

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s8253-24ji

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The AT89S8253 provides the following standard features: 12K bytes of In-System Programmable Flash, 2K bytes of EEPROM, 256 bytes of RAM, 32 I/O lines, programmable watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector, four-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S8253 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

The on-board Flash/EEPROM is accessible through the SPI serial interface. Holding RESET active forces the SPI bus into a serial programming interface and allows the program memory to be written to or read from, unless one or more lock bits have been activated.

2. Pin Configurations

2.1 40P6 – 40-lead PDIP

(T2) P1.0 [P1.2] P1.3] (SS) P1.4 [(MOSI) P1.5] (MISO) P1.6 [(SCK) P1.7] (SCK) P1.7] (SCK) P1.7] (SCK) P1.7] (SCK) P1.7] (SCK) P1.7] (SCK) P3.0] (TD) P3.1] (INT0) P3.2] (INT1) P3.3] (INT1) P3.5] (WR) P3.6] (WR) P3.6] (RD) P3.7] XTAL2] XTAL1] GND]	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	40 39 38 37 36 35 34 32 31 30 29 28 27 26 25 24 23 22 21	∨CC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP ALE/PROG P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.1 (A9) P2.0 (A8)

2.2 44A – 44-lead TQFP

² AT89S8253

3.5 PWRGND

Ground for the 42-PDIP which connects only the I/O Pad Drivers. PWRGND and GND are weakly connected through the common silicon substrate, but not through any metal links. The application board **must** connect both GND and PWRGND to the board ground.

3.6 Port 0

Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink six TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.

Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.

Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. **External pull-ups are required during program verification.**

3.7 Port 1

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source six TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the weak internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL} , 150 μ A typical) because of the weak internal pull-ups.

Some Port 1 pins provide additional functions. P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively. Furthermore, P1.4, P1.5, P1.6, and P1.7 can be configured as the SPI slave port select, data input/output and shift clock input/output pins as shown in the following table.

Port Pin	Alternate Functions
P1.0	T2 (external count input to Timer/Counter 2), clock-out
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)
P1.4	SS (Slave port select input)
P1.5	MOSI (Master data output, slave data input pin for SPI channel)
P1.6	MISO (Master data input, slave data output pin for SPI channel)
P1.7	SCK (Master clock output, slave clock input pin for SPI channel)

Port 1 also receives the low-order address bytes during Flash programming and verification.

3.8 Port 2

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source six TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the weak internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL} , 150 μ A typical) because of the weak internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

3.9 Port 3

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source six TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the weak internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL} ,150 μ A typical) because of the weak internal pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89S8253, as shown in the following table.

Port Pin	Alternate Functions
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0) ⁽¹⁾
P3.3	INT1 (external interrupt 1) ⁽¹⁾
P3.4	T0 (timer 0 external input)
P3.5	T1 (timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

Note: 1. All pins in ports 1 and 2 and almost all pins in port 3 (the exceptions are P3.2 INT0 and P3.3 INT1) have their inputs disabled in the Power-down mode. Port pins P3.2 (INT0) and P3.3 (INT1) are active even in Power-down mode (to be able to sense an interrupt request to exit the Power-down mode) and as such still have their weak internal pull-ups turned on.

3.10 RST

Reset input. A high on this pin for at least two machine cycles while the oscillator is running resets the device.

3.11 ALE/PROG

Address Latch Enable. ALE/PROG is an output pulse for latching the low byte of the address (on its falling edge) during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.

In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.

If desired, ALE operation can be disabled by setting bit 0 of the AUXR SFR at location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

3.12 **PSEN**

Program Store Enable. PSEN is the read strobe to external program memory (active low).

When the AT89S8253 is executing code from external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory.

5. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will generally return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

 Table 5-1.
 AT89S8253 SFR Map and Reset Values

0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000					SPCR 00000100			0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000	SADEN 00000000							0BFH
0B0H	P3 11111111							IPH XX000000	0B7H
0A8H	IE 0X000000	SADDR 00000000	SPSR 000XXX00						0AFH
0A0H	P2 11111111						WDTRST (Write Only)	WDTCON 0000 0000	0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111						EECON XX000011		97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXXXXXX0	CLKREG XXXXXXX0	8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000	SPDR ########	PCON 00XX0000	87H

Note: # means: 0 after cold reset and unchanged after warm reset.

8.1 Watchdog Control Register

The WDTCON register contains control bits for the Watchdog Timer (shown in Table 8-2).

Table 8-2. WDTCON –	Watchdog Control Regist	er
---------------------	-------------------------	----

WDT	CON Address	= A7H		Reset Value = 0000 0000B					
Not E	Bit Addressable								
		T	1	1	Γ		1		
	PS2	PS1	PS0	WDIDLE	DISRTO	HWDT	WSWRST	WDTEN	
Bit	7	6	5	4	3	2	1	0	

Symbol	Function
PS2 PS1 PS0	Prescaler bits for the watchdog timer (WDT). When all three bits are cleared to 0, the watchdog timer has a nominal period of 16K machine cycles, (i.e. 16 ms at a XTAL frequency of 12 MHz in normal mode or 6 MHz in x2 mode). When all three bits are set to 1, the nominal period is 2048K machine cycles, (i.e. 2048 ms at 12 MHz clock frequency in normal mode or 6 MHz in x2 mode).
WDIDLE	Enable/disable the Watchdog Timer in IDLE mode. When WDIDLE = 0, WDT continues to count in IDLE mode. When WDIDLE = 1, WDT freezes while the device is in IDLE mode.
DISRTO	Enable/disable the WDT-driven Reset Out (WDT drives the RST pin). When DISRTO = 0, the RST pin is driven high after WDT times out and the entire board is reset. When DISRTO = 1, the RST pin remains only as an input and the WDT resets only the microcontroller internally after WDT times out.
HWDT	Hardware mode select for the WDT. When HWDT = 0, the WDT can be turned on/off by simply setting or clearing WDTEN in the same register (this is the software mode for WDT). When HWDT = 1, the WDT has to be set by writing the sequence 1EH/E1H to the WDTRST register (with address 0A6H) and after being set in this way, WDT cannot be turned off except by reset, warm or cold (this is the hardware mode for WDT). To prevent the hardware WDT from resetting the entire device, the same sequence 1EH/E1H must be written to the same WDTRST SFR before the timeout interval.
WSWRST	Watchdog software reset bit. If HWDT = 0 (i.e. WDT is in software controlled mode), when set by software, this bit resets WDT. After being set by software, WSWRST is reset by hardware during the next machine cycle. If HWDT = 1, this bit has no effect, and if set by software, it will not be cleared by hardware.
WDTEN	Watchdog software enable bit. When HWDT = 0 (i.e. WDT is in software-controlled mode), this bit enables WDT when set to 1 and disables WDT when cleared to 0 (it does not reset WDT in this case, but just freezes the existing counter state). If HWDT = 1, this bit is READ-ONLY and reflects the status of the WDT (whether it is running or not).

Figure 8-1. Software Mode – Watchdog Timer Sequence

9. Timer 0 and 1

Timer 0 and Timer 1 in the AT89S8253 operate the same way as Timer 0 and Timer 1 in the AT89S51 and AT89S52. For more detailed information on the Timer/Counter operation, please click on the document link below:

http://www.atmel.com/dyn/resources/prod_documents/DOC4316.PDF

10. Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit $C/\overline{12}$ in the SFR T2CON (see Table 10-2 on page 15). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 10-2.

Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud Rate Generator
Х	X	0	(Off)

Table 10-1.Timer 2 Operating Modes

Figure 14-2. SPI Block Diagram

Note: 1. The Write Data Buffer is only used in enhanced SPI mode.

The SPI has two modes of operation: normal (non-buffered write) and enhanced (buffered write). In normal mode, writing to the SPI data register (SPDR) of the master CPU starts the SPI clock generator and the data written shifts out of the MOSI pin and into the MOSI pin of the slave CPU. Transmission may start after an initial delay while the clock generator waits for the next full bit slot of the specified baud rate. After shifting one byte, the SPI clock generator stops, setting the end of transmission flag (SPIF) and transferring the received byte to the read buffer (SPDR). If both the SPI interrupt enable bit (SPIE) and the serial port interrupt enable bit (ES) are set, an interrupt is requested. Note that SPDR refers to either the write data buffer or the read data buffer, depending on whether the access is a write or read. In normal mode, because the write buffer is transparent (and a write access to SPDR will be directed to the shift buffer), any attempt to write to SPDR while a transmission is in progress will result in a write collision with WCOL set. However, the transmission will still complete normally, but the new byte will be ignored and a new write access to SPDR will be necessary.

Enhanced mode is similar to normal mode except that the write buffer holds the next byte to be transmitted. Writing to SPDR loads the write buffer and sets WCOL to signify that the buffer is full and any further writes will overwrite the buffer. WCOL is cleared by hardware when the buffer ered byte is loaded into the shift register and transmission begins. If the master SPI is currently idle, i.e. if this is the first byte, then after loading SPDR, transmission of the byte starts and WCOL is cleared immediately. While this byte is transmitting, the next byte may be written to SPDR. The Load Enable flag (LDEN) in SPSR can be used to determine when transmission has started. LDEN is asserted during the first four bit slots of a SPI transfer. The master CPU should first check that LDEN is set and that WCOL is cleared before loading the next byte. In enhanced mode, if WCOL is set when a transfer completes, i.e. the next byte is available, then the SPI immediately loads the buffered byte into the shift register, resets WCOL, and continues transmission without stopping and restarting the clock generator. As long as the CPU can keep the write buffer full in this manner, multiple bytes may be transferred with minimal latency between bytes.

Table 14-2. SPSR – SPI Status Register

SPSR	Address = AAH	4					Reset Value	= 000X XX00B	
Not Bit	Addressable								
		I				1		1	7
	SPIF	WCOL	LDEN	-	-	-	DISSO	ENH	_
Bit	7	6	5	4	3	2	1	0	
Symbo	Symbol Function								
SPIF	 SPI interrupt flag. When a serial transfer is complete, the SPIF bit is set and an interrupt is generated if SPIE = 1 and ES = 1. The SPIF bit is cleared by reading the SPI status register followed by reading/writing the SPI data register. 								
WCOL	DL When ENH = 0: Write collision flag. The WCOL bit is set if the SPI data register is written during a data transfer. During data transfer, the result of reading the SPDR register may be incorrect, and writing to it has no effect. The WCOL bit (and the SPIF bit) are cleared by reading the SPI status register followed by reading/writing the SPI data register. When ENH = 1: WCOL works in Enhanced mode as Tx Buffer Full. Writing during WCOL = 1 in enhanced mode will overwrite the waiting data already present in the Tx Buffer. In this mode, WCOL is no longer reset by the SPIF reset but is reset when the write buffer has been unloaded into the serial shift register.								
LDEN	EN Load enable for the Tx buffer in enhanced SPI mode. EN When ENH is set, it is safe to load the Tx Buffer while LDEN = 1 and WCOL = 0. LDEN is high during bits 0 - 3 and is low during bits 4 - 7 of the SPI serial byte transmission time frame.								
DISSO	DISSO Disable slave output bit. When set, this bit causes the MISO pin to be tri-stated so more than one slave device can share the same interface with a single master. Normally, the first byte in a transmission could be the slave address and only the selected slave should clear its DISSO bit.								
ENH	Enhance When El SPDR re	Clear its DISSO bit. Enhanced SPI mode select bit. When ENH = 0, SPI is in normal mode, i.e. without write double buffering. When ENH = 1, SPI is in enhanced mode with write double buffering. The Tx buffer shares the same address with the SPDR register.							

Table 14-3. SPDR - SPI Data Register

SPDR /	Address = 86H					_		
Not Bit	Addressable					Reset Value : unchanged (a	= 00H (after co after warm reso	ld reset) et)
	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0
Bit	7	6	5	4	3	2	1	0

AT89S8253

Interrupt	Source	Vector Address
System Reset	RST or POR	0000H
External Interrupt 0	IEO	0003H
Timer 0 Overflow	TF0	000BH
External Interrupt 1	IE1	0013H
Timer 1 Overflow	TF1	001BH
Serial Port	RI or TI or SPIF	0023H

Table 15-1. Interrupt Enable (IE) Register

IE Address = A8H Reset Value = 0X00 0000B										
Bit Addres	Bit Addressable									
	EA	_	ET2	ES	ET1	EX1	ET0	EX0		
E	Enable Bit =	1 enables the	e interrupt, 0 d	isables the inte	errupt.					
Symbol	Position	Function								
EA	IE.7	Disables a enabled or	Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.							
-	IE.6	Reserved.	Reserved.							
ET2	IE.5	Timer 2 int	errupt enable	bit.						
ES	IE.4	SPI and U	ART interrupt	enable bit.						
ET1	IE.3	Timer 1 int	Timer 1 interrupt enable bit.							
EX1	IE.2	External in	External interrupt 1 enable bit.							
ET0	IE.1	Timer 0 int	Timer 0 interrupt enable bit.							
EX0	IE.0	External in	External interrupt 0 enable bit.							
User softv	vare should n	never write 1	s to reserved l	oits, because th	ney may be use	ed in future AT8	9 products.			

Table 15-2. IP – Interrupt Priority Register

IP = B8H Reset Value = XX00 0000B									
Bit Addressable									
Ĭ	_	-	PT2	PS	PT1	PX1	PT0	PX0	
Bit	7	6	5	4	3	2	1	0	

Symbol	Function
PT2	Timer 2 Interrupt Priority Low
PS	Serial Port Interrupt Priority Low
PT1	Timer 1 Interrupt Priority Low
PX1	External Interrupt 1 Priority Low
PT0	Timer 0 Interrupt Priority Low
PX0	External Interrupt 0 Priority Low

Table 15-3. IPH – Interrupt Priority High Register

IPH = E	IPH = B7H Reset Value = XX00 0000B								
Not Bit Addressable									
	– – PT2H PSH PT1H PX1H PT0H PX0H								
Bit	7	6	5	4	3	2	1	0	
Symbol	Function								
PT2H	Timer 2 Inter	Timer 2 Interrupt Priority High							
PSH	Serial Port In	Serial Port Interrupt Priority High							
PT1H	Timer 1 Inter	Timer 1 Interrupt Priority High							
PX1H	External Interrupt 1 Priority High								
PT0H	Timer 0 Interrupt Priority High								
PX0H	External Inte	External Interrupt 0 Priority High							

Figure 15-1. Interrupt Sources

32 AT89S8253

16. Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 16-1 (A) and (B). Either a quartz crystal or ceramic resonator may be used. For frequencies above 16MHz it is recommended that C1 be replaced with R1 for improved startup performance. Note that the internal structure of the devices adds about 10 pF of capacitance to both XTAL1 and XTAL2. The total capacitance on XTAL1 or XTAL2, including the external load capacitor (C1/C2) plus internal device load, board trace and crystal loadings, should not exceed 20 pF. Figure 16-2, 16-3, 16-4 and 16-5 illustrate the relationship between clock loading and the respective resulting clock amplitudes.

Figure 16-1. Oscillator Connections

Figure 16-2. Quartz Crystal Clock Source (A)

Figure 16-5. Ceramic Resonator Clock Source (B)

To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 16-6.

17. Idle Mode

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. This mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

AT89S8253

26. Flash Programming and Verification Characteristics – Parallel Mode

 $T_{A}=20^{\circ}C$ to 30°C, $V_{CC}=4.0V$ to 5.5V

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Enable Voltage	11.5	12.5	V
I _{PP}	Programming Enable Current		1.0	mA
1/t _{CLCL}	Oscillator Frequency	3	24	MHz
t _{PWRUP}	Power On to RST High ⁽¹⁾	10		μs
t _{RHX}	RST High to XTAL Start	10		μs
t _{OSTL}	Oscillator Settling Time	10		ms
t _{HSTL}	High Voltage Settling Time	10		μs
t _{MSTP}	Mode Setup to PROG Low	1		μs
t _{ASTP}	Address Setup to PROG Low	1		μs
t _{DSTP}	Data Setup to PROG Low	1		μs
t _{PGW}	PROG Width	1		μs
t _{AHLD}	Address Hold after PROG	1		μs
t _{DHLD}	Data Hold after PROG	1		μs
t _{BLT}	Byte Load Period	1	150	μs
t _{PHBL}	PROG High to BUSY Low		256	μs
t _{wc}	Write Cycle Time ⁽²⁾		4.5	ms
t _{MHLD}	Mode Hold After BUSY Low	10		μs
t _{VFY}	Address to Data Verify Valid		1	μs
t _{PSTP}	PROG Setup to V _{PP} High	10		μs
t _{PHLD}	PROG Hold after V _{PP} Low	10		μs
t _{PLX}	PROG Low to XTAL Halt	1		μs
t _{XRL}	XTAL Halt to RST Low	1		μs
t _{PWRDN}	RST Low to Power Off	1		μs

Notes: 1. Power On occurs once V_{CC} reaches 2.4V.

2. 9 ms if Chip Erase.

31. AC Characteristics

The values shown in this table are valid for $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $V_{CC} = 2.7$ to 5.5V, unless otherwise noted.

Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

31.1 External Program and Data Memory Characteristics

		Variable Oscillator		
Symbol	Parameter	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency	0	24	MHz
t _{LHLL}	ALE Pulse Width	2t _{CLCL} - 12		ns
t _{AVLL}	Address Valid to ALE Low	t _{CLCL} - 12		ns
t _{LLAX}	Address Hold after ALE Low	t _{CLCL} - 16		ns
t _{LLIV}	ALE Low to Valid Instruction In		4t _{CLCL} - 50	ns
t _{LLPL}	ALE Low to PSEN Low	t _{CLCL} - 12		ns
t _{PLPH}	PSEN Pulse Width	3t _{CLCL} - 12		ns
t _{PLIV}	PSEN Low to Valid Instruction In		3t _{CLCL} - 50	ns
t _{PXIX}	Input Instruction Hold after PSEN	-10		ns
t _{PXIZ}	Input Instruction Float after PSEN		t _{CLCL} - 20	ns
t _{PXAV}	PSEN to Address Valid	t _{CLCL} - 4		ns
t _{AVIV}	Address to Valid Instruction In		5t _{CLCL} - 50	ns
t _{PLAZ}	PSEN Low to Address Float		20	ns
t _{RLRH}	RD Pulse Width	6t _{CLCL}		ns
t _{WLWH}	WR Pulse Width	6t _{CLCL}		ns
t _{RLDV}	RD Low to Valid Data In		5t _{CLCL} - 50	ns
t _{RHDX}	Data Hold after RD	0		ns
t _{RHDZ}	Data Float after RD		2t _{CLCL} - 20	ns
t _{LLDV}	ALE Low to Valid Data In		8t _{CLCL} - 50	ns
t _{AVDV}	Address to Valid Data In		9t _{CLCL} - 50	ns
t _{LLWL}	ALE Low to RD or WR Low	3t _{CLCL} - 24	3t _{CLCL}	ns
t _{AVWL}	Address to \overline{RD} or \overline{WR} Low	4t _{CLCL} - 12		ns
t _{QVWX}	Data Valid to WR Transition	2t _{CLCL} - 24		ns
t _{QVWH}	Data Valid to WR High	8t _{CLCL} - 24		ns
t _{WHQX}	Data Hold after WR	2t _{CLCL} - 24		ns
t _{RLAZ}	RD Low to Address Float		0	ns
t _{WHLH}	RD or WR High to ALE High	t _{CLCL} - 10	t _{CLCL} + 20	ns
t _{WHAX}	Address Hold after RD or WR High	t _{CLCL} - 10		ns

34. External Data Memory Write Cycle

35. External Clock Drive Waveforms

36. External Clock Drive

		V _{CC} = 2.7		
Symbol	Parameter	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency	0	24	MHz
t _{CLCL}	Clock Period	41.6		ns
t _{CHCX}	High Time	12		ns
t _{CLCX}	Low Time	12		ns
t _{CLCH}	Rise Time		5	ns
t _{CHCL}	Fall Time		5	ns

37. Serial Port Timing: Shift Register Mode Test Conditions

		Variable		
Symbol	Parameter	Min Max		Units

38. Shift Register Mode Timing Waveforms

39. AC Testing Input/Output Waveforms⁽¹⁾

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

40. Float Waveforms⁽¹⁾

45. I_{CC} (Active Mode) Measurements

46. I_{CC} (Idle Mode) Measurements

47. I_{CC} (Power Down Mode) Measurements

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support mcu@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.