E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.067GHz
Co-Processors/DSP	Signal Processing; SPE
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8572vtarld

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.

- Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set for single-precision (32-bit) floating-point instructions.
- Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit) floating-point instructions that use the 64-bit GPRs.
- 36-bit real addressing
- Memory management unit (MMU). Especially designed for embedded applications. Supports 4-Kbyte to 4-Gbyte page sizes.
- Enhanced hardware and software debug support
- Performance monitor facility that is similar to, but separate from, the MPC8572E performance monitor

The e500 defines features that are not implemented on this device. It also generally defines some features that this device implements more specifically. An understanding of these differences can be critical to ensure proper operation.

- 1 Mbyte L2 cache/SRAM
 - Shared by both cores.
 - Flexible configuration and individually configurable per core.
 - Full ECC support on 64-bit boundary in both cache and SRAM modes
 - Cache mode supports instruction caching, data caching, or both.
 - External masters can force data to be allocated into the cache through programmed memory ranges or special transaction types (stashing).
 - 1, 2, or 4 ways can be configured for stashing only.
 - Eight-way set-associative cache organization (32-byte cache lines)
 - Supports locking entire cache or selected lines. Individual line locks are set and cleared through Book E instructions or by externally mastered transactions.
 - Global locking and Flash clearing done through writes to L2 configuration registers
 - Instruction and data locks can be Flash cleared separately.
 - Per-way allocation of cache region to a given processor.
 - SRAM features include the following:
 - 1, 2, 4, or 8 ways can be configured as SRAM.
 - I/O devices access SRAM regions by marking transactions as snoopable (global).
 - Regions can reside at any aligned location in the memory map.
 - Byte-accessible ECC is protected using read-modify-write transaction accesses for smaller-than-cache-line accesses.
- e500 coherency module (ECM) manages core and intrasystem transactions
- Address translation and mapping unit (ATMU)
 - Twelve local access windows define mapping within local 36-bit address space.
 - Inbound and outbound ATMUs map to larger external address spaces.

Overview

- Supports fully nested interrupt delivery
- Interrupts can be routed to external pin for external processing.
- Interrupts can be routed to the e500 core's standard or critical interrupt inputs.
- Interrupt summary registers allow fast identification of interrupt source.
- Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, SSL/TLS, SRTP, 802.16e, and 3GPP
 - Four crypto-channels, each supporting multi-command descriptor chains
 - Dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
 - PKEU—public key execution unit
 - RSA and Diffie-Hellman; programmable field size up to 4096 bits
 - Elliptic curve cryptography with F₂m and F(p) modes and programmable field size up to 1023 bits
 - DEU—Data Encryption Standard execution unit
 - DES, 3DES
 - Two key (K1, K2, K1) or three key (K1, K2, K3)
 - ECB, CBC and OFB-64 modes for both DES and 3DES
 - AESU—Advanced Encryption Standard unit
 - Implements the Rijndael symmetric key cipher
 - ECB, CBC, CTR, CCM, GCM, CMAC, OFB-128, CFB-128, and LRW modes
 - 128-, 192-, and 256-bit key lengths
 - AFEU—ARC four execution unit
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
 - MDEU—message digest execution unit
 - SHA-1 with 160-bit message digest
 - SHA-2 (SHA-256, SHA-384, SHA-512)
 - MD5 with 128-bit message digest
 - HMAC with all algorithms
 - KEU—Kasumi execution unit
 - Implements F8 algorithm for encryption and F9 algorithm for integrity checking
 - Also supports A5/3 and GEA-3 algorithms
 - RNG—random number generator
 - XOR engine for parity checking in RAID storage applications
 - CRC execution unit
 - CRC-32 and CRC-32C
- Pattern Matching Engine with DEFLATE decompression

Figure 1 shows the MPC8572E block diagram.

2 **Electrical Characteristics**

This section provides the AC and DC electrical specifications for the MPC8572E. The MPC8572E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

NOTE

From a system standpoint, if any of the I/O power supplies ramp prior to the VDD core supply, the I/Os associated with that I/O supply may drive a logic one or zero during power-on reset, and extra current may be drawn by the device.

3 Power Characteristics

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with out the L in its part ordering is shown in Table 4.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12.3	17.8	18.5	W
533	1200	12.3	17.8	18.5	W
533	1333	16.3	22.8	24.5	W
600	1500	17.3	23.9	25.9	W

Table 4	MPC8572F	Power	Dissir	nation ¹
		I OWEI	Diagih	Jation

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

 $^2~$ Typical-65 is based on V_DD = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

⁴ Maximum is based on V_{DD} = 1.1 V, T_j = 105 °C, running a smoke test.

The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this family of PowerQUICC III devices with the L in its port ordering is shown in Table 5.

CCB Frequency	Core Frequency	Typical-65 ²	Typical-105 ³	Maximum ⁴	Unit
533	1067	12	15	15.8	W
533	1200	12	15.5	16.3	W
533	1333	12	15.9	16.9	W
600	1500	13	18.7	20.0	W

Table 5. MPC8572EL Power Dissipation ¹

Notes:

¹ This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XV_{DD} rails.

² Typical-65 is based on V_{DD} = 1.1 V, T_j = 65 °C, running Dhrystone.

³ Typical-105 is based on V_{DD} = 1.1 V, T_i = 105 °C, running Dhrystone.

 $^4\,$ Maximum is based on V_{DD} = 1.1 V, T_i = 105 °C, running a smoke test.

Table 20 provides the differential specifications for the MPC8572E differential signals MDQS/ \overline{MDQS} and MCK/ \overline{MCK} when in DDR3 mode.

Parameter/Condition	Symbol	Min	Max	Unit	Notes
DC Input Signal Voltage	V _{IN}	—	_	mV	_
DC Differential Input Voltage	V _{ID}	—	_	mV	_
AC Differential Input Voltage	V _{IDAC}	—	_	mV	_
DC Differential Output Voltage	V _{OH}	—	_	mV	_
AC Differential Output Voltage	V _{OHAC}	—	_	mV	_
AC Differential Cross-point Voltage	V _{IXAC}	—	_	mV	_
Input Midpoint Voltage	V _{MP}	—	_	mV	

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8572E.

7.1 DUART DC Electrical Characteristics

Table 21 provides the DC electrical characteristics for the DUART interface.

 Table 21. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}		±5	μA
High-level output voltage (OV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}		0.4	V

Note:

1. The symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1.

27

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Figure 8. FIFO Receive AC Timing Diagram

8.2.2 GMII AC Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.2.1 GMII Transmit AC Timing Specifications

Table 27 provides the GMII transmit AC timing specifications.

Table 27. GMII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GMII data TXD[7:0], TX_ER, TX_EN setup time	t _{GTKHDV}	2.5	—	_	ns
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.5	—	5.0	ns
GTX_CLK data clock rise time (20%-80%)	t _{GTXR} ²	—	—	1.0	ns
GTX_CLK data clock fall time (80%-20%)	t _{GTXF} 2	—	—	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. Guaranteed by design.

Figure 9 shows the GMII transmit AC timing diagram.

Figure 9. GMII Transmit AC Timing Diagram

8.2.2.2 GMII Receive AC Timing Specifications

Table 28 provides the GMII receive AC timing specifications.

Table 28. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{GRX}	_	8.0	_	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	_	60	ns
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	_	_	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0	_	_	ns
RX_CLK clock rise (20%-80%)	t _{GRXR} 2	_	_	1.0	ns
RX_CLK clock fall time (80%-20%)	t _{GRXF} 2			1.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

2. Guaranteed by design.

Figure 10 provides the AC test load for eTSEC.

MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7

Ethernet: Enhanced Three-Speed Ethernet (eTSEC)

Table 36. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with LV_DD/TV_DD of 2.5/ 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RXD[1:0], CRS_DV, RX_ER hold time to TSECn_TX_CLK rising edge	t _{RMRDX}	2.0	—	_	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 20 provides the AC test load for eTSEC.

Figure 20. eTSEC AC Test Load

Figure 21 shows the RMII receive AC timing diagram.

Figure 21. RMII Receive AC Timing Diagram

8.3 SGMII Interface Electrical Characteristics

Each SGMII port features a 4-wire AC-Coupled serial link from the dedicated SerDes 2 interface of MPC8572E as shown in Figure 22, where C_{TX} is the external (on board) AC-Coupled capacitor. Each output pin of the SerDes transmitter differential pair features 50- Ω output impedance. Each input of the SerDes receiver differential pair features 50- Ω on-die termination to SGND_SRDS2 (xcorevss). The reference circuit of the SerDes transmitter and receiver is shown in Figure 54.

When an eTSEC port is configured to operate in SGMII mode, the parallel interface's output signals of this eTSEC port can be left floating. The input signals should be terminated based on the guidelines

8.4 eTSEC IEEE Std 1588[™] AC Specifications

Figure 26 shows the data and command output timing diagram.

Figure 26. eTSEC IEEE 1588 Output AC Timing

¹ The output delay is count starting rising edge if t_{T1588CLKOUT} is non-inverting. Otherwise, it is count starting falling edge.

Figure 27 shows the data and command input timing diagram.

Table 42 provides the IEEE 1588 AC timing specifications.

Table 42. eTSEC IEEE 1588 AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 3.3 V ± 5% or 2.5 V ± 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Note
TSEC_1588_CLK clock period	t _{T1588CLK}	3.3	—	T _{TX_CLK} *9	ns	1
TSEC_1588_CLK duty cycle	t _{T1588CLKH} /t _{T1588CLK}	40	50	60	%	—
TSEC_1588_CLK peak-to-peak jitter	t _{T1588CLKINJ}	—	—	250	ps	—
Rise time eTSEC_1588_CLK (20%-80%)	t _{T1588CLKINR}	1.0	—	2.0	ns	—
Fall time eTSEC_1588_CLK (80%-20%)	t _{T1588CLKINF}	1.0	—	2.0	ns	—
TSEC_1588_CLK_OUT clock period	t _{T1588} CLKOUT	2*t _{T1588CLK}	—	_	ns	_

MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7

NXP Semiconductors

10 Local Bus Controller (eLBC)

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8572E.

10.1 Local Bus DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 3.3 \text{ V}$ DC.

Parameter	Symbol	Min	Max	Unit
Supply voltage 3.3V	BV _{DD}	3.13	3.47	V
High-level input voltage	V _{IH}	2	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	_	±5	μA
High-level output voltage (BV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	BV _{DD} – 0.2	—	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.2	V

 Table 46. Local Bus DC Electrical Characteristics (3.3 V DC)

Note:

1. Note that the symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Table 47 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 2.5 V DC$.

Table 47. Local Bus DC Electrical Characteristics (2.5 V DC)

Parameter	Symbol	Min	Мах	Unit
Supply voltage 2.5V	BV _{DD}	2.37	2.63	V
High-level input voltage	V _{IH}	1.70	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.7	V
Input current	I _{IH}	—	10	μΑ
$(BV_{IN} = 0 V \text{ of } BV_{IN} = BV_{DD})$	Ι _{ΙL}		-15	
High-level output voltage (BV _{DD} = min, I _{OH} = -1 mA)	V _{OH}	2.0	BV _{DD} + 0.3	V
Low-level output voltage (BV _{DD} = min, I _{OL} = 1 mA)	V _{OL}	GND – 0.3	0.4	V

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

Local Bus Controller (eLBC)

Figure 35. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 8 or 16 (PLL Bypass Mode)

JTAG

Table 53. JTAG AC Timing Specifications (Independent of SYSCLK) ¹ (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	3 3	19 9	ns	5, 6

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 36). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design.

Figure 36 provides the AC test load for TDO and the boundary-scan outputs.

Figure 36. AC Test Load for the JTAG Interface

Figure 37 provides the JTAG clock input timing diagram.

Figure 37. JTAG Clock Input Timing Diagram

Figure 38 provides the $\overline{\text{TRST}}$ timing diagram.

High-Speed Serial Interfaces (HSSI)

15 High-Speed Serial Interfaces (HSSI)

The MPC8572E features two Serializer/Deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. The SerDes1 interface can be used for PCI Express and/or Serial RapidIO data transfers. The SerDes2 is dedicated for SGMII application.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes Reference Clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

15.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 43 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SDn_TX and SDn_TX) or a receiver input (SDn_RX and $\overline{SDn_RX}$). Each signal swings between A Volts and B Volts where A > B.

Using this waveform, the definitions are as follows. To simplify illustration, the following definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

1. Single-Ended Swing

The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and SDn_RX each have a peak-to-peak swing of A - B Volts. This is also referred as each signal wire's Single-Ended Swing.

2. Differential Output Voltage, V_{OD} (or Differential Output Swing):

The Differential Output Voltage (or Swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SDn_TX} - V_{\overline{SDn_TX}}$. The V_{OD} value can be either positive or negative.

3. Differential Input Voltage, V_{ID} (or Differential Input Swing):

The Differential Input Voltage (or Swing) of the receiver, V_{ID} , is defined as the difference of the two complimentary input voltages: $V_{SDn_RX} - V_{\overline{SDn_RX}}$. The V_{ID} value can be either positive or negative.

4. Differential Peak Voltage, V_{DIFFp}

The peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak Voltage, $V_{DIFFp} = |A - B|$ Volts.

5. Differential Peak-to-Peak, V_{DIFFp-p}

Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as Differential Peak-to-Peak Voltage, $V_{DIFFp-p} = 2*V_{DIFFp} = 2*|(A – B)|$ Volts, which is twice of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2*|V_{OD}|$.

High-Speed Serial Interfaces (HSSI)

— To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as the clock input (SDn_REF_CLK) in use.

Figure 46. Differential Reference Clock Input DC Requirements (External AC-Coupled)

Figure 47. Single-Ended Reference Clock Input DC Requirements


```
High-Speed Serial Interfaces (HSSI)
```

is less of a problem. Phase noise above 15MHz is filtered by the PLL. The most problematic phase noise occurs in the 1-15MHz range. The source impedance of the clock driver should be 50 ohms to match the transmission line and reduce reflections which are a source of noise to the system.

Table 60 describes some AC parameters common to SGMII, PCI Express and Serial RapidIO protocols.

Table 60. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD_SRDS1} or XV_{DD_SRDS2} = 1.1V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	+200		mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SDn_REF_CLK) to falling edge rate (SDn_REF_CLK) matching	Rise-Fall Matching	—	20	%	1, 4

Notes:

1. Measurement taken from single ended waveform.

2. Measurement taken from differential waveform.

3. Measured from -200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 52.

4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SDn_REF_CLK should be compared to the Fall Edge Rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 53.

Figure 52. Differential Measurement Points for Rise and Fall Time

Serial RapidIO

Figure 60. Receiver Input Compliance Mask

Table 75.	Receiver Ir	nput Compliance	Mask Parameters	Exclusive of	of Sinusoidal Jitte
14010 101		ipat eeinpilaliee	maon i aramotoro		

Receiver Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud	100	800	0.275	0.400
2.5 GBaud	100	800	0.275	0.400
3.125 GBaud	100	800	0.275	0.400

17.8 Measurement and Test Requirements

Because the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 47 of IEEE 802.3ae-2002, the measurement and test requirements defined here are similarly guided by Clause 47. Additionally, the CJPAT test pattern defined in Annex 48A of IEEE 802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of IEEE 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

17.8.1 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (Baud Frequency)/1667 is applied to the jitter. The data pattern for template measurements is the Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
MSRCID[0:1]	Memory Debug Source Port ID	U27, T29	0	OV _{DD}	5, 9, 30
MSRCID[2:4]	Memory Debug Source Port ID	U28, W24, W28	0	OV _{DD}	21
MDVAL	Memory Debug Data Valid	V26	0	OV _{DD}	2, 21
CLK_OUT	Clock Out	U32	0	OV _{DD}	11
	Clock	(
RTC	Real Time Clock	V25	I	OV _{DD}	—
SYSCLK	System Clock	Y32	I	OV _{DD}	_
DDRCLK	DDR Clock	AA29	I	OV _{DD}	31
	JTAG))			
тск	Test Clock	T28	I	OV _{DD}	
TDI	Test Data In	T27	I	OV _{DD}	12
TDO	Test Data Out	T26	0	OV _{DD}	—
TMS	Test Mode Select	U26	I	OV _{DD}	12
TRST	Test Reset	AA32	I	OV _{DD}	12
	DFT				
L1_TSTCLK	L1 Test Clock	V32	I	OV _{DD}	18
L2_TSTCLK	L2 Test Clock	V31	I	OV _{DD}	18
LSSD_MODE	LSSD Mode	N24	I	OV _{DD}	18
TEST_SEL	Test Select 0	K28	I	OV _{DD}	18
	Power Mana	gement			
ASLEEP	Asleep	P28	0	OV _{DD}	9, 15, 21

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
	Power and Grou	Ind Signals			
GND	Ground	A18, A25, A29, C3, C6, C9, C12, C15, C20, C22, E5, E8, E11, E14, F3, G7, G10, G13, G16, H5, H21, J3, J9, J12, J18, K7, L5, L13, L15, L16, L21, M3, M9, M12, M14, M16, M18, N7, N13, N15, N17, N19, N21, N23, P5, P12, P14, P16, P20, P22, R3, R9, R11, R13, R15, R17, R19, R21, R23, R26, T7, T12, T14, T16, T18, T20, T22, T30, U5, U11, U13, U15, U16, U17, U19, U21, U23, U25, V3, V9, V12, V14, V16, V18, V20, V22, W7, W11, W13, W15, W17, W19, W21, W27, W32, Y5, Y12, Y14, Y16, Y18, Y20, AA3, AA9, AA13, AA15, AA17, AA19, AA21, AA30, AB7, AB26, AC5, AC11, AC13, AD3, AD9, AD14, AD17, AD22, AE7, AE13, AF5, AF11, AG3, AG9, AG15, AG19, AH7, AH13, AH22, AJ5, AJ11, AJ17, AK3, AK9, AK15, AK24, AL7, AL13, AL19, AL26			
XGND_SRDS1	SerDes Transceiver Pad GND (xpadvss)	C23, C27, D23, D25, E23, E26, F23, F24, G23, G27, H23, H25, J23, J26, K23, K24, L27, M25	_		
XGND_SRDS2	SerDes Transceiver Pad GND (xpadvss)	AD23, AD25, AE23, AE27, AF23, AF24, AG23, AG26, AH23, AH25, AJ27	_	_	

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SD1_IMP_CAL_RX	SerDes1 Rx Impedance Calibration	B32	I	200Ω (±1%) to GND	_
SD1_IMP_CAL_TX	SerDes1 Tx Impedance Calibration	T32	I	100Ω (±1%) to GND	_
SD1_PLL_TPA	SerDes1 PLL Test Point Analog	J30	0	AVDD_S RDS analog	17
SD2_IMP_CAL_RX	SerDes2 Rx Impedance Calibration	AC32	Ι	$\begin{array}{c} 200\Omega \\ (\pm1\%) \text{ to} \\ \text{GND} \end{array}$	_
SD2_IMP_CAL_TX	SerDes2 Tx Impedance Calibration	AM32	Ι	100Ω (±1%) to GND	_
SD2_PLL_TPA	SerDes2 PLL Test Point Analog	AH30	0	AVDD_S RDS analog	17
TEMP_ANODE	Temperature Diode Anode	AA31	—	internal diode	14
TEMP_CATHODE	Temperature Diode Cathode	AB31	_	internal diode	14
No Connection Pins					

Table 76. MPC8572E Pinout Listing (continued)

This noise must be prevented from reaching other components in the MPC8572E system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the device. These decoupling capacitors should receive their power from separate V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , GV_{DD} , BV_{DD} , DV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes1 and SerDes2 blocks require a clean, tightly regulated source of power (SV_{DD} _SRDSn and XV_{DD} _SRDSn) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a 1- μ F ceramic chip capacitor from each SerDes supply (SV_{DD}_SRDSn and XV_{DD}_SRDSn) to the board ground plane on each side of the device. This should be done for all SerDes supplies.
- Third, between the device and any SerDes voltage regulator there should be a $10-\mu$ F, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a $100-\mu$ F, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

21.5 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active low inputs should be tied to V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , as required. All unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected. Power and ground connections must be made to all external V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND pins of the device.