E·XFL

NXP USA Inc. - MSC7113VM800 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC1400 Core
Interface	Host Interface, I ² C, UART
Clock Rate	200MHz
Non-Volatile Memory	External
On-Chip RAM	208kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7113vm800

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments4
	1.1	MAP-BGA Ball Layout Diagrams4
	1.2	Signal List By Ball Location
2	Electr	rical Characteristics
	2.1	Maximum Ratings
	2.2	Recommended Operating Conditions
	2.3	Thermal Characteristics
	2.4	DC Electrical Characteristics19
	2.5	AC Timings
3	Hard	ware Design Considerations
	3.1	Thermal Design Considerations41
	3.2	Power Supply Design Considerations42
	3.3	Estimated Power Usage Calculations49
	3.4	Reset and Boot
	3.5	DDR Memory System Guidelines
4	Order	ing Information
5	Packa	age Information
6	Produ	act Documentation
7	Revis	ion History

List of Figures

Figure 1.	MSC7113 Block Diagram
Figure 2.	MSC7113 Molded Array Process-Ball Grid Array
	(MAP-BGA), Top View 4
Figure 3.	MSC7113 Molded Array Process-Ball Grid Array
	(MAP-BGA), Bottom View 5
Figure 4.	Timing Diagram for a Reset Configuration Write 24
Figure 5.	DDR DRAM Input Timing Diagram 24
Figure 6.	DDR DRAM Output Timing Diagram
Figure 7.	DDR DRAM AC Test Load

Figure 8.	TDM Receive Signals
Figure 9.	TDM Transmit Signals
Figure 10.	Ethernet Receive Signal Timing
Figure 11.	Ethernet Receive Signal Timing
Figure 12.	Asynchronous Input Signal Timing
Figure 13.	Serial Management Channel Timing
Figure 14.	Read Timing Diagram, Single Data Strobe
Figure 15.	Read Timing Diagram, Double Data Strobe
Figure 16.	Write Timing Diagram, Single Data Strobe
Figure 17.	Write Timing Diagram, Double Data Strobe 34
Figure 18.	Host DMA Read Timing Diagram, HPCR[OAD] = 034
Figure 19.	Host DMA Write Timing Diagram, HPCR[OAD] = 035
Figure 20.	I2C Timing Diagram
Figure 21.	UART Input Timing
Figure 22.	UART Output Timing
Figure 23.	EE Pin Timing
Figure 24.	EVNT Pin Timing
Figure 25.	GPI/GPO Pin Timing
Figure 26.	Test Clock Input Timing Diagram 39
Figure 27.	Boundary Scan (JTAG) Timing Diagram 40
Figure 28.	Test Access Port Timing Diagram
Figure 29.	TRST Timing Diagram 40
Figure 30.	Voltage Sequencing Case 1
Figure 31.	Voltage Sequencing Case 2 44
Figure 32.	Voltage Sequencing Case 3
Figure 33.	Voltage Sequencing Case 4 46
Figure 34.	Voltage Sequencing Case 5
Figure 35.	PLL Power Supply Filter Circuits
Figure 36.	SSTL Termination Techniques
Figure 37.	SSTL Power Value

Pin Assignments

	Signal Names						
Number		S	oftware Controlle	ed	Hardware	Controlled	
Humber	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
B15 (1L44X)			Ν	IC			
B15 (1M88B)	BM2	GP	ID7	GPOD7	rese	erved	
B16			Ν	IC			
B17			Ν	IC			
B18			N	IC			
B19			Ν	IC			
B20			Ν	IC			
C1			D	24			
C2			D	30			
C3			D	25			
C4			C	S1			
C5			DC	0M3			
C6			DC	0M0			
C7			DC	QS1			
C8			R	AS			
C9	CAS						
C10	GPIC5 GPOC5 HD13				013		
C11		GPIC1 GPOC1 HD9				D9	
C12		reserved HD3				D3	
C13			Ν	IC			
C14			Ν	IC			
C15			Ν	IC			
C16		NC					
C17		NC					
C18			Ν	IC			
C19			Ν	IC			
C20			Ν	IC			
D1			V _D	DM			
D2			D	28			
D3			D	27			
D4			G	ND			
D5			V _D	DM			
D6			V _D	DM			
D7			V _D	DM			
D8			VD	DM			
D9			V _D	DM			
D10			V _D	DM			
D11			VD	DIO			

Table 1. MSC7113 Signals by Ball Designator (continued)

ssignments

	Signal Names							
Number	Software Controlled Hardware Controlled							
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
R18			Т	DO				
R19		rese	erved		EE0/D	DBREQ		
R20			TE	ST0				
T1			V	DDM				
T2			D	20				
Т3			D	22				
T4			V	DDM				
Т5			V	DDM				
Т6			V	DDC				
Т7			V	DDM				
Т8			V	DDM				
Т9			V	DDC				
T10			V	DDM				
T11		V _{DDM}						
T12	V _{DDIO}							
T13	V _{DDIO}							
T14	V _{DDIO}							
T15	V _{DDIO}							
T16		V _{DDC}						
T17			V	DDC				
T18		rese	erved		M	DIO		
T19			Т	MS				
T20		HRESET						
U1	GND							
U2			D	21				
U3			D	23				
U4		V _{DDM}						
U5			V	DDC				
U6			VI	DDC				
U7			VI	DDC				
U8			VI	DDC				
U9			V	DDC				
U10			V	DDC				
U11			V	DDC				
U12			V	DDC				
U13			VI	DDC				
U14			VI	DDC				
U15			V	DDC				

Table 1. MSC7113 Signals by Ball Designator (continued)

	Signal Names						
Number		s	oftware Controlle	ed	Hardware	Controlled	
Rumber	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
U16		-	V	DDC			
U17			V	DDC			
U18		rese	erved		С	OL	
U19		тск					
U20			TF	RST			
V1			V	DDM			
V2		NC					
V3			A	.13			
V4			A	.11			
V5			A	.10			
V6			ļ	\ 5			
V7			ļ	12			
V8	BAO						
V9	NC						
V10	reserved			EVNT0			
V11	SWTE	GPIA16	IRQ12	GPOA16	EVNT4		
V12	GF	IA8	IRQ6	GPOA8	ТОТСК		
V13	GF	'IA4	IRQ1	GPOA4	T1RFS		
V14	GF	'IA0	IRQ11	GPOA0	T1TD		
V15	GP	IA28	IRQ17	GPOA28	TX_ER	reserved	
V16		GPID6	·	GPOD6	RXD2	reserved	
V17	GP	IA22	IRQ22	GPOA22	R	XD0	
V18	GP	IA24	IRQ24	GPOA24	ТХ	EN	
V19		rese	erved		С	RS	
V20			Т	DI			
W1			G	ND			
W2			V	DDM			
W3			A	.12			
W4			ŀ	48			
W5			ŀ	۸7			
W6			ŀ	46			
W7			ŀ	43			
W8			Ν	1C			
W9	GP	IA17	IRQ13	GPOA17	EVNT1	CLKO	
W10	BM0	GPI	C14	GPOC14	EV	/NT2	
W11	GP	IA10	IRQ5	GPOA10	то	RFS	
W12	GF	יIA7	IRQ7	GPOA7	то	TFS	
W13	GF	PIA3	IRQ8	GPOA3	Tí	IRD	

Table 1. MSC7113 Signals by Ball Designator (continued)

rical Characteristics

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	℃ ℃

 Table 3. Recommended Operating Conditions

2.3 Thermal Characteristics

 Table 4 describes thermal characteristics of the MSC7113 for the MAP-BGA package.

			MAP-BGA			
		Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction	n-to-a	mbient ^{1, 2}	R _{θJA}	39	31	°C/W
Junction-to-ambient, four-layer board ^{1, 3}		R _{θJA}	23	20	°C/W	
Junction-to-board ⁴		$R_{ heta JB}$	12		°C/W	
Junction-to-case ⁵		$R_{ extsf{ heta}JC}$	7		°C/W	
Junction-to-package-top ⁶			Ψ_{JT}	2		°C/W
Notes:	1.	Junction temperature is a function of die size temperature, ambient temperature, air flow, resistance.	e, on-chip power dise power dissipation of	sipation, package th other components of	ermal resistance, mou on the board, and boa	unting site (board) rd thermal
	2.	Per SEMI G38-87 and JEDEC JESD51-2 wi	th the single layer bo	pard horizontal.		
	3.	Per JEDEC JESD51-6 with the board horizo	ntal.			
 Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured the top surface of the board near the package. 						ire is measured on
	5.	Thermal resistance between the die and the 1012.1).	case top surface as	measured by the co	Id plate method (MIL S	SPEC-883 Method
	6.	Thermal characterization parameter indicatir	ng the temperature d	ifference between p	ackage top and the jur	nction temperature

Table 4.	Thermal	Characteristics	for MAP-BG	A Package
----------	---------	-----------------	------------	-----------

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

Figure 4. Timing Diagram for a Reset Configuration Write

2.5.4 **DDR DRAM Controller Timing**

This section provides the AC electrical characteristics for the DDR DRAM interface.

2.5.4.1 **DDR DRAM Input AC Timing Specifications**

Table 17 provides the input AC timing specifications for the DDR DRAM interface.

				М					
No.	Parameter	Symbol	Min	Mask Set 1L44X	Mask Set 1M88B	Unit			
_	AC input low voltage	V _{IL}	—	V _{REF} – 0.31	V _{REF} – 0.31	V			
_	AC input high voltage	V _{IH}	V _{REF} + 0.31	V _{DDM} + 0.3	V _{DDM} + 0.3	V			
201	Maximum Dn input setup skew relative to DQSn input	—	—	1026	900	ps			
202	Maximum Dn input hold skew relative to DQSn input	—	—	386	900	ps			
Notes:	 Dete: 1. Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {07}] if 0 ≤ n ≤ 7). 2. See Table 18 for t_{CK} value. 3. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is 								

Table 17. DDR DRAM Input AC Timing

done internally.

Table 20. TDM Timing

No.	Characteristic Exp	ression	Min	Max	Units
307	TDMxTCK High to TDMxTD output valid		_	14.0	ns
308	TDMxTD hold time		2.0	—	ns
309	TDMxTCK High to TDMxTD output high impedance		_	10.0	ns
310	TDMXTFS/TDMxRFS output valid		_	13.5	ns
311	TDMxTFS/TDMxRFS output hold time		2.5	_	ns
Notes:	1. Output values are based on 30 pF capacitive load.				

2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.

Figure 8. TDM Receive Signals

2.5.6 Ethernet Timing

2.5.6.1 Receive Signal Timing

Table 21. Receive Signal Timing

No.	Characteristics	Min	Max	Unit
800	Receive clock period:			
	• MII: RXCLK (max frequency = 25 MHz)	40	—	ns
	• RMII: REFCLK (max frequency = 50 MHz)	20		ns
801	301 Receive clock pulse width high—as a percent of clock period		65	%
	• MII: RXCLK	14	—	ns
	• RMII: REFCLK	7		ns
802	2 Receive clock pulse width low—as a percent of clock period:		65	%
	• MII: RXCLK	14	—	ns
	• RMII: REFCLK	7		ns
803	RXDn, RX_DV, CRS_DV, RX_ER to receive clock rising edge setup time			ns
804	Receive clock rising edge to RXDn, RX DV, CRS DV, RX ER hold time		_	ns

Figure 10. Ethernet Receive Signal Timing

Electrical Characteristics

2.5.7 HDI16 Signals

Table 25. Host Interface (HDI16) Timing^{1, 2}

No	Characteristics ³	Mask Set 1L	44X	Mask Set 1M88B		Unit
NO.	Characteristics	Expression	Value	Expression	Value	
40	Host Interface Clock period	T _{HCLK}	Note 1	T _{CORE}	Note 1	ns
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	$3.0 imes T_{HCLK}$	Note 11	2.0 × T _{CORE} + 9.0	Note 11	ns
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 imes T_{CORE}$	Note 11	ns
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	2.5 × T _{HCLK}	Note 11	2.5 × T _{CORE}	Note 11	ns
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 imes T_{CORE}$	Note 11	ns
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	$2.5 imes T_{HCLK}$	Note 11	2.5 × T _{CORE}	Note 11	ns
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	3.0	_	2.5	ns
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	4.0	_	2.5	ns
49	Read data strobe minimum assertion to output data active from high impedance ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	_	1.0	ns
50	Read data strobe maximum assertion to output data valid ⁴ HACK read maximum assertion to output data valid	(2.0 × T _{HCLK}) + 8.0	Note 11	(2.0 × T _{CORE}) + 8.0	Note 11	ns
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance	_	8.0	_	9.0	ns
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	_	1.0	ns
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	—	0.0	—	0.5	ns
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	—	0.0	—	0.0	ns
55	HCS[1-2] maximum assertion to output data valid	$(2.0 \times T_{\text{HCLK}}) + 8.0$	Note 11	$(2.0 \times T_{CORE}) + 6.0$	Note 11	ns
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	—	0.0	—	0.5	ns
57	HA[0–3], HRW minimum setup time before data strobe assertion ⁹	—	5.0	—	5.0	ns
58	HA[0–3], HRW minimum hold time after data strobe deassertion ⁹	—	5.0	—	5.0	ns
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	(3.0 × T _{HCLK}) + 8.0	Note 11	$(3.0 \times T_{CORE}) + 6.0$	Note 11	ns
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{HCLK}) + 8.0	Note 11	$(3.0 \times T_{CORE})$ + 6.0	Note 11	ns
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion.	(2.0 × T _{HCLK}) + 1.0	Note 11	(2.0 × T _{CORE}) + 1.0	Note 11	ns
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{HCLK}) + 8.0	Note 11	(5.0 × T _{CORE}) + 6.0	Note 11	ns

2.5.9 UART Timing

No.	Characteristics	Expression	Mask Set 1L44X		Mask Set 1M88B		Unit
			Min	Max	Min	Max	
	Internal bus clock (APBCLK)	F _{CORE} /2	—	100	—	133	MHz
_	Internal bus clock period (1/APBCLK)	T _{APBCLK}	10.0	_	7.52	—	ns
400	URXD and UTXD inputs high/low duration	$16 \times T_{APBCLK}$	160.0	_	120.3	—	ns
401	URXD and UTXD inputs rise/fall time		—	5	_	5	ns
402	UTXD output rise/fall time		—	5	_	5	ns

Table 27. UART Timing

Figure 21. UART Input Timing

Figure 22. UART Output Timing

2.5.10 EE Timing

Table 28. EE0 Timing

Number		Characteristics	Туре	Min
65		EE0 input to the core	Asynchronous	4 core clock periods
66		EE0 output from the core	Synchronous to core clock	1 core clock period
Notes: 1.	The	The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-res		
2.	2. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details.		Reference Manual for details.	
3. Refer to Table 14 for details on EE pin functionality.				

Figure 23 shows the signal behavior of the EE pin.

2.5.11 Event Timing

Table 29. EVNT Signal Timing

Number			Characteristics	Туре	Min
67			EVNT as input	Asynchronous	$1.5 \times APBCLK$ periods
68			EVNT as output	IT as output Synchronous to core clock	
Notes:	1.	Ref	Refer to Table 27 for a definition of the APBCLK period.		
	2.	Dire	rection of the EVNT signal is configured through the GPIO and Event port registers.		
	3.	Ref	er to the MSC711x Reference Manual fo	r details on EVNT pin functionality.	

Figure 24 shows the signal behavior of the EVNT pin.

Figure 24. EVNT Pin Timing

2.5.12 GPIO Timing

Table 30. GPIO Signal Timing^{1,2,3}

Number	Characteristics	Туре	Min	
601	GPI ^{4.5}	Asynchronous	1.5 × APBCLK periods	
602	GPO ⁵	Synchronous to core clock	1 APBCLK period	
603	Port A edge-sensitive interrupt	Asynchronous	$1.5 \times APBCLK$ periods	
604	Port A level-sensitive interrupt	Asynchronous	$3 \times \text{APBCLK periods}^6$	
Notes: 1. R 2. D 3. R 4. G ir d 5. T 6. L	 Refer to Table 27 for a definition of the APBCLK period. Direction of the GPIO signal is configured through the GPIO port registers. Refer to MSC711x Reference Manual for details on GPIO pin functionality. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data into a register when the GPA_DR is read. The specification is not tested due to the asynchronous nature of the input and dependence on the state of the DSP core. It is guaranteed by design. The input and output signals cannot toggle faster than 50 MHz. Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is 			

Figure 25 shows the signal behavior of the GPI/GPO pin.

2.5.13 JTAG Signals

No	Characteristics	All frequencies		Unit	
NO.	Characteristics	Min	Max		
700	TCK frequency of operation $(1/(T_{C} \times 3); maximum 22 \text{ MHz})$	0.0	40.0	MHz	
701	TCK cycle time	25.0	_	ns	
702	TCK clock pulse width measured at $V_{M =} 1.6 V$	11.0	_	ns	
703	TCK rise and fall times	0.0	3.0	ns	
704	Boundary scan input data set-up time	5.0	_	ns	
705	Boundary scan input data hold time	14.0	_	ns	
706	TCK low to output data valid	0.0	20.0	ns	
707	TCK low to output high impedance	0.0	20.0	ns	
708	TMS, TDI data set-up time	5.0	_	ns	
709	TMS, TDI data hold time	25.0	_	ns	
710	TCK low to TDO data valid	0.0	24.0	ns	
711	TCK low to TDO high impedance	0.0	10.0	ns	
712	TRST assert time 100.0 —			ns	
Note:	All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.				

Table 31. JTAG Timing

Figure 26. Test Clock Input Timing Diagram

Figure 28. Test Access Port Timing Diagram

Figure 29. TRST Timing Diagram

3 Hardware Design Considerations

This section described various areas to consider when incorporating the MSC7113 device into a system design.

3.1 Thermal Design Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D) \qquad \qquad Eqn.$$

where

 T_A = ambient temperature near the package (°C) $R_{\Theta JA}$ = junction-to-ambient thermal resistance (°C/W) $P_D = P_{INT} + P_{I/O}$ = power dissipation in the package (W)

 $P_{INT} = I_{DD} \times V_{DD}$ = internal power dissipation (W)

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC7113 are listed in **Table 4**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm^2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip.

You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine T_I :

$$T_J = T_T + (\Psi_{JT} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in the package (W)

3.2.2.1 Case 1

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 30** for relative timing for power sequencing case 1.

Time Figure 30. Voltage Sequencing Case 1

ware Design Considerations

3.2.2.2 Case 2

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) and V_{DDM} (2.5 V) supplies simultaneously (second).
- 3. Turn on the V_{REF} (1.25 V) supply last (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC}/V_{DDM} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to Figure 31 for relative timing for Case 2.

Figure 31. Voltage Sequencing Case 2

ware Design Considerations

3.2.3 Power Planes

Each power supply pin (V_{DDC} , V_{DDM} , and V_{DDIO}) should have a low-impedance path to the board power supply. Each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the device. The MSC7113 V_{DDC} power supply pins should be bypassed to ground using decoupling capacitors. The capacitor leads and associated printed circuit traces connecting to device power pins and GND should be kept to less than half an inch per capacitor lead. A minimum four-layer board that employs two inner layers as power and GND planes is recommended. See Section 3.5 for DDR Controller power guidelines.

3.2.4 Decoupling

Both the I/O voltage and core voltage should be decoupled for switching noise. For I/O decoupling, use standard capacitor values of 0.01 μ F for every two to three voltage pins. For core voltage decoupling, use two levels of decoupling. The first level should consist of a 0.01 μ F high frequency capacitor with low effective series resistance (ESR) and effective series inductance (ESL) for every two to three voltage pins. The second decoupling level should consist of two bulk/tantalum decoupling capacitors, one 10 μ F and one 47 μ F, (with low ESR and ESL) mounted as closely as possible to the MSC7113 voltage pins. Additionally, the maximum drop between the power supply and the DSP device should be 15 mV at 1 A.

3.2.5 PLL Power Supply Filtering

The MSC7113 V_{DDPLL} power signal provides power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to this pin should be filtered with capacitors that have low and high frequency filtering characteristics. V_{DDPLL} can be connected to V_{DDC} through a 2 Ω resistor. V_{SSPLL} can be tied directly to the GND plane. A circuit similar to the one shown in **Figure 35** is recommended. The PLL loop filter should be placed as closely as possible to the V_{DDPLL} pin (which are located on the outside edge of the silicon package) to minimize noise coupled from nearby circuits. The 0.01 µF capacitor should be closest to V_{DDPLL}, followed by the 0.1 µF capacitor, the 10 µF capacitor, and finally the 2- Ω resistor to V_{DDC}. These traces should be kept short.

Figure 35. PLL Power Supply Filter Circuits

3.2.6 Power Consumption

You can reduce power consumption in your design by controlling the power consumption of the following regions of the device:

- Extended core. Use the SC1400 Stop and Wait modes by issuing a stop or wait instruction.
- *Clock synthesis module*. Disable the PLL, timer, watchdog, or DDR clocks or disable the CLKO pin.
- AHB subsystem. Freeze or shut down the AHB subsystem using the GPSCTL[XBR_HRQ] bit.
- *Peripheral subsystem.* Halt the individual on-device peripherals such as the DDR memory controller, Ethernet MAC, HDI16, TDM, UART, I²C, and timer modules.

For details, see the "Clocks and Power Management" chapter of the MSC711x Reference Manual.

NP

ware Design Considerations

3.3.2 Peripheral Power

Peripherals include the DDR memory controller, DMA controller, HDI16, TDM, UART, timers, GPIOs, and the I²C module. Basic power consumption by each module is assumed to be the same and is computed by using the following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching frequency of 100 MH or 133 MHz. This yields:

$$P_{PERIPHERAL} = 20 \ pF \times (1.2 \ V)^2 \times 100 \ MHz \times 10^{-3} = 2.88 \ mW \ per \ peripheral \qquad Eqn. 7$$

$$P_{PERIPHERAL} = 20 \ pF \times (1.2 \ V)^2 \times 133 \ MHz \times 10^{-3} = 3.83 \ mW \ per \ peripheral \qquad Eqn. 8$$

Multiply this value by the number of peripherals used in the application to compute the total peripheral power consumption.

3.3.3 External Memory Power

Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal line usage, termination and load levels, and switching rates. Because the DDR memory includes terminations external to the MSC7113 device, the 2.5 V power source provides the power for the termination, which is a static value of 16 mA per signal driven high. The dynamic power is computed, however, using a differential voltage swing of ± 0.200 V, yielding a peak-to-peak swing of 0.4 V. The equations for computing the DDR power are:

$$P_{DDRIO} = P_{STATIC} + P_{DYNAMIC} \qquad Eqn. 9$$

$$P_{STATIC} = (unused pins \times \% driven high) \times 16 mA \times 2.5 V$$
 Eqn. 10

$$P_{DYNAMIC} = (pin \ activity \ value) \times 20 \ pF \times (0.4 \ V)^2 \times 200 \ MHz \times 10^{-3} \ mW$$
 Eqn. 11

$$P_{DYNAMIC} = (pin \ activity \ value) \times 20 \ pF \times (0.4 \ V)^2 \times 266 \ MHz \times 10^{-3} \ mW$$
 Eqn. 12

pin activity value = (active data lines \times % activity \times % data switching) + (active address lines \times % activity) Eqn. 13

As an example, assume the following:

unused pins = 16 (DDR uses 16-pin mode) % driven high = 50% active data lines = 16 % activity = 60% % data switching = 50% active address lines = 3

In this example, the DDR memory power consumption is:

$$P_{DDRIO} = ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 200 \times 10^{-3}) = 324.2 \text{ mW} \qquad Eqn. 14$$

$$P_{DDRIO} = ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 266 \times 10^{-3}) = 326.3 \text{ mW}$$
 Eqn. 15

3.3.4 External I/O Power

The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power consumption per signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a switching frequency of 25 MHz or 33 MHz, which yields:

$$P_{IO} = 20 \ pF \times (3.3 \ V)^2 \times 25 \ MHz \times 10^{-3} = 5.44 \ mW \ per I/O \ line$$
 Eqn. 16

$$P_{IO} = 20 \ pF \times (3.3 \ V)^2 \times 33 \ MHz \times 10^{-3} = 7.19 \ mW \ per I/O \ line$$
 Eqn. 17

Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O power.

Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be as low as 7 pF.

3.3.5 Leakage Power

The leakage power is for all power supplies combined at a specific temperature. The value is temperature dependent. The observed leakage value at room temperature is 64 mW.

3.3.6 Example Total Power Consumption

Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power consumption value is estimated as the following:

$$P_{TOTAL} (200 \text{ MHz core}) = 216 + (4 \times 2.88) + 324, 2 + (10 \times 5.44) + 64 = 670.12 \text{ mW}$$
 Eqn. 18

 P_{TOTAL} (266 MHz core) = 287 + (4 × 3.83) + 326.3 + (10 × 7.19) + 64 = 764.52 mW Eqn. 19

3.4 Reset and Boot

This section describes the recommendations for configuring the MSC7113 at reset and boot.

3.4.1 Reset Circuit

HRESET is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain device. For an open-drain output such as **HRESET**, take care when driving many buffers that implement input bus-hold circuitry. The bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic level to low. Either a smaller value of pull-up or less current loading from the bus-hold drivers overcomes this issue. To avoid exceeding the MSC7113 output current, the pull-up value should not be too small (a 1 K Ω pull-up resistor is used in the MSC711xADS reference design).

ware Design Considerations

3.4.2 Reset Configuration Pins

Table 34 shows the MSC7113 reset configuration signals. These signals are sampled at the deassertion (rising edge) of PORESET. For details, refer to the Reset chapter of the *MSC711x Reference Manual*.

Signal	Description		Settings
BM[1-0]	Determines boot mode.	0	Boot from HDI16 port.
		01	Boot from I2C.
		1x	Reserved.
SWTE	Determines watchdog functionality.	0	Watchdog timer disabled.
		1	Watchdog timer enabled.
HDSP	Configures HDI16 strobe polarity.	0	Host Data strobes active low.
		1	Host Data strobes active high.
H8BIT	Configures HDI16 operation mode.	0	HDI16 port configured for 16-bit operation.
		1	HDI16 port configured for 8-bit operation.

Table 34. Reset Configuration Signals

3.4.3 Boot

After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Using this input clock, the system initializes using the boot loader program that resides in the internal ROM. After initialization, the DSP core can enable the PLL and start the device operating at a higher speed. The MSC7113 can boot from an external host through the HDI16 or download a user program through the I²C port. The boot operating mode is set by configuring the BM[1–0] signals sampled at the rising edge of PORESET, as shown in **Table 35**.

Table 35. Boot Mode Settings

BM1	BM0	Boot Source
0	0	External host via HDI16 with the PLL disabled.
0	1	l ² C.
1	0	External host via the HDI16 with the PLL enabled.
1	1	Reserved.

3.4.3.1 HDI16 Boot

If the MSC7113 device boots from an external host through the HDI16, the port is configured as follows:

- Operate in Non-DMA mode.
- Operate in polled mode on the device side.
- Operate in polled mode on the external host side.
- External host must write four 16-bit values at a time with the first word as the most significant and the fourth word as the least significant.

When booting from a power-on reset, the HDI16 is additionally configurable as follows:

- 8- or 16-bit mode as specified by the H8BIT pin.
- Data strobe as specified by the HDSP and HDDS pins.

These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the configuration of these pins is unaffected.

Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most significant bit as for other DSP products.