E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100/1000Mbps (4)
SATA	·
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572lvtatle

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Three inbound windows plus a configuration window on PCI Express
- Four inbound windows plus a default window on Serial RapidIO®
- Four outbound windows plus default translation for PCI Express
- Eight outbound windows plus default translation for Serial RapidIO with segmentation and sub-segmentation support
- Two 64-bit DDR2/DDR3 memory controllers
 - Programmable timing supporting DDR2 and DDR3 SDRAM
 - 64-bit data interface per controller
 - Four banks of memory supported, each up to 4 Gbytes, for a maximum of 16 Gbytes per controller
 - DRAM chip configurations from 64 Mbits to 4 Gbits with x8/x16 data ports
 - Full ECC support
 - Page mode support
 - Up to 32 simultaneous open pages for DDR2 or DDR3
 - Contiguous or discontiguous memory mapping
 - Cache line, page, bank, and super-bank interleaving between memory controllers
 - Read-modify-write support for RapidIO atomic increment, decrement, set, and clear transactions
 - Sleep mode support for self-refresh SDRAM
 - On-die termination support when using DDR2 or DDR3
 - Supports auto refreshing
 - On-the-fly power management using CKE signal
 - Registered DIMM support
 - Fast memory access through JTAG port
 - 1.8-V SSTL_1.8 compatible I/O
 - Support 1.5-V operation for DDR3. The detail is TBD pending on official release of appropriate industry specifications.
 - Support for battery-backed main memory
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture.
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts
 - Supports 4 message interrupts per processor with 32-bit messages
 - Supports connection of an external interrupt controller such as the 8259 programmable interrupt controller
 - Four global high resolution timers/counters per processor that can generate interrupts
 - Supports a variety of other internal interrupt sources

- CRC generation and verification of inbound/outbound frames
- Programmable Ethernet preamble insertion and extraction of up to 7 bytes
- MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses
 - VRRP and HSRP support for seamless router fail-over
 - Up to 16 exact-match MAC addresses supported
 - Broadcast address (accept/reject)
 - Hash table match on up to 512 multicast addresses
 - Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- Two MII management interfaces for control and status
- Ability to force allocation of header information and buffer descriptors into L2 cache
- 10/100 Fast Ethernet controller (FEC) management interface
 - 10/100 Mbps full and half-duplex IEEE 802.3 MII for system management
 - Note: When enabled, the FEC occupies eTSEC3 and eTSEC4 parallel interface signals. In such a mode, eTSEC3 and eTSEC4 are only available through SGMII interfaces.
- OCeaN switch fabric
 - Full crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Two integrated DMA controllers
 - Four DMA channels per controller
 - All channels accessible by the local masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no snoop)
 - Ability to start and flow control up to 4 (both Channel 0 and 1 for each DMA Controller) of the 8 total DMA channels from external 3-pin interface by the remote masters
 - The Channel 2 of DMA Controller 2 is only allowed to initiate and start a DMA transfer by the remote master, because only one of the 3-external pins (DMA2_DREQ[2]) is made available

Overview

- Ability to launch DMA from single write transaction
- Serial RapidIO interface unit
 - Supports RapidIO Interconnect Specification, Revision 1.2
 - Both 1x and 4x LP-serial link interfaces
 - Long- and short-haul electricals with selectable pre-compensation
 - Transmission rates of 1.25, 2.5, and 3.125 Gbaud (data rates of 1.0, 2.0, and 2.5 Gbps) per lane
 - Auto-detection of 1x- and 4x-mode operation during port initialization
 - Link initialization and synchronization
 - Large and small size transport information field support selectable at initialization time
 - 34-bit addressing
 - Up to 256 bytes data payload
 - All transaction flows and priorities
 - Atomic set/clr/inc/dec for read-modify-write operations
 - Generation of IO_READ_HOME and FLUSH with data for accessing cache-coherent data at a remote memory system
 - Receiver-controlled flow control
 - Error detection, recovery, and time-out for packets and control symbols as required by the RapidIO specification
 - Register and register bit extensions as described in part VIII (Error Management) of the RapidIO specification
 - Hardware recovery only
 - Register support is not required for software-mediated error recovery.
 - Accept-all mode of operation for fail-over support
 - Support for RapidIO error injection
 - Internal LP-serial and application interface-level loopback modes
 - Memory and PHY BIST for at-speed production test
- RapidIO–compliant message unit
 - 4 Kbytes of payload per message
 - Up to sixteen 256-byte segments per message
 - Two inbound data message structures within the inbox
 - Capable of receiving three letters at any mailbox
 - Two outbound data message structures within the outbox
 - Capable of sending three letters simultaneously
 - Single segment multicast to up to 32 devIDs
 - Chaining and direct modes in the outbox
 - Single inbound doorbell message structure
 - Facility to accept port-write messages

- Three PCI Express controllers
 - PCI Express 1.0a compatible
 - Supports x8, x4, x2, and x1 link widths (see following bullet for specific width configuration options)
 - Auto-detection of number of connected lanes
 - Selectable operation as root complex or endpoint
 - Both 32- and 64-bit addressing
 - 256-byte maximum payload size
 - Virtual channel 0 only
 - Full 64-bit decode with 36-bit wide windows
- Pin multiplexing for the high-speed I/O interfaces supports one of the following configurations:
 - Single x8/x4/x2/x1 PCI Express
 - Dual x4/x2/x1 PCI Express
 - Single x4/x2/x1 PCI Express and dual x2/x1 PCI Express
 - Single 1x/4x Serial RapidIO and single x4/x2/x1 PCI Express
- Power management
 - Supports power saving modes: doze, nap, and sleep
 - Employs dynamic power management, that automatically minimizes power consumption of blocks when they are idle
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the eight counters
 - Supports duration and quantity threshold counting
 - Permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1[™] compatible, JTAG boundary scan
- 1023 FC-PBGA package

DDR2 and DDR3 SDRAM Controller

Table 17. DDR2 and DDR3 SDRAM Interface Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 1.8 V ± 5% for DDR2 or 1.5 V ± 5% for DDR3.

Parameter	Symbol	Min	Мах	Unit	Notes
Controller Skew for MDQS—MDQ/MECC	t _{CISKEW}	-	-	ps	1, 2
800 MHz	—	-200	200	—	—
667 MHz	—	-240	240	—	—
533 MHz	—	-300	300	—	—
400 MHz	—	-365	365	—	—

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be determined by the following equation: tDISKEW =+/-(T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute value of tCISKEW.

Figure 3 shows the DDR2 and DDR3 SDRAM interface input timing diagram.

Figure 3. DDR2 and DDR3 SDRAM Interface Input Timing Diagram

6.2.2 DDR2 and DDR3 SDRAM Interface Output AC Timing Specifications

Table 18 contains the output AC timing targets for the DDR2 and DDR3 SDRAM interface.

Table 18. DDR2 and DDR3 SDRAM Interface Output AC Timing Specifications

At recommended operating conditions with GV_{DD} of 1.8 V ± 5% for DDR2 or 1.5 V ± 5% for DDR3.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time	t _{MCK}	2.5	5	ns	2
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3

NP

DDR2 and DDR3 SDRAM Controller

Table 18. DDR2 and DDR3 SDRAM Interface Output AC Timing Specifications (continued)

At recommended operating conditions with GV_{DD} of 1.8 V ± 5% for DDR2 or 1.5 V ± 5% for DDR3.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
533 MHz		538	—		
400 MHz		700	—		
MDQS preamble start	t _{DDKHMP}			ns	6
800 MHz		-0.5 × t _{MCK} - 0.375	−0.5 × t _{MCK} +0.375		
<= 667 MHz		$-0.5\times t_{MCK}-0.6$	$-0.5 imes t_{MCK}$ +0.6		
MDQS epilogue end	t _{DDKHME}			ns	6
800 MHz		-0.375	0.375		
<= 667 MHz	t _{DDKHME}	-0.6	0.6	ns	6

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)}

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.

4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This typically be set to the same delay as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8572E PowerQUICCTM III Integrated Host Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.

 Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

NOTE

For the ADDR/CMD setup and hold specifications in Table 18, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Figure 14 shows the MII receive AC timing diagram.

Figure 14. MII Receive AC Timing Diagram

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 31 provides the TBI transmit AC timing specifications.

Table 31. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TCG[9:0] setup time GTX_CLK going high	t _{TTKHDV}	2.0	—	—	ns
TCG[9:0] hold time from GTX_CLK going high	t _{TTKHDX}	1.0	—	—	ns
GTX_CLK rise (20%-80%)	t _{TTXR} ²	_	—	1.0	ns
GTX_CLK fall time (80%–20%)	t _{TTXF} ²	_	_	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics

Table 38 and Table 39 describe the SGMII SerDes transmitter and receiver AC-Coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD2_TX[n] and SD2_TX[n]) as depicted in Figure 23.

Parameter	Symbol	Min	Min Typ		Unit	Notes
Supply Voltage	$\rm XV_{DD_SRDS2}$	1.045	1.1	1.155	V	—
Output high voltage	VOH	_	— — XV		mV	1
Output low voltage	VOL	XV _{DD_SRDS2-Typ} /2 - V _{OD} _{-max} /2	—	—	mV	1
Output ringing	V _{RING}	_	—	10	%	—
Output differential voltage ^{2, 3, 5}		359	550	791		Equalization setting: 1.0x
	V _{OD}	329	505	725		Equalization setting: 1.09x
		299	458	659		Equalization setting: 1.2x
		270	414	594	mV	Equalization setting: 1.33x
		239	367	527		Equalization setting: 1.5x
		210	322	462		Equalization setting: 1.71x
		180	275	395		Equalization setting: 2.0x
Output offset voltage	V _{OS}	473	550	628	mV	1, 4
Output impedance (single-ended)	R _O	40	_	60	Ω	—
Mismatch in a pair	ΔR_{O}	_	_	10	%	—
Change in V _{OD} between "0" and "1"	$\Delta V_{OD} $			25	mV	

Table 38. SGMII DC Transmitter Electrical Characteristics

Ethernet Management Interface Electrical Characteristics

Table 42. eTSEC IEEE 1588 AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD}/TV_{DD} of 3.3 V ± 5% or 2.5 V ± 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Note
TSEC_1588_CLK_OUT duty cycle	t _{T1588} CLKOTH /t _{T1588} CLKOUT	30	50	70	%	_
TSEC_1588_PULSE_OUT	t _{T1588OV}	0.5	_	3.0	ns	_
TSEC_1588_TRIG_IN pulse width	t _{T1588} trigh	2*t _{T1588CLK_MAX}	—	_	ns	2

Note:

1.When TMR_CTRL[CKSEL] is set as '00', the external TSEC_1588_CLK input is selected as the 1588 timer reference clock source, with the timing defined in Table 42, "eTSEC IEEE 1588 AC Timing Specifications." The maximum value of t_{T1588CLK} is defined in terms of T_{TX_CLK}, that is the maximum clock cycle period of the equivalent interface speed that the eTSEC1 port is running at. When eTSEC1 is configured to operate in the parallel mode, the T_{TX_CLK} is the maximum clock period of the TSEC1_TX_CLK. When eTSEC1 operates in SGMII mode, the maximum value of t_{T1588CLK} is defined in terms of the recovered clock from SGMII SerDes. For example, for SGMII 10/100/1000 Mbps modes, the maximum value of t_{T1588CLK} is 3600, 360, 72 ns respectively. See the *MPC8572E PowerQUICC™ III Integrated Communications Processor Reference Manual* for detailed description of TMR_CTRL registers.

2. It needs to be at least two times of the clock period of the clock selected by TMR_CTRL[CKSEL].

9 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals ECn_MDIO (management data input/output) and ECn_MDC (management data clock). The electrical characteristics for GMII, SGMII, RGMII, RMII, TBI and RTBI are specified in "Section 8, "Ethernet: Enhanced Three-Speed Ethernet (eTSEC)."

9.1 MII Management DC Electrical Characteristics

The ECn_MDC and ECn_MDIO are defined to operate at a supply voltage of 3.3 V or 2.5 V. The DC electrical characteristics for ECn_MDIO and ECn_MDC are provided in Table 43 and Table 44.

Parameter	Symbol	Min	Max	Unit	Notes
Supply voltage (3.3 V)	LV _{DD} /TV _{DD}	3.13	3.47	V	1, 2
Output high voltage ($LV_{DD}/TV_{DD} = Min, I_{OH} = -1.0 mA$)	V _{OH}	2.10	OV _{DD} + 0.3	V	—
Output low voltage (LV _{DD} /TV _{DD} =Min, I _{OL} = 1.0 mA)	V _{OL}	GND	0.50	V	—
Input high voltage	V _{IH}	2.0	—	V	_
Input low voltage	V _{IL}	—	0.90	V	_
Input high current $(LV_{DD}/TV_{DD} = Max, V_{IN}^{3} = 2.1 \text{ V})$	Iн	_	40	μΑ	—

Table 43. MII Management DC Electrical Characteristics (LV_{DD}/TV_{DD} =3.3 V)

Local Bus Controller (eLBC)

Figure 33. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)

Local Bus Controller (eLBC)

Figure 35. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

JTAG

Table 53. JTAG AC Timing Specifications (Independent of SYSCLK) ¹ (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	3 3	19 9	ns	5, 6

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 36). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design.

Figure 36 provides the AC test load for TDO and the boundary-scan outputs.

Figure 36. AC Test Load for the JTAG Interface

Figure 37 provides the JTAG clock input timing diagram.

Figure 37. JTAG Clock Input Timing Diagram

Figure 38 provides the $\overline{\text{TRST}}$ timing diagram.

Table 66. Short Run Transmitter AC Timing Specifications—2.5 GBaud (continued)

Characteristic	Symbol	Ra	nge	Unit	Notes
Characteristic	Gymbol	Min	Мах	Onic	Notes
Multiple Output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/- 100 ppm

Table 67. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Notos	
Gharacteristic	Symbol	Min	Мах	Unit	NOLES	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	500	1000	mV p-p	—	
Deterministic Jitter	J _D	_	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	_	
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	320	320	ps	+/– 100 ppm	

Table 68. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Characteristic	Symbol	Ra	nge	Unit	Notes
Unaracteristic	Gymbol	Min	Мах	Onic	Notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	—	0.17	UI p-p	—
Total Jitter	J _T	—	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	+/- 100 ppm

Characteristic	Symbol	Range		Unit	Notos	
Unaracteristic	Gymbol	Min	Max	Onic	Notes	
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	—	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	400	400	ps	+/- 100 ppm	

Table 69. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Table 70. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	Range		Unit	Notos	
Unaracteristic	Gymbol	Min	Мах	Onic	notes	
Output Voltage,	V _O	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_	
Deterministic Jitter	J _D	—	0.17	UI p-p	_	
Total Jitter	J _T	—	0.35	UI p-p	—	
Multiple output skew	S _{MO}	—	1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	320	320	ps	+/- 100 ppm	

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown in Figure 58 with the parameters specified in Figure 71 when measured at the output pins of the device and the device is driving a 100 Ω +/-5% differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the Transmitter Output Compliance Mask when pre-emphasis is disabled or minimized.

Serial RapidIO

Figure 58. Transmitter Output Compliance Mask

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 71. Transmitter Differential Output Eye Diagram Parameters

17.6 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section.

Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to $(0.8) \times$ (Baud Frequency). This includes contributions from on-chip circuitry, the chip package and any off-chip components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ohm resistive for differential return loss and 25- Ω resistive for common mode.

Serial RapidIO

Characteristic	Symbol	Range		Unit	Notos	
	Symbol	Min	Мах	Unit	Notes	
Differential Input Voltage	V _{IN}	200	1600	mV p-p	Measured at receiver	
Deterministic Jitter Tolerance	J _D	0.37	—	UI p-p	Measured at receiver	
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55	—	UI p-p	Measured at receiver	
Total Jitter Tolerance ¹	J _T	0.65	_	UI p-p	Measured at receiver	
Multiple Input Skew	S _{MI}	_	22	ns	Skew at the receiver input between lanes of a multilane link	
Bit Error Rate	BER	—	10 ⁻¹²	—	—	
Unit Interval	UI	320	320	ps	+/- 100 ppm	

Table 74. Receiver AC Timing Specifications—3.125 GBaud

Note:

1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 59. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Package Description

Table 76. MPC8572E Pinout Listing (continue	d)
---	----

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
D2_MBA[0:2]	Bank Select	Y1, W3, P3	0	GV _{DD}	_
D2_MWE	Write Enable	AA2	0	GV _{DD}	_
D2_MCAS	Column Address Strobe	AD1	0	GV _{DD}	_
D2_MRAS	Row Address Strobe	AA1	0	GV _{DD}	_
D2_MCKE[0:3]	Clock Enable	L3, L1, K1, K2	0	GV _{DD}	11
D2_MCS[0:3]	Chip Select	AB1, AG2, AC1, AH2	0	GV _{DD}	_
D2_MCK[0:5]	Clock	V4, F7, AJ3, V2, E7, AG4	0	GV _{DD}	—
D2_MCK[0:5]	Clock Complements	V1, F8, AJ4, U1, E6, AG5	0	GV _{DD}	—
D2_MODT[0:3]	On Die Termination	AE1, AG1, AE2, AH1	0	GV _{DD}	_
D2_MDIC[0:1]	Driver Impedance Calibration	F1, G1	I/O	GV _{DD}	25
	Local Bus Contro	ller Interface			
LAD[0:31]	Muxed Data/Address	M22, L22, F22, G22, F21, G21, E20, H22, K22, K21, H19, J20, J19, L20, M20, M19, E22, E21, L19, K19, G19, H18, E18, G18, J17, K17, K14, J15, H16, J14, H15, G15	I/O	BV _{DD}	34
LDP[0:3]	Data Parity	M21, D22, A24, E17	I/O	BV _{DD}	_
LA[27]	Burst Address	J21	0	BV _{DD}	5, 9
LA[28:31]	Port Address	F20, K18, H20, G17	0	BV _{DD}	5, 7, 9
LCS[0:4]	Chip Selects	B23, E16, D20, B25, A22	0	BV _{DD}	10
LCS[5]/DMA2_DREQ[1]	Chip Selects / DMA Request	D19	I/O	BV _{DD}	1, 10
LCS[6]/DMA2_DACK[1]	Chip Selects / DMA Ack	E19	0	BV _{DD}	1, 10
LCS[7]/DMA2_DDONE[1]	Chip Selects / DMA Done	C21	0	BV _{DD}	1, 10
LWE[0]/LBS[0]/LFWE	Write Enable / Byte Select	D17	0	BV _{DD}	5, 9
LWE[1]/LBS[1]	Write Enable / Byte Select	F15	0	BV _{DD}	5, 9
LWE[2]/LBS[2]	Write Enable / Byte Select	B24	0	BV _{DD}	5, 9
LWE[3]/LBS[3]	Write Enable / Byte Select	D18	0	BV _{DD}	5, 9
LALE	Address Latch Enable	F19	0	BV _{DD}	5, 8, 9
LBCTL	Buffer Control	L18	0	BV _{DD}	5, 8, 9

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes				
VDD	Core, L2, Logic Supply	L14, M13, M15, M17, N12, N14, N16, N20, N22, P11, P13, P15, P17, P19, P21, P23, R12, R14, R16, R18, R20, R22, T13, T15, T19, T21, T23, U12, U14, U18, U20, U22, V13, V15, V17, V19, V21, W12, W14, W16, W18, W20, W22, Y13, Y15, Y17, Y19, Y21, AA12, AA14, AA16, AA18, AA20, AB13		VDD					
SVDD_SRDS1	SerDes Core 1 Logic Supply (xcorevdd)	C31, D29, E28, E32, F30, G28, G31, H29, K30, L31, M29, N32, P30	_	_	_				
SVDD_SRDS2	SerDes Core 2 Logic Supply (xcorevdd)	AD32, AF31, AG29, AJ32, AK29, AK30	_	—	_				
XVDD_SRDS1	SerDes1 Transceiver Supply (xpadvdd)	C26, D24, E27, F25, G26, H24, J27, K25, L26, M24, N27	_	_	_				
XVDD_SRDS2	SerDes2 Transceiver Supply (xpadvdd)	AD24, AD28, AE26, AF25, AG27, AH24, AJ26	_		_				
AVDD_LBIU	Local Bus PLL Supply	A19	_	—	19				
AVDD_DDR	DDR PLL Supply	AM20	_	—	19				
AVDD_CORE0	CPU PLL Supply	B18	_		19				
AVDD_CORE1	CPU PLL Supply	A17	_	—	19				
AVDD_PLAT	Platform PLL Supply	AB32	_		19				
AVDD_SRDS1	SerDes1 PLL Supply	J29	_	_	19				
AVDD_SRDS2	SerDes2 PLL Supply	AH29	_	—	19				
SENSEVDD	VDD Sensing Pin	N18	_	—	13				
SENSEVSS	GND Sensing Pin	P18	—	—	13				
Analog Signals									
MVREF1	SSTL_1.8 Reference Voltage	C16	I	GV _{DD} /2	_				
MVREF2	SSTL_1.8 Reference Voltage	AM19	I	GV _{DD} /2	_				

Table 76. MPC8572E Pinout Listing (continued)

Ordering Information

MPC	nnnn	е	t	1	рр	ffm	r
Product Code ¹	Part Identifier	Security Engine	Temperature	Power	Package Sphere Type ²	Processor Frequency/ DDR Data Rate ³	Silicon Revision
MPC PPC	8572	E = Included	Blank = 0 to 105°C C = −40 to 105°C	Blank = Standard L = Low	PX = Leaded, FC-PBGA VT = Pb-free,	AVN = 150- MHz processor; 800 MT/s DDR data rate	D= Ver. 2.1 (SVR = 0x80E8_0021) SEC included
		Blank = Not included			FC-PBGA	AUL = 1333-MHz processor; 667 MT/s DDR data rate ATL = 1200-MHz processor; 667 MT/s DDR data rate	D= Ver. 2.1 (SVR = 0x80E0_0021) SEC not included
						ARL = 1067-MHz processor; 667 MT/s DDR data rate	

Table 87. Part Numbering Nomenclature—Rev 2.1

Notes:

¹ MPC stands for "Qualified."

PPC stands for "Prototype"

² See Section 18, "Package Description," for more information on the available package types.

³ Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

Table 88. Part Numbering Nomenclature—Rev 1.1.1

MPC	nnnn	е	t	рр	ffm	r
Product Code ¹	Part Identifier	Security Engine	Temperature	Package Sphere Type ²	Processor Frequency/ DDR Data Rate ³	Silicon Revision
MPC PPC	8572	E = Included Blank = Not included	Blank=0 to 105°C C= −40 to 105°C	PX = Leaded, FC-PBGA VT = Pb-free, FC-PBGA	AVN = 1500-MHz processor; 800 MT/s DDR data rate AUL = 1333-MHz process or; 667 MT/s DDR datarate ATL = 1200-MHz processor; 667 MT/s DDR data rate ARL = 1067-MHz processor; 667 MT/s DDR data rate	B = Ver. 1.1.1 (SVR = 0x80E8_0011) SEC included B = Ver. 1.1.1 (SVR = 0x80E0_0011) SEC not included

Notes:

¹ MPC stands for "Qualified."

PPC stands for "Prototype"

² See Section 18, "Package Description," for more information on the available package types.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ,ÅúTypical,Åù parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including ,Åútypicals,,Åù must be validated for each customer application by customer,Åôs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. . Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2008-2011, 2014, 2016 NXP B.V.

Document Number: MPC8572EEC Rev. 7 03/2016

