

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.067GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8572evtarld

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.

- Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set for single-precision (32-bit) floating-point instructions.
- Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
- 36-bit real addressing
- Memory management unit (MMU). Especially designed for embedded applications. Supports 4-Kbyte to 4-Gbyte page sizes.
- Enhanced hardware and software debug support
- Performance monitor facility that is similar to, but separate from, the MPC8572E performance monitor

The e500 defines features that are not implemented on this device. It also generally defines some features that this device implements more specifically. An understanding of these differences can be critical to ensure proper operation.

- 1 Mbyte L2 cache/SRAM
 - Shared by both cores.
 - Flexible configuration and individually configurable per core.
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both.
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
 - 1, 2, or 4 ways can be configured for stashing only.
 - Eight-way set-associative cache organization (32-byte cache lines)
 - Supports locking entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions.
 - Global locking and Flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be Flash cleared separately.
 - Per-way allocation of cache region to a given processor.
 - SRAM features include the following:
 - 1, 2, 4, or 8 ways can be configured as SRAM.
 - I/O devices access SRAM regions by marking transactions as snoopable (global).
 - Regions can reside at any aligned location in the memory map.
 - Byte-accessible ECC is protected using read-modify-write transaction accesses for smaller-than-cache-line accesses.
- e500 coherency module (ECM) manages core and intrasystem transactions
- Address translation and mapping unit (ATMU)
 - Twelve local access windows define mapping within local 36-bit address space.
 - Inbound and outbound ATMUs map to larger external address spaces.

Overview

- Supports fully nested interrupt delivery
- Interrupts can be routed to external pin for external processing.
- Interrupts can be routed to the e500 core's standard or critical interrupt inputs.
- Interrupt summary registers allow fast identification of interrupt source.
- Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, SSL/TLS, SRTP, 802.16e, and 3GPP
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - PKEU—public key execution unit
 - RSA and Diffie-Hellman; programmable field size up to 4096 bits
 - Elliptic curve cryptography with F₂m and F(p) modes and programmable field size up to 1023 bits
 - DEU—Data Encryption Standard execution unit
 - DES, 3DES
 - Two key (K1, K2, K1) or three key (K1, K2, K3)
 - ECB, CBC and OFB-64 modes for both DES and 3DES
 - AESU—Advanced Encryption Standard unit
 - Implements the Rijndael symmetric key cipher
 - ECB, CBC, CTR, CCM, GCM, CMAC, OFB-128, CFB-128, and LRW modes
 - 128-, 192-, and 256-bit key lengths
 - AFEU—ARC four execution unit
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - MDEU—message digest execution unit
 - SHA-1 with 160-bit message digest
 - SHA-2 (SHA-256, SHA-384, SHA-512)
 - MD5 with 128-bit message digest
 - HMAC with all algorithms
 - KEU—Kasumi execution unit
 - Implements F8 algorithm for encryption and F9 algorithm for integrity checking
 - Also supports A5/3 and GEA-3 algorithms
 - RNG—random number generator
 - XOR engine for parity checking in RAID storage applications
 - CRC execution unit
 - CRC-32 and CRC-32C
- Pattern Matching Engine with DEFLATE decompression

Electrical Characteristics

2.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for this device. Note that the values shown are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

	Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage		V _{DD}	1.1 V ± 55 mV	V	—
PLL supply voltage		AV _{DD}	1.1 V ± 55 mV	V	1
Core power supply for	or SerDes transceivers	SV _{DD}	1.1 V ± 55 mV	V	—
Pad power supply for	r SerDes transceivers	XV _{DD}	1.1 V ± 55 mV	V	—
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	1.8 V ± 90 mV	V	—
Supply voltage	DDR3 SDRAM Interface		1.5 V ± 75 mV		_
Three-speed Etherne	et I/O voltage	LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V	4
		TV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV		4
DUART, system cont	trol and power management, I^2C , and JTAG I/O voltage	OV _{DD}	3.3 V ± 165 mV	V	3
Local bus and GPIO	I/O voltage	BV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV 1.8 V ± 90 mV	V	—
Input voltage	DDR2 and DDR3 SDRAM Interface signals	MV _{IN}	GND to GV _{DD}	V	2
	DDR2 and DDR3 SDRAM Interface reference	MV _{REF} n	GV _{DD} /2 ± 1%	V	—
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to LV _{DD} GND to TV _{DD}	V	4
Local bus and GPIO signals			GND to BV _{DD}	V	—
	Local bus, DUART, SYSCLK, Serial RapidIO, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V	3
Junction temperature	e range	TJ	0 to 105	°C	_

Table 2. Recommended Operating Conditions

Notes:

- 1. This voltage is the input to the filter discussed in Section 21.2.1, "PLL Power Supply Filtering," and not necessarily the voltage at the AV_{DD} pin, that may be reduced from V_{DD} by the filter.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: L/TV_{IN} must not exceed L/TV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

Figure 17 shows the TBI receive the timing diagram.

Figure 17. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 **RGMII and RTBI AC Timing Specifications**

Table 34 presents the RGMII and RTBI AC timing specifications.

Table 34. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{TV}_{\text{DD}}$ of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-500	0	500	ps
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock period ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 4}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{rgtr}	—	—	0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	_	0.75	ns

Notes:

- 1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

Parameter	Symbol	Min	Тур	Мах	Unit	Notes
Change in V _{OS} between "0" and "1"	ΔV_{OS}	—	_	25	mV	_
Output current on short to GND	I _{SA} , I _{SB}	—	_	40	mA	_

Table 38. SGMII DC Transmitter Electrical Characteristics (continued)

Note:

1. This will not align to DC-coupled SGMII. $XV_{DD_SRDS2-Typ}$ =1.1 V.

2. |V_{OD}| = |V_{SD2_TXn} - V_{SD2_TXn}|. |V_{OD}| is also referred as output differential peak voltage. V_{TX-DIFFp-p} = 2*|V_{OD}|.

3. The |V_{OD}| value shown in the table assumes the following transmit equalization setting in the XMITEQAB (for SerDes 2 lanes A & B) or XMITEQEF (for SerDes 2 lanes E & E) bit field of MPC8572E's SerDes 2 Control Register:

•The MSbit (bit 0) of the above bit field is set to zero (selecting the full V_{DD-DIFF-p-p} amplitude - power up default);

•The LSbits (bit [1:3]) of the above bit field is set based on the equalization setting shown in table.

4. V_{OS} is also referred to as output common mode voltage.

5.The |V_{OD}| value shown in the Typ column is based on the condition of XV_{DD_SRDS2-Typ}=1.1V, no common mode offset variation (V_{OS} =550mV), SerDes2 transmitter is terminated with 100-Ω differential load between SD2_TX[n] and SD2_TX[n].

Figure 22. 4-Wire AC-Coupled SGMII Serial Link Connection Example

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Figure 24. SGMII Receiver Input Compliance Mask

Figure 25. SGMII AC Test/Measurement Load

Local Bus Controller (eLBC)

Table 48 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8 V$ DC.

Parameter	Symbol	Min	Мах	Unit
Supply voltage 1.8V	BV _{DD}	1.71	1.89	V
High-level input voltage	V _{IH}	0.65 x BV _{DD}	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.35 x BV _{DD}	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	TBD	TBD	μA
High-level output voltage $(I_{OH} = -100 \ \mu A)$	V _{OH}	BV _{DD} - 0.2	—	V
High-level output voltage $(I_{OH} = -2 \text{ mA})$	V _{OH}	BV _{DD} – 0.45	—	V
Low-level output voltage (I _{OL} = 100 μA)	V _{OL}	_	0.2	V
Low-level output voltage (I _{OL} = 2 mA)	V _{OL}	_	0.45	V

Table 48. Local Bus DC Electrical Characteristics (1.8 V DC)

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

10.2 Local Bus AC Electrical Specifications

Table 49 describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$.

Table 49. Local Bus General Timing Parameters ($BV_{DD} = 3.3 V DC$)—PLL EnabledAt recommended operating conditions with BV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	6.67	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	—	150	ps	7,8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.8	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	2.3	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.4	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.3	ns	3

Table 49. Local Bus General Timing Parameters (BV_{DD} = 3.3 V DC)—PLL Enabled (continued)

At recommended operating conditions with $\mathsf{BV}_{\mathsf{DD}}$ of 3.3 V ± 5%. (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to LALE assertion	t _{LBKHOV4}	—	2.3	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.7	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.7	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	—	2.5	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	—	2.5	ns	5

Note:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Table 50 describes the general timing parameters of the local bus interface at $BV_{DD} = 2.5 \text{ V DC}$.

Tabl	e 50. L	ocal B	lus	Gene	eral	l Tin	ning F	Parameters	(BV _{DD}	= 2.5 \	/ DC)—	-PLL	Enabled

At recommended operating conditions with BV_{DD} of 2.5 V \pm 5%

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	6.67	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}		150	ps	7, 8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.9	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{LBOTOT}	1.5		ns	6

Figure 39. Boundary-Scan Timing Diagram

13 I²C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8572E.

13.1 I²C DC Electrical Characteristics

Table 54 provides the DC electrical characteristics for the I^2C interfaces.

5

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1\times OV_{DD}$ and $0.9\times OV_{DD}(max)$	I	-10	10	μA	3

Table 63. Differential Receiver ((RX)	Input	Specifications	(continued)
-----------------------------------	------	-------	-----------------------	-------------

Symbol	Parameter	Min	Nominal	Max	Units	Comments
L _{RX-SKEW}	Total Skew		_	20	ns	Skew across all lanes on a Link. This includes variation in the length of SKP ordered set (for example, COM and one to five SKP Symbols) at the RX as well as any delay differences arising from the interconnect itself.

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 57 should be used as the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 56). If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3. A T_{RX-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The T_{RX-EYE-MEDIAN-to-MAX-JITTER} specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 ohms to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes see Figure 57). Note: that the series capacitors CTX is optional for the return loss measurement.
- 5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.
- 6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps ensure that the Receiver Detect circuit does not falsely assume a Receiver is powered on when it is not. This term must be measured at 300 mV above the RX ground.
- 7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

PCI Express

16.5 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 56 is specified using the passive compliance/test measurement load (see Figure 57) in place of any real PCI Express RX component.

Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement load (see Figure 57) is larger than the minimum Receiver eye diagram measured over a range of systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express component to vary in impedance from the compliance/test measurement load. The input Receiver eye diagram is implementation specific and is not specified. RX component designer should provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram (shown in Figure 56) expected at the input Receiver based on some adequate combination of system simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI.

NOTE

The reference impedance for return loss measurements is 50. to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50. probes—see Figure 57). Note that the series capacitors, CTX, are optional for the return loss measurement.

Figure 56. Minimum Receiver Eye Timing and Voltage Compliance Specification

Characteristic	Symbol	Ra	nge	Unit	Notes	
Unaracteristic	Gymbol	Min	Мах	Onic	Notes	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	400	400	ps	+/- 100 ppm	

Table 69. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Table 70. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Notos	
Unaracteristic	Gymbol	Min	Мах	Onic	notes	
Output Voltage,	V _O	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	_	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	320	320	ps	+/- 100 ppm	

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown in Figure 58 with the parameters specified in Figure 71 when measured at the output pins of the device and the device is driving a 100 Ω +/-5% differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the Transmitter Output Compliance Mask when pre-emphasis is disabled or minimized.

Characteristic	Symbol	Ra	nge	Unit	Notos	
Characteristic	Symbol	Min	Мах	Unit	NOLES	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	_	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	_	10 ⁻¹²	_	_	
Unit Interval	UI	800	800	ps	+/– 100 ppm	

Table 72. Receiver AC Timing Specifications—1.25 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Characteristic	Symbol	Ra	nge	Unit	Notos	
Characteristic	Gymbol	Min	Мах	Unit	NOLES	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	24	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	—	—	
Unit Interval	UI	400	400	ps	+/– 100 ppm	

Table 73. Receiver AC Timing Specifications—2.5 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
D1_MCAS	Column Address Strobe	AC9	0	GV _{DD}	
D1_MRAS	Row Address Strobe	AB12	0	GV _{DD}	
D1_MCKE[0:3]	Clock Enable	M8, L9, T9, N8	0	GV _{DD}	11
D1_MCS[0:3]	Chip Select	AB9, AF10, AB11, AE11	0	GV _{DD}	_
D1_MCK[0:5]	Clock	V7, E13, AH11, Y9, F14, AG10	0	GV _{DD}	
D1_MCK[0:5]	Clock Complements	Y10, E12, AH12, AA11, F13, AG11	0	GV _{DD}	
D1_MODT[0:3]	On Die Termination	AD10, AF12, AC10, AE12	0	GV _{DD}	_
D1_MDIC[0:1]	Driver Impedance Calibration	E15, G14	I/O	GV _{DD}	25
	DDR SDRAM Mem	ory Interface 2		•	
D2_MDQ[0:63]	Data	A6, B7, C5, D5, A7, C8, D8, D6, C4, A3, D3, D2, B4, A4, B1, C1, E3, E1, G2, G6, D1, E4, G5, G3, J4, J2, P4, R5, H3, H1, N5, N3, Y6, Y4, AC3, AD2, V5, W5, AB2, AB3, AD5, AE3, AF6, AG7, AC4, AD4, AF4, AF7, AH5, AJ1, AL2, AM3, AH3, AH6, AM1, AL3, AK5, AL5, AJ7, AK7, AK4, AM4, AL6, AM7	I/O	GV _{DD}	_
D2_MECC[0:7]	Error Correcting Code	J5, H7, L7, N6, H4, H6, M4, M5	I/O	GV _{DD}	
D2_MAPAR_ERR	Address Parity Error	N1	Ι	GV _{DD}	
D2_MAPAR_OUT	Address Parity Out	W2	0	GV _{DD}	
D2_MDM[0:8]	Data Mask	A5, B3, F4, J1, AA4, AE5, AK1, AM5, K5	0	GV _{DD}	
D2_MDQS[0:8]	Data Strobe	B6, C2, F5, L4, AB5, AF3, AL1, AM6, L6	I/O	GV _{DD}	_
D2_MDQS[0:8]	Data Strobe	C7, A2, F2, K3, AA5, AE6, AK2, AJ6, K6	I/O	GV _{DD}	_
D2_MA[0:15]	Address	W1, U4, U3, T1, T2, T3, R1, R2, T5, R4, Y3, P1, N2, AF1, M2, M1	0	GV _{DD}	_

Table 76. MPC8572E Pinout Listing (continued)

Package Description

Table 76. MPC8572E Pinout Listing (continue	d)
---	----

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes			
D2_MBA[0:2]	Bank Select	Y1, W3, P3	0	GV _{DD}	_			
D2_MWE	Write Enable	AA2	0	GV _{DD}	_			
D2_MCAS	Column Address Strobe	AD1	0	GV _{DD}	_			
D2_MRAS	Row Address Strobe	AA1	0	GV _{DD}	_			
D2_MCKE[0:3]	Clock Enable	L3, L1, K1, K2	0	GV _{DD}	11			
D2_MCS[0:3]	Chip Select	AB1, AG2, AC1, AH2	0	GV _{DD}	_			
D2_MCK[0:5]	Clock	V4, F7, AJ3, V2, E7, AG4	0	GV _{DD}	—			
D2_MCK[0:5]	Clock Complements	V1, F8, AJ4, U1, E6, AG5	0	GV _{DD}	—			
D2_MODT[0:3]	On Die Termination	AE1, AG1, AE2, AH1	0	GV _{DD}	_			
D2_MDIC[0:1]	Driver Impedance Calibration	F1, G1	I/O	GV _{DD}	25			
	Local Bus Controller Interface							
LAD[0:31]	Muxed Data/Address	M22, L22, F22, G22, F21, G21, E20, H22, K22, K21, H19, J20, J19, L20, M20, M19, E22, E21, L19, K19, G19, H18, E18, G18, J17, K17, K14, J15, H16, J14, H15, G15	I/O	BV _{DD}	34			
LDP[0:3]	Data Parity	M21, D22, A24, E17	I/O	BV _{DD}	_			
LA[27]	Burst Address	J21	0	BV _{DD}	5, 9			
LA[28:31]	Port Address	F20, K18, H20, G17	0	BV _{DD}	5, 7, 9			
LCS[0:4]	Chip Selects	B23, E16, D20, B25, A22	0	BV _{DD}	10			
LCS[5]/DMA2_DREQ[1]	Chip Selects / DMA Request	D19	I/O	BV _{DD}	1, 10			
LCS[6]/DMA2_DACK[1]	Chip Selects / DMA Ack	E19	0	BV _{DD}	1, 10			
LCS[7]/DMA2_DDONE[1]	Chip Selects / DMA Done	C21	0	BV _{DD}	1, 10			
LWE[0]/LBS[0]/LFWE	Write Enable / Byte Select	D17	0	BV _{DD}	5, 9			
LWE[1]/LBS[1]	Write Enable / Byte Select	F15	0	BV _{DD}	5, 9			
LWE[2]/LBS[2]	Write Enable / Byte Select	B24	0	BV _{DD}	5, 9			
LWE[3]/LBS[3]	Write Enable / Byte Select	D18	0	BV _{DD}	5, 9			
LALE	Address Latch Enable	F19	0	BV _{DD}	5, 8, 9			
LBCTL	Buffer Control	L18	0	BV _{DD}	5, 8, 9			

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes			
MSRCID[0:1]	Memory Debug Source Port ID	U27, T29	0	OV _{DD}	5, 9, 30			
MSRCID[2:4]	Memory Debug Source Port ID	U28, W24, W28	0	OV _{DD}	21			
MDVAL	Memory Debug Data Valid	V26	0	OV _{DD}	2, 21			
CLK_OUT	Clock Out	U32	0	OV _{DD}	11			
	Clock							
RTC	Real Time Clock	V25	I	OV _{DD}	—			
SYSCLK	System Clock	Y32	I	OV _{DD}	_			
DDRCLK	DDR Clock	AA29	I	OV _{DD}	31			
JTAG								
тск	Test Clock	T28	I	OV _{DD}				
TDI	Test Data In	T27	I	OV _{DD}	12			
TDO	Test Data Out	T26	0	OV _{DD}	—			
TMS	Test Mode Select	U26	I	OV _{DD}	12			
TRST	Test Reset	AA32	I	OV _{DD}	12			
	DFT							
L1_TSTCLK	L1 Test Clock	V32	I	OV _{DD}	18			
L2_TSTCLK	L2 Test Clock	V31	I	OV _{DD}	18			
LSSD_MODE	LSSD Mode	N24	I	OV _{DD}	18			
TEST_SEL	Test Select 0	K28	I	OV _{DD}	18			
	Power Mana	gement						
ASLEEP	Asleep	P28	0	OV _{DD}	9, 15, 21			

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SGND_SRDS1	SerDes Transceiver Core Logic GND (xcorevss)	C28, C32, D30, E31, F28, F29, G32, H28, H30, J28, K29, L32, M30, N31, P29, R32	_	_	_
SGND_SRDS2	SerDes Transceiver Core Logic GND (xcorevss)	AE28, AE30, AF28, AF32, AG28, AG30, AH28, AJ28, AJ31, AL32	_	_	_
AGND_SRDS1	SerDes PLL GND	J31		—	
AGND_SRDS2	SerDes PLL GND	AH31	_	—	_
OVDD	General I/O Supply	U31, V24, V28, Y31, AA27, AB25, AB29	_	OVDD	_
LVDD	TSEC 1&2 I/O Supply	AC18, AC21, AG21, AL27	_	LVDD	_
TVDD	TSEC 3&4 I/O Supply	AC15, AE16, AH18		TVDD	
GVDD	SSTL_1.8 DDR Supply	B2, B5, B8, B11, B14, D4, D7, D10, D13, E2, F6, F9, F12, G4, H2, H8, H11, H14, J6, K4, K10, K13, L2, L8, M6, N4, N10, P2, P8, R6, T4, T10, U2, U8, V6, W4, W10, Y2, Y8, AA6, AB4, AB10, AC2, AC8, AD6, AD12, AE4, AE10, AF2, AF8, AG6, AG12, AH4, AH10, AH16, AJ2, AJ8, AJ14, AK6, AK12, AK18, AL4, AL10, AL16, AM2		GVDD	
BVDD	Local Bus and GPIO Supply	A26, A30, B21, D16, D21, F18, G20, H17, J22, K15, K20	—	BVDD	—

Thermal

 $V_f > 0.40$ V $V_f < 0.90$ V $Operating \ range \ 2-300 \ \mu A$ $Diode \ leakage < 10 \ nA \ @ \ 125^{\circ}C$

An approximate value of the ideality may be obtained by calibrating the device near the expected operating temperature.

Ideality factor is defined as the deviation from the ideal diode equation:

$$I_{fw} = I_s \left[e^{\frac{qV_f}{nKT}} - 1 \right]$$

Another useful equation is:

$$\mathbf{V}_{H} - \mathbf{V}_{L} = \mathbf{n} \frac{\mathrm{KT}}{\mathrm{q}} \left[\mathbf{I} \mathbf{n} \frac{\mathrm{I}_{H}}{\mathrm{I}_{L}} \right]$$

Where:

 $I_{fw} = Forward current$ $I_s = Saturation current$ $V_d = Voltage at diode$ $V_f = Voltage forward biased$ $V_H = Diode voltage while I_H is flowing$ $V_L = Diode voltage while I_L is flowing$ $I_H = Larger diode bias current$ $I_L = Smaller diode bias current$ $q = Charge of electron (1.6 \times 10^{-19} \text{ C})$ n = Ideality factor (normally 1.0) $K = Boltzman's constant (1.38 \times 10^{-23} \text{ Joules/K})$ T = Temperature (Kelvins)

The ratio of I_H to I_L is usually selected to be 10:1. The above simplifies to the following:

 $V_{\text{H}} - V_{\text{L}} = ~1.986 \times 10^{-4} \times nT$

Solving for T, the equation becomes:

$$\mathbf{nT} = \frac{\mathbf{V}_{\mathsf{H}} - \mathbf{V}_{\mathsf{L}}}{1.986 \times 10^{-4}}$$

System Design Information

Figure 62 shows the PLL power supply filter circuits.

Figure 62. PLL Power Supply Filter Circuit

NOTE

It is recommended to have the minimum number of vias in the AV_{DD} trace for board layout. For example, zero vias might be possible if the AV_{DD} filter is placed on the component side. One via might be possible if it is placed on the opposite of the component side. Additionally, all traces for AV_{DD} and the filter components should be low impedance, 10 to 15 mils wide and short. This includes traces going to GND and the supply rails they are filtering.

The AV_{DD}_SRDSn signal provides power for the analog portions of the SerDesn PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following figure. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDSn ball to ensure it filters out as much noise as possible. The ground connection should be near the AV_{DD}_SRDSn ball. The 0.003- μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDSn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide and direct.

1. An 0805 sized capacitor is recommended for system initial bring-up.

Figure 63. SerDes PLL Power Supply Filter

NOTE

AV_{DD}_SRDSn should be a filtered version of SV_{DD}_SRDSn.

NOTE

Signals on the SerDesn interface are fed from the XV_{DD} -SRDS*n* power plane.

21.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads.

System Design Information

logic does not interfere with normal chip operation. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 66 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well.

The COP interface has a standard header, shown in Figure 65, for connection to the target system, and is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header; so emulator vendors have issued many different pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom. Still others number the pins counter-clockwise from pin 1 (as with an IC). Regardless of the numbering scheme, the signal placement recommended in Figure 65 is common to all known emulators.

21.9.1 Termination of Unused Signals

If the JTAG interface and COP header is not used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 66. If this is not possible, the isolation resistor allows future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- No pull-up/pull-down is required for TDI, TMS, TDO or TCK.