

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f108ajwpmc-ge1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ HANDLING DEVICES

Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.

Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between V_{cc} pin and V_{ss} pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

Also, take care to prevent the analog power supply voltage (AVcc, AVR) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

• Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple (p-p value) in a commercial frequency range (50 Hz/60 Hz) not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

■ PIN CONNECTION

• Treatment of Unused Input Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

• Treatment of Power Supply Pins on A/D Converter

Connect to be $AV_{CC} = V_{CC}$ and $AV_{SS} = AVR = V_{SS}$ even if the A/D converter is not in use.

Noise riding on the AV_{CC} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{CC} and AV_{ss} pins in the vicinity of this device.

PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-64P-M24	TEF110-108F35AP	AF9708 (Ver 02.35G or more) AF9709/B (Ver 02.35G or more)
FPT-64P-M23	TEF110-108F36AP	AF9709/B (Ver 02.33G of more) AF9723+AF9834 (Ver 02.08E or more)

Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

Flash memory	CPU address	Programmer address*	
SA1 (4 Kbytes)	1000н	71000н	
	1FFFH	71FFFн	¥
SA2 (4 Kbytes)	<u>2000</u> н	72000н	Lower bank
	2FFFн	72FFFн	MAC .
SA3 (4 Kbytes)	<u>3000</u> н	— — — 73 000н — — –	
	3FFFH	73FFF⊦	
SA4 (16 Kbytes)	4000н	74000 H	
	7 <u>F</u> FFH	77FFFH	
SA5 (16 Kbytes)	8000H	78000H	
	BFFFH	7BFFFн	
SA6 (4 Kbytes)	С000н	— — — 7С000н — — — — — — — — — — — — — — — — — —	× u
	CFF <u>F</u> +	7 <u>CFFF+_</u>	psq _
SA7 (4 Kbytes)	D 000н	7D000н	Upper bank
	DFFFH	7 <u>DFFF</u> +	
SA8 (4 Kbytes)	E000H	7E000H	
	EFF <u>F</u> +	7 <u>EFFF</u> +	
SA9 (4 Kbytes)	F000H	7F000 _H	
	F <u>FF</u> H	7 <u>FFFFH</u>	

These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

• Programming Method

- 1) Set the type code of the parallel programmer to "17222".
- 2) Load program data to programmer addresses 71000_H to 7FFFF_H.
- 3) Programmed by parallel programmer

	Flash	RAM	Address #1	Address #2
MB95F104AMS/F104ANS/F104AJS	16 Kbytes	512 bytes	0280 _H	С000н
MB95F104AMW/F104ANW/F104AJW	TO Royles	JTZ byles	0200H	COOOH
MB95F106AMS/F106ANS/F106AJS	32 Kbytes	1 Kbyte	0480 _H	8000 _H
MB95F106AMW/F106ANW/F106AJW	32 NUYLES	T Kbyle	0400H	8000H
MB95F108AMS/F108ANS/F108AJS	60 Kbytes	2 Kbytes	0880 _H	1000н
MB95F108AMW/F108ANW/F108AJW	ou Ruyles	2 Royles	0000H	ТОООН

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

Rule for Conversion of	Actua	al Ad	dress	ses ir	n the	Gen	eral-	purp	ose F	Regis	ster A	rea				
										RP upper			OP code lower		lower	
	ŧ	¥	¥	ŧ	¥	¥	¥	¥	+	¥	+	¥	+	+	+	+
Generated address																

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080^H to 00FF^H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)
000₀ (initial value)		0080н to 00FFн (without mapping)
001в		0100н to 017Fн
010в		0180н to 01FFн
011в	0080н to 00FFн	0200н to 027Fн
100в		0280н to 02FFн
101в		0300н to 037Fн
110в		0380н to 03FFн
111в		0400н to 047Fн

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

- H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
- I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0". The flag is set to "0" when reset.
- IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	Priority
0	0	0	High
0	1	1	≜
1	0	2	ļ
1	1	3	Low = no interruption

- N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".
- Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.
- V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.
- C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

MB95100AM Series

Address	Register abbreviation	Register name	R/W	Initial value
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн		(Disabled)		
002Dн	PUL1	Port 1 pull-up register	R/W	0000000B
002Eн	PUL2	Port 2 pull-up register	R/W	0000000E
002Fн	PUL3	Port 3 pull-up register	R/W	0000000e
0030н	PUL4	Port 4 pull-up register	R/W	0000000e
0031 н	PUL5	Port 5 pull-up register	R/W	0000000e
0032н	PUL7	Port 7 pull-up register	R/W	0000000E
0033н		(Disabled)		_
0034н	PULE	Port E pull-up register	R/W	0000000e
0035н	PULG	Port G pull-up register	R/W	0000000e
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000e
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000e
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000
003Сн	PC11	8/16-bit PPG1 control register ch.1	R/W	0000000e
003Dн	PC10	8/16-bit PPG0 control register ch.1	R/W	0000000e
003Ен	TMCSRH0	16-bit reload timer control status register (Upper byte) ch.0	R/W	0000000
003Fн	TMCSRL0	16-bit reload timer control status register (Lower byte) ch.0	R/W	0000000e
0040н, 0041н		(Disabled)	_	_
0042н	PCNTH0	16-bit PPG status control register (Upper byte) ch.0	R/W	0000000e
0043н	PCNTL0	16-bit PPG status control register (Lower byte) ch.0	R/W	0000000e
0044н	PCNTH1	16-bit PPG status control register (Upper byte) ch.1	R/W	0000000e
0045 н	PCNTL1	16-bit PPG status control register (Lower byte) ch.1	R/W	0000000
0046н, 0047н		(Disabled)		_
0048 н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	0000000
0049н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000
004Ан	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000
004Bн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000
004Cн	EIC01	External interrupt circuit control register ch.8/ch.9	R/W	0000000
004Dн	EIC11	External interrupt circuit control register ch.10/ch.11	R/W	0000000e

(Continued)

MB95100AM Series

(Continued)

		(\	$/cc = AVcc = 5.0 V \pm 10\%$, AVss =	= Vss = (0.0 V, Ta	= -4	$0 \circ C$ to $+ 85 \circ C$)
Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Falameter	bol	Finname	Conditions	Min	Тур	Typ Max		Remarks
Power supply current ^{*4}	Істѕ	V _{cc} (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 10 MHz$ Timebase timer mode $T_A = +25 °C$		0.15	1.10	mA	
	Іссн		$V_{CC} = 5.5 V$ Sub stop mode $T_A = +25 \text{ °C}$	_	3.5	20	μΑ	Main stop mode for single clock product
	Ilvd	Vcc	Current consumption for low voltage detection circuit only		38	50	μA	
	Icsv		At oscillating 100 kHz current consumption of internal CR oscillator		20	36	μΑ	
	IA	AVcc	$V_{CC} = 5.5 V$ $F_{CH} = 16 MHz$ At operating of A/D conversion	_	2.4	4.7	mA	
	Іан		$V_{CC} = 5.5 V$ $F_{CH} = 16 MHz$ At stopping A/D conversion $T_A = +25 \ ^{\circ}C$		1	5	μΑ	

*1: P10, P50, P51, and P67 can switch the input level to either the "CMOS input level" or "hysteresis input level". The switching of the input level can be set by the input level selection register (ILSR).

- *2: Single clock products only
- *3 : Product without clock supervisor only
- *4: The power-supply current is determined by the external clock. When the low voltage detection option is selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (ILVD) to the specified value. Also, when both low voltage detection option and clock supervisor are selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (ILVD) and current consumption of internal CR oscillator (ICSV) to the specified value.

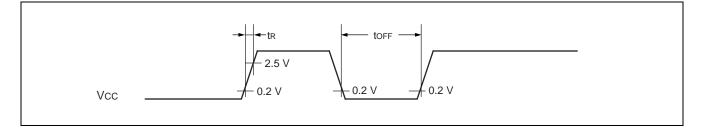
FUĬĪTSU

- Refer to "4. AC Characteristics (1) Clock Timing" for FCH and FCL.
- Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.

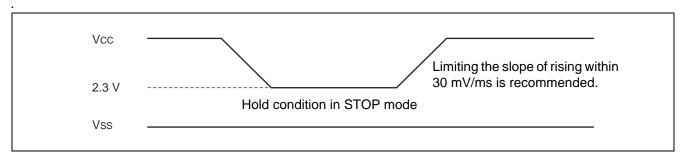
- - · · -

(3) External Reset

	$(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 \text{ °C to } +85$											
Parameter	Symbol	Value			Remarks							
Falameter	Symbol	Min	Max	Unit	Remarks							
RST "L" level		2 tMcLK*1 —		ns	At normal operating							
pulse width	t rstl	Oscillation time of oscillator*2 + 100	_	μs	At stop mode, sub clock mode, sub sleep mode, and watch mode							
		100		μs	At timebase timer mode							


*1 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

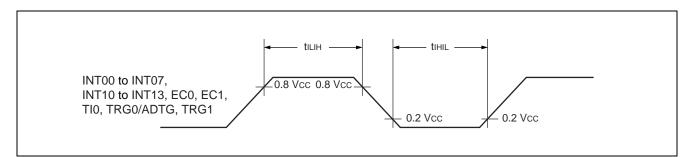
*2 : Oscillation time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μs and several ms. In the external clock, the oscillation time is 0 ms.



(4) Power-on Reset

$(AVss = Vss = 0.0 V, T_A = -40 \circ C to +85$										
Parameter	Symbol	Conditions	Va	lue	Unit	Pomarks				
Farameter	Symbol	Conditions	Min	Max	Unit					
Power supply rising time	tr	—	—	50	ms					
Power supply cutoff time	toff		1		ms	Waiting time until				

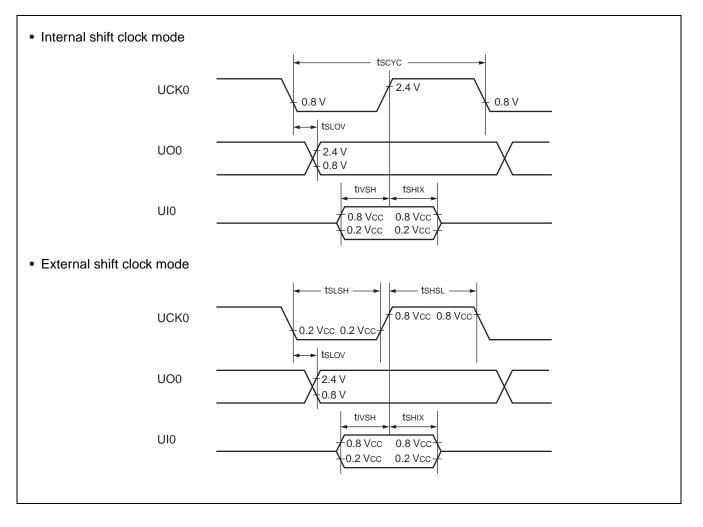
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms as shown below


power-on

(5) Peripheral Input Timing

(Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Va	Unit		
Falanielei			Min	Max	Unit	
Peripheral input "H" pulse width	tılıн	INT00 to INT07, INT10 to INT13,	2 t MCLK*	—	ns	
Peripheral input "L" pulse width	tını∟	EC0, EC1, TI0, TRG0/ADTG, TRG1	2 t мськ*	_	ns	


* : Refer to " (2) Source Clock/Machine Clock" for tmclk.

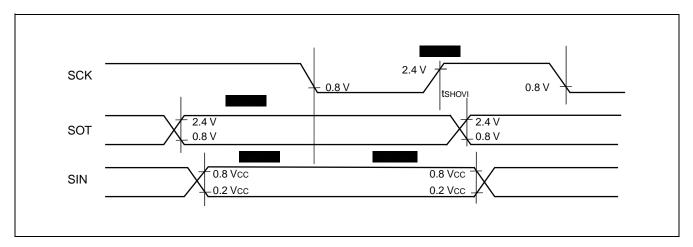
(6) UART/SIO, Serial I/O Timing

$(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 °C to + 8$							
Parameter	Symbol	Pin name	Conditions	Val	Unit		
i didificici	Symbol	Tinname	Conditions	Min	Max	Onit	
Serial clock cycle time	tscyc	UCK0		4 t мськ*	—	ns	
UCK $\downarrow \rightarrow$ UO time	t slov	UCK0, UO0	Internal clock	- 190	+ 190	ns	
$Valid\;UI\toUCK\;\uparrow$	tıvsн	UCK0, UI0	operation	2 t мськ*	—	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK0, UI0		2 t мськ*	_	ns	
Serial clock "H" pulse width	t s∺s∟	UCK0		4 t MCLK*	_	ns	
Serial clock "L" pulse width	tslsн	UCK0	External	4 t мськ*		ns	
UCK $\downarrow \rightarrow$ UO time	t slov	UCK0, UO0	clock	_	190	ns	
$Valid\;UI\toUCK\;\uparrow$	t ivsh	UCK0, UI0	operation	2 t MCLK*	_	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK0, UI0		2 t MCLK*		ns	

* : Refer to " (2) Source Clock/Machine Clock" for tmclk.

MB95100AM Series

Sampling at the rising edge of sampling clock \ast_1 and enabled serial clock delay \ast_2


(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1) (Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40 °C to + 85 °C)

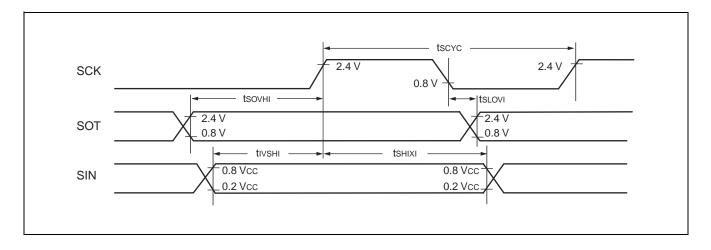
Parameter	Sym- bol	Pin name	Conditions	Valu	Unit	
Faidilielei			Conditions	Min	Max	Onit
Serial clock cycle time	tscyc	SCK		5 t MCLK* ³		ns
$SCK \uparrow \to SOT \text{ delay time}$	t shovi	SCK, SOT	Internal clock	- 95	+ 95	ns
$Valid\ SIN \to SCK \downarrow$	tivsli	SCK, SIN	operation output pin :	tмськ*3 + 190	_	ns
$SCK \downarrow \to valid \ SIN \ hold \ time$	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL.	0		ns
$SOT \to SCK \downarrow delay time$	tsovli	SCK, SOT			4 t MCLK*3	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

Sampling at the falling edge of sampling clock ^{*1} and enabled serial clock delay ^{*2}


(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1) (Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40 °C to + 85 °C)

Parameter	Sym-	Pin name	Conditions	Valu	Unit		
Falameter	bol	Finname	Conditions	Min	Max	Onit	
Serial clock cycle time	t scyc	SCK		5 t мськ* ³	_	ns	
$SCK \downarrow \to SOT \text{ delay time}$	t slovi	SCK, SOT	Internal clock	- 95	+ 95	ns	
Valid SIN $ ightarrow$ SCK \uparrow	t ivshi	SCK, SIN	operating output pin :	tмськ*3 + 190	_	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	t shixi	SCK, SIN	C∟ = 80 pF + 1 TTL.	0		ns	
$SOT \to SCK \uparrow delay time$	t sovнi	SCK, SOT			4 t MCLK*3	ns	

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

(Continued)

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40 \circ C to + 85 \circ C)$

							· · · · · · · · · · · · · · · · · · ·
Parameter	Sym- Pin	Condition	Value*2			Remarks	
Farameter	bol	name	Condition	Min	Max	Unit	Remarks
Data hold time	t hd;dat	SCL0 SDA0	$\label{eq:R} \begin{split} &R = 1.7 \; k\Omega, \\ &C = 50 \; pF^{*1} \end{split}$	0		ns	At reception
Data setup time	tsu;dat	SCL0 SDA0		tмськ – 20		ns	At reception
SDA↓→SCL↑ (at wake-up function)	t wakeup	SCL0 SDA0		Oscillation stabilization wait time + 2 tMCLK - 20		ns	

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of clock control register (ICCR0) .
- n is CS2 bit to CS0 bit (bit 2 to bit 0) of clock control register (ICCR0).
- Actual timing of I²C is determined by m and n values set by the machine clock (t_{MCLK}) and CS4 to CS0 of ICCR0 register.
- Standard-mode :

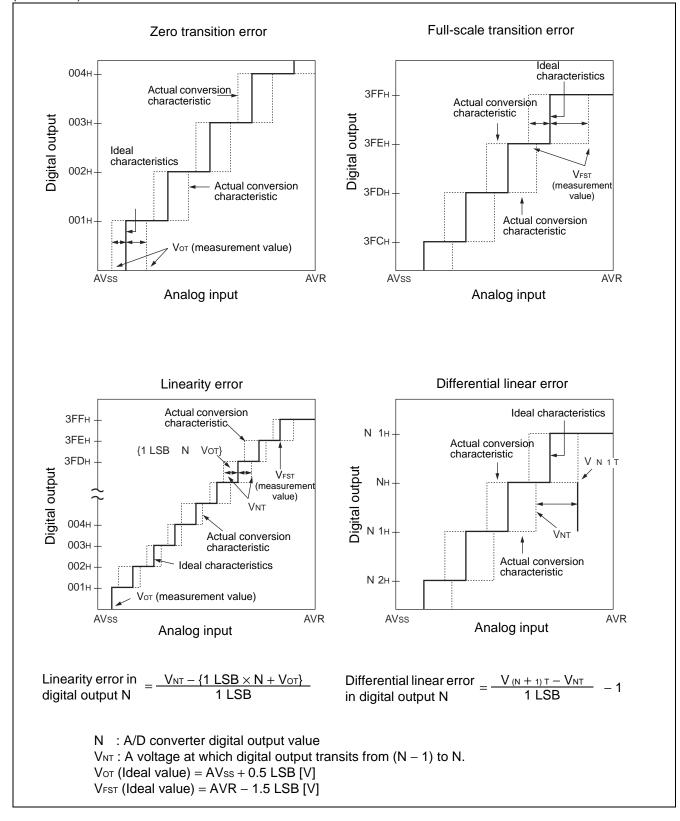
m and n can be set at the range : $0.9 \text{ MHz} < t_{MCLK}$ (machine clock) < 10 MHz. Setting of m and n limits the machine clock that can be used below.

• Fast-mode :

m and n can be set at the range : 3.3 MHz < t_{MCLK} (machine clock) < 10 MHz.

Setting of m and n limits the machine clock that can be used below. (m, n) = (1, 8) : 3.3 MHz < t_{MCLK} \leq 4 MHz

 $\begin{array}{ll} (m,\,n) \;=\; (1,\,22)\;,\; (5,\,4)\;: 3.3\;MHz < t_{\text{MCLK}} \leq 8\;MHz \\ (m,\,n) \;=\; (6,\,4) & : 3.3\;MHz < t_{\text{MCLK}} \leq 10\;MHz \end{array}$

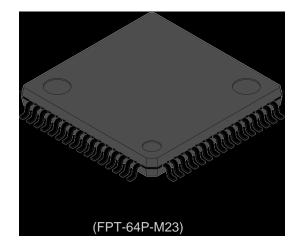

^{*2 : •} Refer to " (2) Source Clock/Machine Clock" for tMCLK.

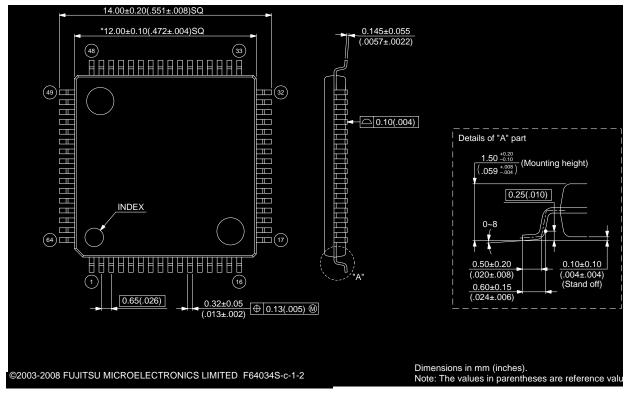
5. A/D Converter

(1)

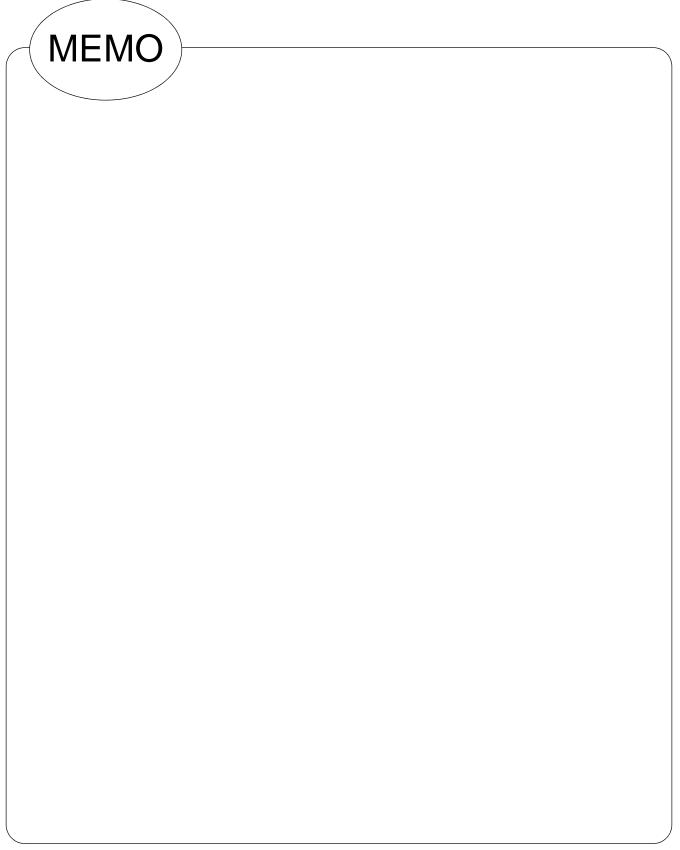
_	Symbol		Value	1		
Parameter		Min	Тур	Max	– Unit	Remarks
Resolution				10	bit	
Total error	-	- 3.0		+ 3.0	LSB	
Linearity error		- 2.5		+ 2.5	LSB	
Differential linear error		– 1.9		+ 1.9	LSB	
Zero transition voltage	Vот	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	Vfst	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time		0.9		16500	μs	$4.5 \text{ V} \le \text{AVcc} \le 5.5 \text{ V}$
		1.8		16500	μs	$4.0 \text{ V} \le \text{AVcc} < 4.5 \text{ V}$
Sampling time		0.6	_	œ	μs	$\begin{array}{l} \text{4.5 V} \leq \text{AVcc} \leq 5.5 \text{ V},\\ \text{At external impedance} < \\ \text{5.4 k} \Omega \end{array}$
		1.2		~	μs	$4.0 V \le AVcc < 4.5 V$, At external impedance < $2.4 k\Omega$
Analog input current	Iain	- 0.3		+ 0.3	μA	
Analog input voltage	VAIN	AVss		AVR	V	
Reference voltage		AVss + 4.0		AVcc	V	AVR pin
Reference voltage supply current	IR		600	900	μA	AVR pin, During A/D operation
	Ігн			5	μA	AVR pin, At stop mode

(Continued)




■ MASK OPTION

No.	Part number	MB95108AM	MB95F104AMS MB95F104ANS MB95F104AJS MB95F106AMS MB95F106AJS MB95F108AMS MB95F108ANS MB95F108ANS MB95F108AJS	MB95F104AMW MB95F104ANW MB95F104AJW MB95F106AMW MB95F106ANW MB95F106AJW MB95F108AMW MB95F108ANW MB95F108AJW	MB95FV100D-103
	Specifying procedure	Specify when ordering MASK	ordering		Setting disabled
1	Clock mode select • Single-system clock mode • Dual-system clock mode	Selectable	Single-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2	Low voltage detection reset* • With low voltage detection reset • Without low voltage detection reset	Specify when ordering MASK	Specified by part number	Specified by part number	Changing by the switch on MCU board
3	Clock supervisor* • With clock supervisor • Without clock supervisor	Specify when ordering MASK	Specified by part number	Specified by part number	Changing by the switch on MCU board
4	Reset output* • With reset output • Without reset output	Specify when ordering MASK	Specified by part number	Specified by part number	 MCU board switch set as following ; With supervisor : Without reset output Without supervisor : With reset output
5	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of (2 ¹⁴ -2) /FCH	Fixed to oscillation stabilization wait time of (2 ¹⁴ -2) /F _{CH}	Fixed to oscillation stabilization wait time of (2 ¹⁴ -2) /F _{CH}	Fixed to oscillation stabilization wait time of (2 ¹⁴ -2) /Fсн


*: Refer to table below about clock mode select, low voltage detection reset, clock supervisor select and reset output.

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

