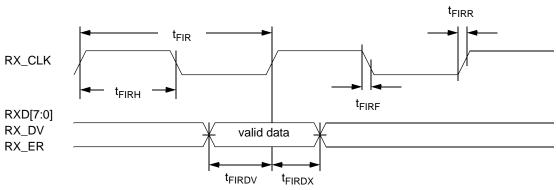


Figure 8. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 27 provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	_	_	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.5	_	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} 2	_	_	1.0	ns
GTX_CLK data clock fall time (80%-20%)	t_{GTXF}^2		1	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Figure 11 shows the GMII receive AC timing diagram.

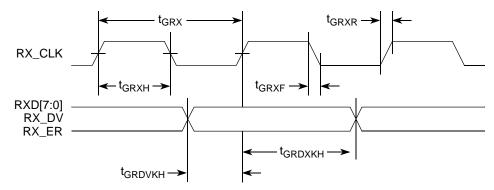


Figure 11. GMII Receive AC Timing Diagram

8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

Table 29 provides the MII transmit AC timing specifications.

Table 29. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX} ²	—	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise (20%-80%)	t _{MTXR} ²	1.0	_	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF} ²	1.0	_	4.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. Guaranteed by design.

8.3.4 SGMII AC Timing Specifications

This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver characteristics are measured at the transmitter outputs ($SD2_TX[n]$ and $\overline{SD2_TX[n]}$) or at the receiver inputs ($SD2_RX[n]$ and $\overline{SD2_RX[n]}$) as depicted in Figure 25, respectively.

8.3.4.1 SGMII Transmit AC Timing Specifications

Table 40 provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

Table 40. SGMII Transmit AC Timing Specifications

At recommended operating conditions with XV_{DD_SRDS2} = 1.1V ± 5%.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic Jitter	JD	—	_	0.17	UI p-p	_
Total Jitter	JT	—	_	0.35	UI p-p	_
Unit Interval	UI	799.92	800	800.08	ps	1
V _{OD} fall time (80%-20%)	tfall	50	_	120	ps	_
V _{OD} rise time (20%-80%)	t _{rise}	50	_	120	ps	_

Notes:

1. Each UI is 800 ps \pm 100 ppm.

8.3.4.2 SGMII Receive AC Timing Specifications

Table 41 provides the SGMII receive AC timing specifications. Source synchronous clocking is not supported. Clock is recovered from the data. Figure 24 shows the SGMII receiver input compliance mask eye diagram.

Table 41. SGMII Receive AC Timing Specifications

At recommended operating conditions with $XV_{DD_SRDS2} = 1.1V \pm 5\%$.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic Jitter Tolerance	JD	0.37	—	—	UI p-p	1
Combined Deterministic and Random Jitter Tolerance	JDR	0.55	—	_	UI p-p	1
Sinusoidal Jitter Tolerance	JSIN	0.1	—	—	UI p-p	1
Total Jitter Tolerance	JT	0.65		_	UI p-p	1
Bit Error Ratio	BER	_	—	10 ⁻¹²		_
Unit Interval	UI	799.92	800	800.08	ps	2
AC Coupling Capacitor	C _{TX}	5	—	200	nF	3

Notes:

1. Measured at receiver.

2. Each UI is 800 ps \pm 100 ppm.

3. The external AC coupling capacitor is required. It is recommended to be placed near the device transmitter outputs.

4. See RapidIO 1x/4x LP Serial Physical Layer Specification for interpretation of jitter specifications.

Local Bus Controller (eLBC)

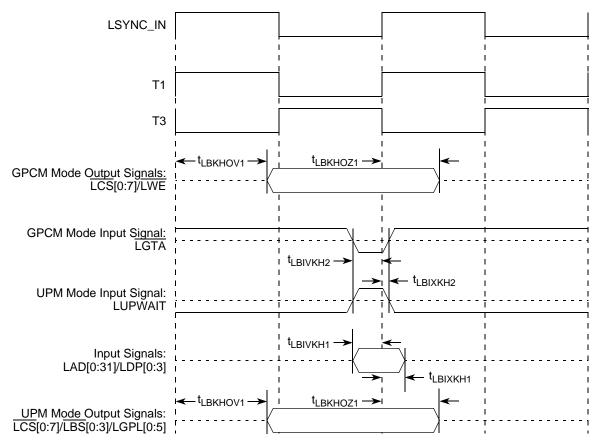


Figure 32. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Enabled)

GPIO

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface of the MPC8572E.

14.1 GPIO DC Electrical Characteristics

Table 56 provides the DC electrical characteristics for the GPIO interface operating at $BV_{DD} = 3.3 \text{ V DC}$.

Parameter	Symbol	Min	Max	Unit
Supply voltage 3.3V	BV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	_	±5	μΑ
High-level output voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	BV _{DD} – 0.2	—	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}		0.2	V

 Table 56. GPIO DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Table 57 provides the DC electrical characteristics for the GPIO interface operating at $BV_{DD} = 2.5 \text{ V DC}$.

Table 57. GPIO DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 2.5V	BV _{DD}	2.37	2.63	V
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.7	V
	I _{IH}	_	10	μΑ
$(BV_{IN}^{1} = 0 \; V \; or \; BV_{IN} = BV_{DD})$	IIL		-15	
High-level output voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Table 58 provides the DC electrical characteristics for the GPIO interface operating at $BV_{DD} = 1.8 \text{ V DC}$. Table 58. GPIO DC Electrical Characteristics (1.8 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 1.8V	BV _{DD}	1.71	1.89	V
High-level input voltage	V _{IH}	0.65 x BV _{DD}	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.35 x BV _{DD}	V
Input current $(BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD})$	I _{IN}	TBD	TBD	μΑ
High-level output voltage $(I_{OH} = -100 \ \mu A)$	V _{OH}	BV _{DD} – 0.2	—	V
High-level output voltage (I _{OH} = -2 mA)	V _{OH}	BV _{DD} - 0.45	_	V
Low-level output voltage $(I_{OL} = 100 \ \mu A)$	V _{OL}	_	0.2	V
Low-level output voltage (I _{OL} = 2 mA)	V _{OL}	_	0.45	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

14.2 GPIO AC Electrical Specifications

Table 59 provides the GPIO input and output AC timing specifications.

Table 59. GPIO Input AC Timing Specifications¹

Parameter	Symbol	Тур	Unit	Notes
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns	2

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYSCLK. Timings are measured at the pin.
- 2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

Figure 42 provides the AC test load for the GPIO.

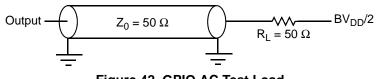


Figure 42. GPIO AC Test Load

High-Speed Serial Interfaces (HSSI)

15 High-Speed Serial Interfaces (HSSI)

The MPC8572E features two Serializer/Deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. The SerDes1 interface can be used for PCI Express and/or Serial RapidIO data transfers. The SerDes2 is dedicated for SGMII application.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes Reference Clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

15.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 43 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SDn_TX and SDn_TX) or a receiver input (SDn_RX and $\overline{SDn_RX}$). Each signal swings between A Volts and B Volts where A > B.

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

1. Single-Ended Swing

The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and SDn_RX each have a peak-to-peak swing of A - B Volts. This is also referred as each signal wire's Single-Ended Swing.

2. Differential Output Voltage, V_{OD} (or Differential Output Swing):

The Differential Output Voltage (or Swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SDn_TX} - V_{\overline{SDn_TX}}$. The V_{OD} value can be either positive or negative.

3. Differential Input Voltage, V_{ID} (or Differential Input Swing):

The Differential Input Voltage (or Swing) of the receiver, V_{ID} , is defined as the difference of the two complimentary input voltages: $V_{SDn_RX} - V_{\overline{SDn_RX}}$. The V_{ID} value can be either positive or negative.

4. Differential Peak Voltage, V_{DIFFp}

The peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak Voltage, $V_{DIFFp} = |A - B|$ Volts.

5. Differential Peak-to-Peak, V_{DIFFp-p}

Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak-to-Peak Voltage, $V_{DIFFp-p} = 2*V_{DIFFp} = 2*|(A – B)|$ Volts, which is twice of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2*|V_{OD}|$.

Characteristic	Symbol	Ra	nge	Unit	Notes
Unaracteristic	Gymbol	Min	Мах	Onic	notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_
Deterministic Jitter	J _D	—	0.17	UI p-p	_
Total Jitter	J _T	—	0.35	UI p-p	_
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/- 100 ppm

Table 69. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Table 70. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	R	ange	Unit	Notes
Characteristic	Symbol	Min	Max	Onit	Notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	_	0.17	UI p-p	—
Total Jitter	J _T	_	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	+/- 100 ppm

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown in Figure 58 with the parameters specified in Figure 71 when measured at the output pins of the device and the device is driving a 100 Ω +/-5% differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the Transmitter Output Compliance Mask when pre-emphasis is disabled or minimized.

Characteristic	Symbol	Ra	nge	Unit	Notes
Gharacteristic	Symbol	Min	Max	Unit	NOLES
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37	_	UI p-p	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver
Multiple Input Skew	S _{MI}	—	24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER	—	10 ⁻¹²	—	_
Unit Interval	UI	800	800	ps	+/- 100 ppm

Table 72. Receiver AC Timing Specifications—1.25 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Characteristic			nge	Unit	Notes			
Characteristic	Symbol	Min	Мах	Unit	Notes			
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver			
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver			
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver			
Total Jitter Tolerance ¹	J _T	0.65	—	UI p-p	Measured at receiver			
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link			
Bit Error Rate	BER	—	10 ⁻¹²	—	—			
Unit Interval	UI	400	400	ps	+/– 100 ppm			

Table 73. Receiver AC Timing Specifications—2.5 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Table 76. MPC8572E Pinout Listing (continued)									
Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes				
LGPL0/LFCLE	UPM General Purpose Line 0 / Flash Command Latch Enable	J13	0	BV _{DD}	5, 9				
LGPL1/LFALE	UPM General Purpose Line 1/ Flash Address Latch Enable	J16	0	BV _{DD}	5, 9				
LGPL2/LOE/LFRE	GPL2/LOE/LFRE UPM General Purpose Line 2 / Output Enable / Flash Read Enable		0	BV _{DD}	5, 8, 9				
LGPL3/LFWP	UPM General Purpose Line 3 / Flash Write Protect	K16	0	BV _{DD}	5, 9				
LGPL4/LGTA/LUPWAIT/LPBSE /LFRB	UPM General Purpose Line 4 / Target Ack / Wait / Parity Byte Select / Flash Ready-Busy	L17	I/O	BV _{DD}					
LGPL5	UPM General Purpose Line 5 / Amux	B26	0	BV _{DD}	5, 9				
LCLK[0:2]	Local Bus Clock	F17, F16, A23	0	BV _{DD}	_				
LSYNC_IN	Local Bus DLL Synchronization	B22	Ι	BV _{DD}	—				
LSYNC_OUT	Local Bus DLL Synchronization	A21	0	BV _{DD}	—				
	DMA								
DMA1_DACK[0:1]	DMA Acknowledge	W25, U30	0	OV _{DD}	21				
DMA2_DACK[0]	DMA Acknowledge	AA26	0	OV _{DD}	5, 9				
DMA1_DREQ[0:1]	DMA Request	Y29, V27	Ι	OV _{DD}	—				
DMA2_DREQ[0]	DMA Request	V29	Ι	OV _{DD}	—				
DMA1_DDONE[0:1]	DMA Done	Y28, V30	0	OV _{DD}	5, 9				
DMA2_DDONE[0]	DMA Done	AA28	0	OV _{DD}	5, 9				
DMA2_DREQ[2]	DMA Request	M23	Ι	BV _{DD}	—				
	Programmable Inter	rupt Controller							
UDE0	Unconditional Debug Event Processor 0	AC25	Ι	OV _{DD}	_				
UDE1	Unconditional Debug Event Processor 1	AA25	Ι	OV _{DD}	—				
MCP0	Machine Check Processor 0	M28	Ι	OV _{DD}	_				
MCP1	Machine Check Processor 1	L28	I	OV _{DD}	_				
IRQ[0:11]	External Interrupts	T24, R24, R25, R27, R28, AB27, AB28, P27, R30, AC28, R29, T31	Ι	OV _{DD}	_				

Table 76. MPC8572E Pinout Listing (continued)

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
VDD	Core, L2, Logic Supply	L14, M13, M15, M17, N12, N14, N16, N20, N22, P11, P13, P15, P17, P19, P21, P23, R12, R14, R16, R18, R20, R22, T13, T15, T19, T21, T23, U12, U14, U18, U20, U22, V13, V15, V17, V19, V21, W12, W14, W16, W18, W20, W22, Y13, Y15, Y17, Y19, Y21, AA12, AA14, AA16, AA18, AA20, AB13		VDD	
SVDD_SRDS1	SerDes Core 1 Logic Supply (xcorevdd)	C31, D29, E28, E32, F30, G28, G31, H29, K30, L31, M29, N32, P30	_	_	
SVDD_SRDS2	SerDes Core 2 Logic Supply (xcorevdd)	AD32, AF31, AG29, AJ32, AK29, AK30	_	—	_
XVDD_SRDS1	SerDes1 Transceiver Supply (xpadvdd)	C26, D24, E27, F25, G26, H24, J27, K25, L26, M24, N27	_	—	_
XVDD_SRDS2	SerDes2 Transceiver Supply (xpadvdd)	AD24, AD28, AE26, AF25, AG27, AH24, AJ26	_	—	_
AVDD_LBIU	Local Bus PLL Supply	A19	_	—	19
AVDD_DDR	DDR PLL Supply	AM20	_	—	19
AVDD_CORE0	CPU PLL Supply	B18	_	—	19
AVDD_CORE1	CPU PLL Supply	A17	_	—	19
AVDD_PLAT	Platform PLL Supply	AB32	_	—	19
AVDD_SRDS1	SerDes1 PLL Supply	J29	_	_	19
AVDD_SRDS2	SerDes2 PLL Supply	AH29	_	—	19
SENSEVDD	VDD Sensing Pin	N18	_	_	13
SENSEVSS	GND Sensing Pin	P18			13
	Analog S	ignals			
MVREF1	SSTL_1.8 Reference Voltage	C16	I	GV _{DD} /2	_
MVREF2	SSTL_1.8 Reference Voltage	AM19	I	GV _{DD} /2	_
		1			

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SD1_IMP_CAL_RX	SerDes1 Rx Impedance Calibration	B32	I	200Ω (±1%) to GND	_
SD1_IMP_CAL_TX	SerDes1 Tx Impedance Calibration	T32	I	100Ω (±1%) to GND	_
SD1_PLL_TPA	SerDes1 PLL Test Point Analog	J30	0	AVDD_S RDS analog	17
SD2_IMP_CAL_RX	SerDes2 Rx Impedance Calibration	AC32	I	200Ω (±1%) to GND	—
SD2_IMP_CAL_TX	SerDes2 Tx Impedance Calibration	AM32	I	100Ω (±1%) to GND	—
SD2_PLL_TPA	SerDes2 PLL Test Point Analog	AH30	0	AVDD_S RDS analog	17
TEMP_ANODE	Temperature Diode Anode	AA31	_	internal diode	14
TEMP_CATHODE	Temperature Diode Cathode	AB31		internal diode	14
No Connection Pins		1		11	

Table 76. MPC8572E Pinout Listing (continued)

Table 78. Memory Bus Clocking Specifications

Characteristic	Min	Мах	Unit	Notes
Memory bus clock frequency	200	400	MHz	1, 2, 3, 4

Notes:

- 1. **Caution:** The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 19.2, "CCB/SYSCLK PLL Ratio," Section 19.3, "e500 Core PLL Ratio," and Section 19.4, "DDR/DDRCLK PLL Ratio," for ratio settings.
- 2. The Memory bus clock refers to the MPC8572E memory controllers' Dn_MCK[0:5] and Dn_MCK[0:5] output clocks, running at half of the DDR data rate.
- 3. In synchronous mode, the memory bus clock speed is half the platform clock frequency. In other words, the DDR data rate is the same as the platform (CCB) frequency. If the desired DDR data rate is higher than the platform (CCB) frequency, asynchronous mode must be used.
- 4. In asynchronous mode, the memory bus clock speed is dictated by its own PLL. Refer to Section 19.4, "DDR/DDRCLK PLL Ratio." The memory bus clock speed must be less than or equal to the CCB clock rate which in turn must be less than the DDR data rate.

As a general guideline when selecting the DDR data rate or platform (CCB) frequency, the following procedures can be used:

- Start with the processor core frequency selection;
- After the processor core frequency is determined, select the platform (CCB) frequency from the limited options listed in Table 80 and Table 81;
- Check the CCB to SYSCLK ratio to verify a valid ratio can be choose from Table 79;
- If the desired DDR data rate can be same as the CCB frequency, use the synchronous DDR mode; Otherwise, if a higher DDR data rate is desired, use asynchronous mode by selecting a valid DDR data rate to DDRCLK ratio from Table 82. Note that in asynchronous mode, the DDR data rate must be greater than the platform (CCB) frequency. In other words, running DDR data rate lower than the platform (CCB) frequency in asynchronous mode is not supported by MPC8572E.
- Verify all clock ratios to ensure that there is no violation to any clock and/or ratio specification.

19.2 CCB/SYSCLK PLL Ratio

The CCB clock is the clock that drives the e500 core complex bus (CCB), and is also called the platform clock. The frequency of the CCB is set using the following reset signals, as shown in Table 79:

- SYSCLK input signal
- Binary value on LA[29:31] at power up

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note that, in synchronous mode, the DDR data rate is the determining factor in selecting the CCB bus frequency, because the CCB frequency must equal the DDR data rate. In asynchronous mode, the memory bus clock frequency is decoupled from the CCB bus frequency.

Table 81 describes the clock ratio between e500 Core1 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LWE[0]/LBS[0]/LFWE, UART_SOUT[1], and READY_P1 signals at power up, as shown in Table 81.

<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio	<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio
000	Reserved	100	2:1
001	Reserved	101	5:2 (2.5:1)
010	Reserved	110	3:1
011	3:2 (1.5:1)	111	7:2 (3.5:1)

Table 81.	e500	Core1	to	ССВ	Clock Ratio)
					••••••	

19.4 DDR/DDRCLK PLL Ratio

The dual DDR memory controller complexes can be synchronous with, or asynchronous to, the CCB, depending on configuration.

Table 82 describes the clock ratio between the DDR memory controller complexes and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock. The DDR memory controller complexes clock frequency is equal to the DDR data rate.

When synchronous mode is selected, the memory buses are clocked at half the CCB clock rate. The default mode of operation is for the DDR data rate for both DDR controllers to be equal to the CCB clock rate in synchronous mode, or the resulting DDR PLL rate in asynchronous mode.

In asynchronous mode, the DDR PLL rate to DDRCLK ratios listed in Table 82 reflects the DDR data rate to DDRCLK ratio, because the DDR PLL rate in asynchronous mode means the DDR data rate resulting from DDR PLL output.

Note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode. MPC8572E does not support running one DDR controller in synchronous mode and the other in asynchronous mode.

Binary Value of TSEC_1588_CLK_OUT, TSEC_1588_PULSE_OUT1, TSEC_1588_PULSE_OUT2 Signals	DDR:DDRCLK Ratio
000	3:1
001	4:1
010	6:1
011	8:1
100	10:1

Table 82. DDR Clock Ratio

Binary Value of TSEC_1588_CLK_OUT, TSEC_1588_PULSE_OUT1, TSEC_1588_PULSE_OUT2 Signals	DDR:DDRCLK Ratio
101	12:1
110	14:1
111	Synchronous mode

 Table 82. DDR Clock Ratio (continued)

19.5 Frequency Options

19.5.1 Platform to Sysclk Frequency Options

Table 83 shows the expected frequency values for the platform frequency when using the specified CCB clock to SYSCLK ratio.

CCB to SYSCLK Ratio		SYSCLK (MHz)							
	33.33	41.66	50	66.66	83	100	111	133.33	
		Platform /CCB Frequency (MHz)							
4						400	444	533	
5					415	500	555		
6				400	498	600			
8			400	533			-		
10		417	500		-				
12	400	500	600]					

Table 83. Frequency Options for Platform Frequency

19.5.2 Minimum Platform Frequency Requirements for High-Speed Interfaces

Section 4.4.3.6, "I/O Port Selection," in the *MPC8572E PowerQUICC III Integrated Host Processor Family Reference Manual* describes various high-speed interface configuration options. Note that the CCB clock frequency must be considered for proper operation of such interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than or equal to:

See Section 21.1.3.2, "Link Width," in the *MPC8572E PowerQUICC III Integrated Host Processor Family Reference Manual* for PCI Express interface width details. Note that the "PCI Express link width"

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8572E.

21.1 System Clocking

The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 19.2, "CCB/SYSCLK PLL Ratio." The MPC8572E includes seven PLLs, with the following functions:

- Two core PLLs have ratios that are individually configurable. Each e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 19.3, "e500 Core PLL Ratio."
- The DDR complex PLL generates the clocking for the DDR controllers.
- The local bus PLL generates the clock for the local bus.
- The PLL for the SerDes1 module is used for PCI Express and Serial Rapid IO interfaces.
- The PLL for the SerDes2 module is used for the SGMII interface.

21.2 Power Supply Design

21.2.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins $(AV_{DD}PLAT, AV_{DD}CORE0, AV_{DD}CORE1, AV_{DD}DDR, AV_{DD}LBIU, AV_{DD}SRDS1 and AV_{DD}SRDS2 respectively).$ The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 62, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 1023 FC-PBGA footprint, without the inductance of vias.

22 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 22.1, "Part Numbers Fully Addressed by this Document."

22.1 Part Numbers Fully Addressed by this Document

Table 86 through Table 88 provide the Freescale part numbering nomenclature for the MPC8572E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	nnnn	е	t	Ι	рр	ffm	r
Product Code ¹	Part Identifier	Security Engine	Temperature	Power	Package Sphere Type ²	Processor Frequency/ DDR Data Rate ³	Silicon Revision
MPC PPC	8572	E = Included Blank = Not included	Blank = 0 to 105°C C = −40 to 105°C	Blank = Standard L = Low	PX = Leaded, FC-PBGA VT = Pb-free, FC-PBGA ⁴ VJ = Fully Pb-free FC-PBGA ⁵	AVN = 1500-MHz processor; 800 MT/s DDR data rate AUL = 1333-MHz processor; 667 MT/s DDR data rate ATL = 1200-MHz processor; 667 MT/s DDR data rate ARL = 1067-MHz processor; 667 MT/s DDR data rate	E = Ver. 2.2.1 (SVR = 0x80E8_0022) SEC included E = Ver. 2.2.1 (SVR = 0x80E0_0022) SEC not included

Notes:

- ¹ MPC stands for "Qualified."
- PPC stands for "Prototype"
- ² See Section 18, "Package Description," for more information on the available package types.
- ³ Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.
- 4. The VT part number is ROHS-compliant with the permitted exception of the C4 die bumps.
- 5. The VJ part number is entirely lead-free. This includes the C4 die bumps.

Document Revision History

Rev. Number	Date	Substantive Change(s)
6	06/2014	 Updated Table 76, "MPC8572E Pinout Listing," TDO signal is not driven during HRSET* assertion. In Table 86, "Part Numbering Nomenclature—Rev 2.2.1," added full Pb-free part code.
5	01/2011	 Editorial changes throughout Updated Table 4, "MPC8572E Power Dissipation," to include low power product. In Section 22.1, "Part Numbers Fully Addressed by this Document," defined PPC as "Prototype" and changed table headings to say "Package Sphere Type". Added Table 86, "Part Numbering Nomenclature—Rev 2.2.1."
4	06/2010	 In Section 18.3, "Pinout Listings," updated Table 76 showing GPINOUT power rail as BVDD. Updated Section 14.1, "GPIO DC Electrical Characteristics."
3	03/2010	 In Section 2.1, "Overall DC Electrical Characteristics," changed GPIO power from OVDD to BVDD. In Section 22.1, "Part Numbers Fully Addressed by this Document," added Table 87 for Rev 2.1 silicon. In Section 22.1, "Part Numbers Fully Addressed by this Document," updated Table 88 for Rev 1.1.1 silicon.
2	06/2009	 In Section 3, "Power Characteristics," updated CCB Max to 533MHz for 1200MHz core device in Table 5, "MPC8572EL Power Dissipation." In Section 4.4, "DDR Clock Timing," changed DDRCLK Max to 100MHz. This change was announced in Product Bulletin #13572. Clarified restrictions in Section 4.5, "Platform to eTSEC FIFO Restrictions." In Table 9, "RESET Initialization Timing Specifications," added note 2. Added Section 14, "GPIO." In Section 18.1, "Package Parameters for the MPC8572E FC-PBGA," updated material composition to 63% Sn, 37% Pb. In Section 18.2, "Mechanical Dimensions of the MPC8572E FC-PBGA, updated Figure 61 to correct the package thickness and top view. In Section 19.1, "Clock Ranges," updated CCB Max to 533MHz for 1200MHz core device in Table 77, "MPC8572E Processor Core Clocking Specifications." In Section 19.5.2, "Minimum Platform Frequency Requirements for High-Speed Interfaces," changed minimum CCB clock frequency for proper PCI Express operation. Added LPBSE to description of LGPL4/LGTA/LUPWAIT/LPBSE/LFRB signal in Table 76, "MPC8572E Pinout Listing." Corrected supply voltage for GPIO pins in Table 76, "MPC8572E Pinout Listing." Applied note regarding MDIC in Table 76, "MPC8572E Pinout Listing." Added note for LAD pins in Table 76, "MPC8572E Pinout Listing." Updated Table 88, ",Part Numbering Nomenclature—Rev 1.1.1" with Rev 2.0 and Rev 2.1 part number information. Added note indicating that silicon version 2.0 is available for prototype purposes only and will not be available as a qualified device.
1	08/2008	• In Section 22.1, "Part Numbers Fully Addressed by this Document," added SVR information in, Table 88 "Part Numbering Nomenclature—Rev 1.1.1," for devices without Security Engine feature.
0	07/2008	Initial release.