
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.333GHz
Co-Processors/DSP	Signal Processing; SPE, Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (4)
SATA	-
USB	-
Voltage - I/O	1.5V, 1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	1023-BFBGA, FCBGA
Supplier Device Package	1023-FCBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc8572epxaulc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Regular expression (regex) pattern matching
 - Built-in case insensitivity, wildcard support, no pattern explosion
 - Cross-packet pattern detection
 - Fast pattern database compilation and fast incremental updates
 - 16000 patterns, each up to 128 bytes in length
 - Patterns can be split into 256 sets, each of which can contain 16 subsets
- Stateful rule engine enables hardware execution of state-aware logic when a pattern is found
 - Useful for contextual searches, multi-pattern signatures, or for performing additional checks after a pattern is found
 - Capable of capturing and utilizing data from the data stream (such as LENGTH field) and using that information in subsequent pattern searches (for example, positive match only if pattern is detected within the number of bytes specified in the LENGTH field)
 - 8192 stateful rules
- Deflate engine
 - Supports decompression of DEFLATE compression format including zlib and gzip
 - Can work independently or in conjunction with the Pattern Matching Engine (that is decompressed data can be passed directly to the Pattern Matching Engine without further software involvement or memory copying)
- Two Table Lookup Units (TLU)
 - Hardware-based lookup engine offloads table searches from e500 cores
 - Longest prefix match, exact match, chained hash, and flat data table formats
 - Up to 32 tables, with each table up to 16M entries
 - 32-, 64-, 96-, or 128-bit keys
- Two I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset the I²C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I²C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Enhanced local bus controller (eLBC)

PLL config input setup time with stable SYSCLK before HRESET negation	100		μs	—
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	_	SYSCLKs	1
Input hold time for all POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high imp <u>edance time</u> for actively driven POR configs with respect to negation of HRESET	_	5	SYSCLKs	1

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

2. Reset assertion timing requirements for DDR3 DRAMs may differ.

Table 10 provides the PLL lock times.

Table	10.	PLL	Lock	Times
-------	-----	-----	------	-------

Parameter/Condition	Symbol	Min	Typical	Max
PLL lock times	—	100	μs	_
Local bus PLL	—	50	μs	

6 DDR2 and DDR3 SDRAM Controller

This section describes the DC and AC electrical specifications for the DDR2 and DDR3 SDRAM controller interface of the MPC8572E. Note that the required $GV_{DD}(typ)$ voltage is 1.8Vor 1.5 V when interfacing to DDR2 or DDR3 SDRAM, respectively.

6.1 DDR2 and DDR3 SDRAM Interface DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM controller of the MPC8572E when interfacing to DDR2 SDRAM.

Parameter/Condition	Symbol Min		Мах	Unit	Notes
I/O supply voltage	GV _{DD}	1.71	1.89	V	1
I/O reference voltage	MV _{REF} n	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	$MV_{REF}n - 0.04$	$MV_{REF}n + 0.04$	V	3
Input high voltage	V _{IH}	$MV_{REF}n + 0.125$	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} n - 0.125	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	_	mA	—

Table 11	DDR2 SDRAM	Interface DC	Electrical	Characteristics	for GV(tvn)	1 = 18V
		menace DO	Liccultur	onaracteristics		/ I.O V

^{1.} SYSCLK is the primary clock input for the MPC8572E.

Table 14 provides the current draw characteristics for $MV_{REF}n$.

Parameter / Condition		Symbol	Min	Max	Unit	Note
Current draw for MV _{REF} n	DDR2 SDRAM	I _{MVREF} n	—	1500	μΑ	1
	DDR3 SDRAM			1250		

Table 14. Current Draw Characteristics for MV_{REF} n

1. The voltage regulator for MV_{RFF}n must be able to supply up to 1500 μA or 1250 uA current for DDR2 or DDR3, respectively.

6.2 DDR2 and DDR3 SDRAM Interface AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM controller interface. The DDR controller supports both DDR2 and DDR3 memories. Note that although the minimum data rate for most off-the-shelf DDR3 DIMMs available is 800 MHz, JEDEC specification does allow the DDR3 to run at the data rate as low as 606 MHz. Unless otherwise specified, the AC timing specifications described in this section for DDR3 is applicable for data rate between 606 MHz and 800 MHz, as long as the DC and AC specifications of the DDR3 memory to be used are compliant to both JEDEC specifications as well as the specifications and requirements described in this MPC8572E hardware specifications document.

6.2.1 DDR2 and DDR3 SDRAM Interface Input AC Timing Specifications

Table 15, Table 16, and Table 17 provide the input AC timing specifications for the DDR controller when interfacing to DDR2 and DDR3 SDRAM.

Table 15. DDR2 SDRAM Interface Input AC Timing Specifications for 1.8-V Interface At recommended operating conditions with GV_{DD} of 1.8 V ± 5%

Paramet	Parameter		Min	Мах	Unit	Notes
AC input low voltage	>=667 MHz	V _{ILAC}	—	$MV_{REF}n - 0.20$	V	_
	<= 533 MHz		—	$MV_{REF}n - 0.25$		
AC input high voltage	>=667 MHz	V _{IHAC}	$MV_{REF}n + 0.20$	—	V	—
_	<= 533 MHz		$MV_{REF}n + 0.25$	_		

Table 16. DDR3 SDRAM Interface Input AC Timing Specifications for 1.5-V Interface

At recommended operating conditions with GV_{DD} of 1.5 V ± 5%. DDR3 data rate is between 606 MHz and 800 MHz.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{ILAC}	_	MV _{REF} <i>n</i> – 0.175	V	—
AC input high voltage	V _{IHAC}	$MV_{REF}n + 0.175$	—	V	—

Figure 12 shows the MII transmit AC timing diagram.

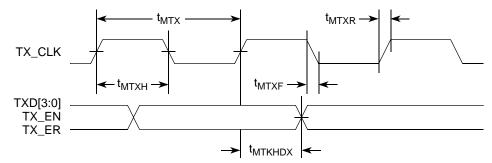


Figure 12. MII Transmit AC Timing Diagram

8.2.3.2 MII Receive AC Timing Specifications

Table 30 provides the MII receive AC timing specifications.

Table 30. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 2.5/ 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX} ²	—	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	_	ns
RX_CLK clock rise (20%-80%)	t _{MRXR} ²	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF} ²	1.0	—	4.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference}

receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

Figure 13 provides the AC test load for eTSEC.

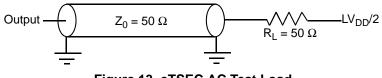


Figure 13. eTSEC AC Test Load

Figure 17 shows the TBI receive the timing diagram.

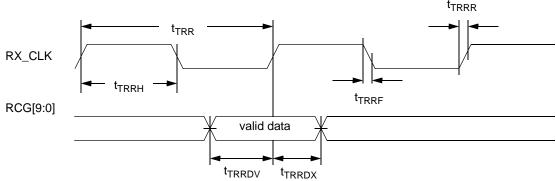


Figure 17. TBI Single-Clock Mode Receive AC Timing Diagram

8.2.6 **RGMII and RTBI AC Timing Specifications**

Table 34 presents the RGMII and RTBI AC timing specifications.

Table 34. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{TV}_{\text{DD}}$ of 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-500	0	500	ps
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	_	2.8	ns
Clock period ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 4}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{rgtr}	—	_	0.75	ns
Fall time (20%–80%)	t _{RGTF}	—	_	0.75	ns

Notes:

- 1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

8.4 eTSEC IEEE Std 1588[™] AC Specifications

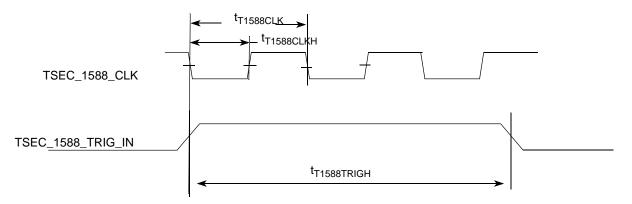

Figure 26 shows the data and command output timing diagram.

Figure 26. eTSEC IEEE 1588 Output AC Timing

¹ The output delay is count starting rising edge if t_{T1588CLKOUT} is non-inverting. Otherwise, it is count starting falling edge.

Figure 27 shows the data and command input timing diagram.

Table 42 provides the IEEE 1588 AC timing specifications.

Table 42. eTSEC IEEE 1588 AC Timing Specifications

At recommended operating conditions with LV_{DD}/TV_{DD} of 3.3 V ± 5% or 2.5 V ± 5%

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Note
TSEC_1588_CLK clock period	t _{T1588CLK}	3.3	—	T _{TX_CLK} *9	ns	1
TSEC_1588_CLK duty cycle	t _{T1588} CLKH /t _{T1588} CLK	40	50	60	%	—
TSEC_1588_CLK peak-to-peak jitter	t _{T1588CLKINJ}	—	—	250	ps	—
Rise time eTSEC_1588_CLK (20%-80%)	t _{T1588CLKINR}	1.0	—	2.0	ns	—
Fall time eTSEC_1588_CLK (80%-20%)	t _{T1588CLKINF}	1.0	—	2.0	ns	—
TSEC_1588_CLK_OUT clock period	t _{T1588CLKOUT}	2*t _{T1588CLK}	—	_	ns	—

MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7

NXP Semiconductors

Local Bus Controller (eLBC)

Table 48 provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8 V$ DC.

Parameter	Symbol	Min	Мах	Unit
Supply voltage 1.8V	BV _{DD}	1.71	1.89	V
High-level input voltage	V _{IH}	0.65 x BV _{DD}	BV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.35 x BV _{DD}	V
Input current ($BV_{IN}^{1} = 0 V \text{ or } BV_{IN} = BV_{DD}$)	I _{IN}	TBD	TBD	μA
High-level output voltage (I _{OH} = −100 μA)	V _{OH}	BV _{DD} – 0.2	_	V
High-level output voltage $(I_{OH} = -2 \text{ mA})$	V _{OH}	BV _{DD} - 0.45	_	V
Low-level output voltage (I _{OL} = 100 μA)	V _{OL}	_	0.2	V
Low-level output voltage (I _{OL} = 2 mA)	V _{OL}	_	0.45	V

Table 48. Local Bus DC Electrical Characteristics (1.8 V DC)

Note:

1. The symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

10.2 Local Bus AC Electrical Specifications

Table 49 describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$.

Table 49. Local Bus General Timing Parameters ($BV_{DD} = 3.3 V DC$)—PLL EnabledAt recommended operating conditions with BV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	6.67	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	—	150	ps	7,8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.8	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.0	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	—	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	—	2.3	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.4	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.3	ns	3

Table 49. Local Bus General Timing Parameters (BV_{DD} = 3.3 V DC)—PLL Enabled (continued)

At recommended operating conditions with $\mathsf{BV}_{\mathsf{DD}}$ of 3.3 V ± 5%. (continued)

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to LALE assertion	t _{LBKHOV4}	_	2.3	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.7	—	ns	3
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.7	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}	_	2.5	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	—	2.5	ns	5

Note:

- The symbols used for timing specifications herein follow the pattern of t_{(First two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. t_{LBOTOT} is programmed with the LBCR[AHD] parameter.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BV_{DD}/2.
- 8. Guaranteed by design.

Table 50 describes the general timing parameters of the local bus interface at $BV_{DD} = 2.5 \text{ V DC}$.

٦	able 50.	Local I	Bus	s Ger	neral Tir	ning	Parameters	$(\mathbf{BV}_{\mathbf{DD}})$	= 2.5 V DC	C)—PLL Enabled	I

At recommended operating conditions with BV_{DD} of 2.5 V \pm 5%

Parameter	Symbol ¹	Min	Max	Unit	Notes
Local bus cycle time	t _{LBK}	6.67	12	ns	2
Local bus duty cycle	t _{LBKH/} t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	t _{LBKSKEW}	_	150	ps	7, 8
Input setup to local bus clock (except LGTA/LUPWAIT)	t _{LBIVKH1}	1.9	—	ns	3, 4
LGTA/LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.8	—	ns	3, 4
Input hold from local bus clock (except LGTA/LUPWAIT)	t _{LBIXKH1}	1.1	—	ns	3, 4
LGTA/LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.1	—	ns	3, 4
LALE output negation to high impedance for LAD/LDP (LATCH hold time)	t _{LBOTOT}	1.5	—	ns	6

JTAG

Table 53. JTAG AC Timing Specifications (Independent of SYSCLK) ¹ (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	3 3	19 9	ns	5, 6

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 36). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design.

Figure 36 provides the AC test load for TDO and the boundary-scan outputs.

Figure 36. AC Test Load for the JTAG Interface

Figure 37 provides the JTAG clock input timing diagram.

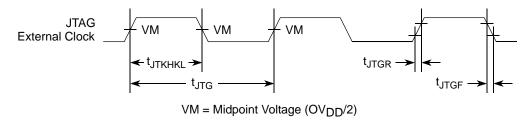


Figure 37. JTAG Clock Input Timing Diagram

Figure 38 provides the $\overline{\text{TRST}}$ timing diagram.

15.2.3 Interfacing With Other Differential Signaling Levels

- With on-chip termination to SGND_SRDS*n* (xcorevss), the differential reference clocks inputs are HCSL (High-Speed Current Steering Logic) compatible DC-coupled.
- Many other low voltage differential type outputs like LVDS (Low Voltage Differential Signaling) can be used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400 mV) for DC-coupled connection.
- LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock driver output first, then followed with series attenuation resistor to reduce the amplitude, additionally to AC-coupling.

NOTE

Figure 48 to Figure 51 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the MPC8572E SerDes reference clock receiver requirement provided in this document.

Characteristic	Symbol	Ra	nge	Unit	Notes
Unaracteristic	Gymbol	Min	Мах	Onic	notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	_
Deterministic Jitter	J _D	—	0.17	UI p-p	_
Total Jitter	J _T	—	0.35	UI p-p	_
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	+/- 100 ppm

Table 69. Long Run Transmitter AC Timing Specifications—2.5 GBaud

Table 70. Long Run Transmitter AC Timing Specifications—3.125 GBaud

Characteristic	Symbol	R	ange	Unit	Notes
Characteristic	Symbol	Min	Max	Onit	Notes
Output Voltage,	Vo	-0.40	2.30	Volts	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV p-p	—
Deterministic Jitter	J _D	_	0.17	UI p-p	—
Total Jitter	J _T	_	0.35	UI p-p	—
Multiple output skew	S _{MO}	_	1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	+/- 100 ppm

For each baud rate at which an LP-Serial transmitter is specified to operate, the output eye pattern of the transmitter shall fall entirely within the unshaded portion of the transmitter output compliance mask shown in Figure 58 with the parameters specified in Figure 71 when measured at the output pins of the device and the device is driving a 100 Ω +/-5% differential resistive load. The output eye pattern of an LP-Serial transmitter that implements pre-emphasis (to equalize the link and reduce inter-symbol interference) need only comply with the Transmitter Output Compliance Mask when pre-emphasis is disabled or minimized.

18.2 Mechanical Dimensions of the MPC8572E FC-PBGA

Figure 61 shows the mechanical dimensions of the MPC8572E FC-PBGA package with full lid.

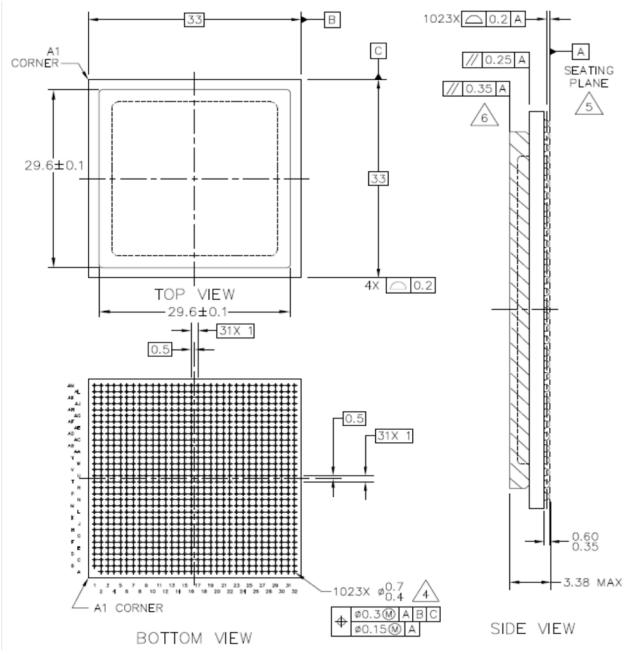


Figure 61. Mechanical Dimensions of the MPC8572E FC-PBGA with Full Lid

NOTES:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. All dimensions are symmetric across the package center lines unless dimensioned otherwise.
- 4. Maximum solder ball diameter measured parallel to datum A.

Package Description

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
D2_MBA[0:2]	Bank Select	Y1, W3, P3	0	GV _{DD}	_
D2_MWE	Write Enable	AA2	0	GV _{DD}	_
D2_MCAS	Column Address Strobe	AD1	0	GV _{DD}	_
D2_MRAS	Row Address Strobe	AA1	0	GV _{DD}	_
D2_MCKE[0:3]	Clock Enable	L3, L1, K1, K2	0	GV _{DD}	11
D2_MCS[0:3]	Chip Select	AB1, AG2, AC1, AH2	0	GV _{DD}	_
D2_MCK[0:5]	Clock	V4, F7, AJ3, V2, E7, AG4	0	GV _{DD}	—
D2_MCK[0:5]	Clock Complements	V1, F8, AJ4, U1, E6, AG5	0	GV _{DD}	—
D2_MODT[0:3]	On Die Termination	AE1, AG1, AE2, AH1	0	GV _{DD}	—
D2_MDIC[0:1]	Driver Impedance Calibration	F1, G1	I/O	GV _{DD}	25
	Local Bus Contr	oller Interface			
LAD[0:31]	Muxed Data/Address	M22, L22, F22, G22, F21, G21, E20, H22, K22, K21, H19, J20, J19, L20, M20, M19, E22, E21, L19, K19, G19, H18, E18, G18, J17, K17, K14, J15, H16, J14, H15, G15	I/O	BV _{DD}	34
LDP[0:3]	Data Parity	M21, D22, A24, E17	I/O	BV _{DD}	_
LA[27]	Burst Address	J21	0	BV _{DD}	5, 9
LA[28:31]	Port Address	F20, K18, H20, G17	0	BV _{DD}	5, 7, 9
LCS[0:4]	Chip Selects	B23, E16, D20, B25, A22	0	BV _{DD}	10
LCS[5]/DMA2_DREQ[1]	Chip Selects / DMA Request	D19	I/O	BV _{DD}	1, 10
LCS[6]/DMA2_DACK[1]	Chip Selects / DMA Ack	E19	0	BV _{DD}	1, 10
LCS[7]/DMA2_DDONE[1]	Chip Selects / DMA Done	C21	0	BV _{DD}	1, 10
LWE[0]/LBS[0]/LFWE	Write Enable / Byte Select	D17	0	BV _{DD}	5, 9
LWE[1]/LBS[1]	Write Enable / Byte Select	F15	0	BV _{DD}	5, 9
LWE[2]/LBS[2]	Write Enable / Byte Select	B24	0	BV _{DD}	5, 9
LWE[3]/LBS[3]	Write Enable / Byte Select	D18	0	BV _{DD}	5, 9
LALE	Address Latch Enable	F19	0	BV _{DD}	5, 8, 9
LBCTL	Buffer Control	L18	0	BV _{DD}	5, 8, 9

Package Description

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
IRQ_OUT	Interrupt Output	U24	0	OV _{DD}	2, 4
	1588	3			
TSEC_1588_CLK	Clock In	AM22	I	LV _{DD}	
TSEC_1588_TRIG_IN	Trigger In	AM23	I	LV _{DD}	_
TSEC_1588_TRIG_OUT	Trigger Out	AA23	0	LV _{DD}	5, 9
TSEC_1588_CLK_OUT	Clock Out	AC23	0	LV _{DD}	5, 9
TSEC_1588_PULSE_OUT1	Pulse Out1	AA22	0	LV _{DD}	5, 9
TSEC_1588_PULSE_OUT2	Pulse Out2	AB23	0	LV _{DD}	5, 9
	Ethernet Managem	ent Interface 1			
EC1_MDC	Management Data Clock	AL30	0	LV _{DD}	5, 9
EC1_MDIO	Management Data In/Out	AM25	I/O	LV _{DD}	
	Ethernet Managem	ent Interface 3			
EC3_MDC	Management Data Clock	AF19	0	TV _{DD}	5, 9
EC3_MDIO	Management Data In/Out	AF18	I/O	TV _{DD}	
	Ethernet Managem	ent Interface 5			
EC5_MDC	Management Data Clock	AF14	0	TV _{DD}	21
EC5_MDIO	Management Data In/Out	AF15	I/O	TV _{DD}	
	Gigabit Ethernet R	eference Clock			
EC_GTX_CLK125	Reference Clock	AM24	Ι	LV _{DD}	32
	Three-Speed Ether	net Controller 1			
TSEC1_RXD[7:0]/FIFO1_RXD[7:0]	Receive Data	AM28, AL28, AM26, AK23, AM27, AK26, AL29, AM30	I	LV _{DD}	1
TSEC1_TXD[7:0]/FIFO1_TXD[7:0]	Transmit Data	AC20, AD20, AE22, AB22, AC22, AD21, AB21, AE21	0	LV _{DD}	1, 5, 9
TSEC1_COL/FIFO1_TX_FC	Collision Detect/Flow Control	AJ23	Ι	LV _{DD}	1
TSEC1_CRS/FIFO1_RX_FC	Carrier Sense/Flow Control	AM31	I/O	LV _{DD}	1, 16
TSEC1_GTX_CLK	Transmit Clock Out	AK27	0	LV _{DD}	
TSEC1_RX_CLK/FIFO1_RX_C LK	Receive Clock	AL25	I	LV _{DD}	1

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
SD1_RX[7:0]	Receive Data (positive)	P32, N30, M32, L30, G30, F32, E30, D32	I	XV _{DD_SR} DS1	—
SD1_RX[7:0]	Receive Data (negative)	P31, N29, M31, L29, G29, F31, E29, D31	I	XV _{DD_SR} DS1	_
SD1_TX[7]	PCIe1 Tx Data Lane 7 / SRIO or PCIe2 Tx Data Lane 3 / PCIe3 TX Data Lane 1	M26	0	XV _{DD_SR} DS1	
SD1_TX[6]	PCIe1 Tx Data Lane 6 / SRIO or PCIe2 Tx Data Lane 2 / PCIe3 TX Data Lane 0	L24	0	XV _{DD_SR} DS1	_
SD1_TX[5]	PCIe1 Tx Data Lane 5 / SRIO or PCIe2 Tx Data Lane 1	K26	0	XV _{DD_SR} DS1	—
SD1_TX[4]	1_TX[4] PCIe1 Tx Data Lane 4 / SRIO or PCIe2 Tx Data Lane 0		0	XV _{DD_SR} DS1	_
SD1_TX[3]	[3] PCIe1 Tx Data Lane 3		0	XV _{DD_SR} DS1	_
SD1_TX[2]	PCIe1 Tx Data Lane 2	F26	0	XV _{DD_SR} DS1	_
SD1_TX[1]	PCIe1 Tx Data Lane 1]	E24	0	XV _{DD_SR} DS1	—
SD1_TX[0]	PCIe1 Tx Data Lane 0	D26	0	XV _{DD_SR} DS1	—
SD1_TX[7:0]	Transmit Data (negative)	M27, L25, K27, J25, G25, F27, E25, D27	0	XV _{DD_SR} DS1	_
SD1_PLL_TPD	PLL Test Point Digital	J32	0	XV _{DD_SR} DS1	17
SD1_REF_CLK	PLL Reference Clock	H32	I	XV _{DD_SR} DS1	_
SD1_REF_CLK	PLL Reference Clock Complement	H31	I	XV _{DD_SR} DS1	_
Reserved	-	С29, К32		—	26
Reserved	-	С30, К31		—	27
Reserved	-	C24, C25, H26, H27	_	—	28
Reserved	_	AL20, AL21			29
	SerDes (x4)	SGMII			
SD2_RX[3:0]	Receive Data (positive)	AK32, AJ30, AF30, AE32	I	XV _{DD_SR} DS2	_

Table 76. MPC8572E Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes		
25 When exercting in DDD2 mode, connect Dr. MDIC[0] to ground through 18.2.0 (full strength mode) or 26.4.0 (helf strength							

25. When operating in DDR2 mode, connect Dn_MDIC[0] to ground through 18.2-Ω (full-strength mode) or 36.4-Ω (half-strength mode) precision 1% resistor, and connect Dn_MDIC[1] to GVDD through 18.2-Ω (full-strength mode) or 36.4-Ω (half-strength mode) precision 1% resistor. When operating in DDR3 mode, connect Dn_MDIC[0] to ground through 20-Ω (full-strength mode) or 40-Ω (half-strength mode) precision 1% resistor, and connect Dn_% resistor, and connect Dn_MDIC[1] to GVDD through 20-Ω (full-strength mode) or 40-Ω (half-strength mode) precision 1% resistor. These pins are used for automatic calibration of the DDR IOs.

- 26. These pins should be connected to XVDD_SRDS1.
- 27. These pins should be pulled to ground (XGND_SRDS1) through a 300- Ω (±10%) resistor.
- 28. These pins should be left floating.
- 29. These pins should be pulled up to TVDD through a 2–10 K Ω resistor.
- 30. These pins have other manufacturing or debug test functions. It is recommended to add both pull-up resistor pads to OVDD and pull-down resistor pads to GND on board to support future debug testing when needed.
- 31. DDRCLK input is only required when the MPC8572E DDR controller is running in asynchronous mode. When the DDR controller is configured to run in synchronous mode via POR setting cfg_ddr_pll[0:2]=111, the DDRCLK input is not required. It is recommended to tie it off to GND when DDR controller is running in synchronous mode. See the MPC8572E PowerQUICC[™] III Integrated Host Processor Family Reference Manual Rev.0, Table 4-3 in section 4.2.2 "Clock Signals", section 4.4.3.2 "DDR PLL Ratio" and Table 4-10 "DDR Complex Clock PLL Ratio" for more detailed description regarding DDR controller operation in asynchronous and synchronous modes.
- 32. EC_GTX_CLK125 is a 125-MHz input clock shared among all eTSEC ports in the following modes: GMII, TBI, RGMII and RTBI. If none of the eTSEC ports is operating in these modes, the EC_GTX_CLK125 input can be tied off to GND.
- 33. These pins should be pulled to ground (GND).
- 34. These pins are sampled at POR for General Purpose configuration use by software. Their value has no impact on the functionality of the hardware.

Clocking

19 Clocking

This section describes the PLL configuration of the MPC8572E. Note that the platform clock is identical to the core complex bus (CCB) clock.

19.1 Clock Ranges

Table 77 provides the clocking specifications for both processor cores.

	Maximum Processor Core Frequency									
Characteristic	1067 MHz		1200 MHz		1333 MHz		1500 MHz		Unit	Notes
	Min	Max	Min	Max	Min	Max	Min	Max		
e500 core processor frequency	800	1067	800	1200	800	1333	800	1500	MHz	1, 2
CCB frequency	400	533	400	533	400	533	400	600	MHz	
DDR Data Rate	400	667	400	667	400	667	400	800	MHz	

Table 77. MPC8572E Processor Core Clocking Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 19.2, "CCB/SYSCLK PLL Ratio," Section 19.3, "e500 Core PLL Ratio," and Section 19.4, "DDR/DDRCLK PLL Ratio," for ratio settings.

2. The processor core frequency speed bins listed also reflect the maximum platform (CCB) and DDR data rate frequency supported by production test. Running CCB and/or DDR data rate higher than the limit shown above, although logically possible via valid clock ratio setting in some condition, is not supported.

The DDR memory controller can run in either synchronous or asynchronous mode. When running in synchronous mode, the memory bus is clocked relative to the platform clock frequency. When running in asynchronous mode, the memory bus is clocked with its own dedicated PLL with clock provided on DDRCLK input pin. Table 78 provides the clocking specifications for the memory bus.

Clocking

Binary Value of LA[29:31] Signals	CCB:SYSCLK Ratio
000	4:1
001	5:1
010	6:1
011	8:1
100	10:1
101	12:1
110	Reserved
111	Reserved

Table 79. CCB Clock Ratio

19.3 e500 Core PLL Ratio

The clock speed for each e500 core can be configured differently, determined by the values of various signals at power up.

Table 80 describes the clock ratio between e500 Core0 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LBCTL, LALE and LGPL2/LOE/LFRE at power up, as shown in Table 80.

Binary Value of LBCT <u>L, LALE,</u> LGPL2/LOE/LFRE Signals	e500 Core0:CCB Clock Ratio	Binary Value of LBCT <u>L, LALE,</u> LGPL2/LOE/LFRE Signals	e500 Core0:CCB Clock Ratio
000	Reserved	100	2:1
001	Reserved	101	5:2 (2.5:1)
010	Reserved	110	3:1
011	3:2 (1.5:1)	111	7:2 (3.5:1)

Table 80. e500 Core0 to CCB Clock Ratio

Table 81 describes the clock ratio between e500 Core1 and the e500 core complex bus (CCB). This ratio is determined by the binary value of LWE[0]/LBS[0]/LFWE, UART_SOUT[1], and READY_P1 signals at power up, as shown in Table 81.

<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio	<u>Bina</u> ry <u>Value</u> of <u>L</u> WE[0]/LBS[0]/ LFWE, UART_SOUT[1], READY_P1 Signals	e500 Core1:CCB Clock Ratio
000	Reserved	100	2:1
001	Reserved	101	5:2 (2.5:1)
010	Reserved	110	3:1
011	3:2 (1.5:1)	111	7:2 (3.5:1)

Table 81.	e500	Core1	to	ССВ	Clock Ratio)
					••••••	

19.4 DDR/DDRCLK PLL Ratio

The dual DDR memory controller complexes can be synchronous with, or asynchronous to, the CCB, depending on configuration.

Table 82 describes the clock ratio between the DDR memory controller complexes and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock. The DDR memory controller complexes clock frequency is equal to the DDR data rate.

When synchronous mode is selected, the memory buses are clocked at half the CCB clock rate. The default mode of operation is for the DDR data rate for both DDR controllers to be equal to the CCB clock rate in synchronous mode, or the resulting DDR PLL rate in asynchronous mode.

In asynchronous mode, the DDR PLL rate to DDRCLK ratios listed in Table 82 reflects the DDR data rate to DDRCLK ratio, because the DDR PLL rate in asynchronous mode means the DDR data rate resulting from DDR PLL output.

Note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode. MPC8572E does not support running one DDR controller in synchronous mode and the other in asynchronous mode.

Binary Value of TSEC_1588_CLK_OUT, TSEC_1588_PULSE_OUT1, TSEC_1588_PULSE_OUT2 Signals	DDR:DDRCLK Ratio
000	3:1
001	4:1
010	6:1
011	8:1
100	10:1

Table 82. DDR Clock Ratio

Ordering Information

MPC	nnnn	е	t	Ι	рр	ffm	r
Product Code ¹	Part Identifier	Security Engine	Temperature	Power	Package Sphere Type ²	Processor Frequency/ DDR Data Rate ³	Silicon Revision
MPC PPC	8572	E = Included Blank = Not included	Blank = 0 to 105°C C = −40 to 105°C	Blank = Standard L = Low	PX = Leaded, FC-PBGA VT = Pb-free, FC-PBGA	AVN = 150- MHz processor; 800 MT/s DDR data rate AUL = 1333-MHz processor; 667 MT/s DDR data rate ATL = 1200-MHz processor; 667 MT/s DDR data rate ARL = 1067-MHz processor; 667 MT/s DDR data rate	D= Ver. 2.1 (SVR = 0x80E8_0021) SEC included D= Ver. 2.1 (SVR = 0x80E0_0021) SEC not included

Table 87. Part Numbering Nomenclature—Rev 2.1

Notes:

¹ MPC stands for "Qualified."

PPC stands for "Prototype"

² See Section 18, "Package Description," for more information on the available package types.

³ Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

Table 88. Part Numbering Nomenclature—Rev 1.1.1

MPC	nnnn	е	t	рр	ffm	r
Product Code ¹	Part Identifier	Security Engine	Temperature	Package Sphere Type ²	Processor Frequency/ DDR Data Rate ³	Silicon Revision
MPC PPC	8572	E = Included Blank = Not included	Blank=0 to 105°C C= −40 to 105°C	,	AVN = 1500-MHz processor; 800 MT/s DDR data rate AUL = 1333-MHz process or; 667 MT/s DDR datarate ATL = 1200-MHz processor; 667 MT/s DDR data rate ARL = 1067-MHz processor; 667 MT/s DDR data rate	B = Ver. 1.1.1 (SVR = 0x80E8_0011) SEC included B = Ver. 1.1.1 (SVR = 0x80E0_0011) SEC not included

Notes:

¹ MPC stands for "Qualified."

PPC stands for "Prototype"

² See Section 18, "Package Description," for more information on the available package types.