

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	SPI, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89s8253-24ju

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 44J – 44-lead PLCC

(MOSI) P1.5 1 0 (MISO) P1.6 8 (SCK) R5T 1 0 (RXD) P3.1 13 (INTI) P3.3 15 (TO) P3.4 17 (T1) P3.5 15 (T0) P3.4 17 (T1) P3.5 16 (HW)	0	((V) (V) (V) (V) (V) (V) (V) (V) (V) (V)
RST 🗆	1	42 🗆 P1.7 (SCK)
(RXD) P3.0 [2	41 D P1.6 (MISO)
(TXD) P3.1	3	40 D P1.5 (MOSI)
(INT0) P3.2	4	39 🗆 P1.4 (SS)
(INT1) P3.3 [5	38 🗆 P1.3
(T0) P3.4 🗆	6	37 🗆 P1.2
(T1) P3.5 🗆	7	36 🗆 P1.1 (T2EX)
(WR) P3.6 🗆	8	35 🗆 P1.0 (T2)
(RD) P3.7 🗆	9	34 🗆 VDD
XTAL2	10	33 🗆 PWRVDD
XTAL1 🗆	11	32 🗆 P0.0 (AD0)
GND 🗆	12	31 🛛 P0.1 (AD1)
PWRGND	13	30 🗌 P0.2 (AD2)
(A8) P2.0 🗆	14	29 🗆 P0.3 (AD3)
(A9) P2.1	15	28 P0.4 (AD4)
(A10) P2.2	16	27 P0.5 (AD5)
(A11) P2.3 □ (A12) P2.4 □	17 18	26 🗆 P0.6 (AD6) 25 🗋 P0.7 (AD7)
(A12) P2.4 (A13) P2.5 (A13) P2.5	10	25 🗆 P0.7 (AD7) 24 🗆 EA/VPP
(A13) P2.5 (A14) P2.6 (A14)	20	24 DEAVER 23 DALE/PROG
(A14) P2.0 L	20	
(,		

Ŷ

2.4 42PS6 – PDIP

3. Pin Description

3.1 VCC

Supply voltage (all packages except 42-PDIP).

3.2 GND

Ground (all packages except 42-PDIP; for 42-PDIP GND connects only the logic core and the embedded program/data memories).

3.3 VDD

Supply voltage for the 42-PDIP which connects only the logic core and the embedded program/data memories.

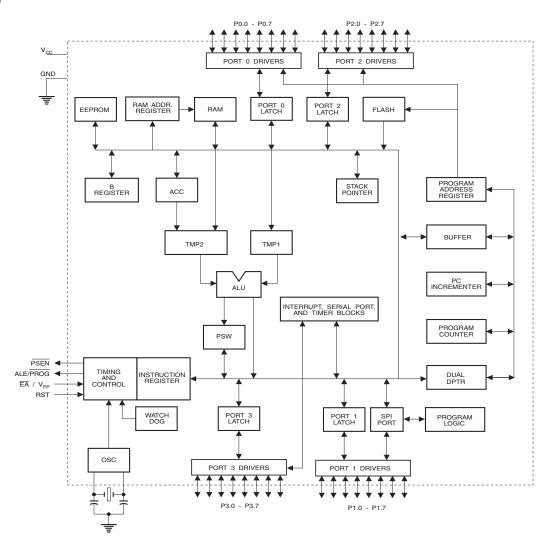
3.4 PWRVDD

Supply voltage for the 42-PDIP which connects only the I/O Pad Drivers. The application board **must** connect both VDD and PWRVDD to the board supply voltage.

3.13 EA/VPP

External Access Enable. \overline{EA} must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, \overline{EA} will be internally latched on reset.

 $\overline{\text{EA}}$ should be strapped to V_{CC} for internal program executions. This pin also receives the 12-volt programming enable voltage (V_{PP}) during Flash programming when 12-volt programming is selected.


3.14 XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

3.15 XTAL2

Output from the inverting oscillator amplifier. XTAL2 should not drive a board-level clock without a buffer.

4. Block Diagram

AT89S8253

5. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will generally return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

 Table 5-1.
 AT89S8253 SFR Map and Reset Values

			-						-
0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000					SPCR 00000100			0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000	SADEN 00000000							0BFH
0B0H	P3 11111111							IPH XX000000	0B7H
0A8H	IE 0X000000	SADDR 00000000	SPSR 000XXX00						0AFH
0A0H	P2 11111111						WDTRST (Write Only)	WDTCON 0000 0000	0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111						EECON XX000011		97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXXXXXX0	CLKREG XXXXXXX0	8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000	SPDR ########	PCON 00XX0000	87H
Note:	# means: 0 aft	er cold reset and	d unchanged a	fter warm rese	et.				-

Note: # means: 0 after cold reset and unchanged after warm reset.

5.1 Auxiliary Register

Table 5-2.AUXR – Auxiliary Register

AUXI	R Address = 8	BEH					Reset Value = X	XXX XXX0B	
Not E	Bit Addressab	le							
							Intel Durd Evit		1
	_	-	-	-	_	-	Intel_Pwd_Exit	DISALE	
Bit	7	6	5	4	3	2	1	0	
Sym	bol	Function							
Intel_	_Pwd_Exit	the interrupt s		nis bit is cleare	d, the executio		to resume execution of ter a self-timed intervation		
DISA	LE						or frequency (except de MOVX or MOVC instru		nen 1

5.2 Clock Register

Table 5-3.CLKREG – Clock Register

CLKRE	G Address =	8FH					Reset Value = >	XXX XXX0B
Not Bit A	Addressable							
					_	_	_	X2
Bit	7	6	5	4	3	2	1	0
Symbol	Functi	on						
	When	X2 = 0, the oscil	llator frequency	(at XTAL1 pin)	is internally div	rided by 2 befor	e it is used as tl	ne device system

X0	When X2 = 0, the oscillator frequency (at XTAL1 pin) is internally divided by 2 before it is used as the device system frequency.
X2	When X2 = 1, the divider by 2 is no longer used and the XTAL1 frequency becomes the device system frequency. This enables the user to choose a 6 MHz crystal instead of a 12 MHz crystal, for example, in order to reduce EMI.

5.3 SPI Registers

Control and status bits for the Serial Peripheral Interface are contained in registers SPCR (see Table 14-1 on page 25) and SPSR (see Table 14-2 on page 26). The SPI data bits are contained in the SPDR register. In normal SPI mode, writing the SPI data register during serial data transfer sets the Write Collision bit (WCOL) in the SPSR register. In enhanced SPI mode, the SPDR is also write double-buffered because WCOL works as a Write Buffer Full Flag instead of being a collision flag. The values in SPDR are not changed by Reset.

5.4 Interrupt Registers

The global interrupt enable bit and the individual interrupt enable bits are in the IE register. In addition, the individual interrupt enable bit for the SPI is in the SPCR register. Four priorities can be set for each of the six interrupt sources in the IP and IPH registers.

IPH bits have the same functions as IP bits, except IPH has higher priority than IP. By using IPH in conjunction with IP, a priority level of 0, 1, 2, or 3 may be set for each interrupt.

8. Programmable Watchdog Timer

The programmable Watchdog Timer (WDT) counts instruction cycles. The prescaler bits, PS0, PS1 and PS2 in SFR WDTCON are used to set the period of the Watchdog Timer from 16K to 2048K instruction cycles. The available timer periods are shown in Table 8-1. The WDT time-out period is dependent upon the external clock frequency.

The WDT is disabled by Power-on Reset and during Power-down mode. When WDT times out without being serviced or disabled, an internal RST pulse is generated to reset the CPU. See Table 8-1 for the WDT period selections.

	WDT Prescaler Bits		Period (Nominal for
PS2	PS1	PS0	$F_{CLK} = 12 \text{ MHz}$
0	0	0	16 ms
0	0	1	32 ms
0	1	0	64 ms
0	1	1	128 ms
1	0	0	256 ms
1	0	1	512 ms
1	1	0	1024 ms
1	1	1	2048 ms

 Table 8-1.
 Watchdog Timer Time-out Period Selection

9. Timer 0 and 1

Timer 0 and Timer 1 in the AT89S8253 operate the same way as Timer 0 and Timer 1 in the AT89S51 and AT89S52. For more detailed information on the Timer/Counter operation, please click on the document link below:

http://www.atmel.com/dyn/resources/prod_documents/DOC4316.PDF

10. Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit $C/\overline{12}$ in the SFR T2CON (see Table 10-2 on page 15). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 10-2.

Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	х	1	Baud Rate Generator
Х	х	0	(Off)

Table 10-1.Timer 2 Operating Modes

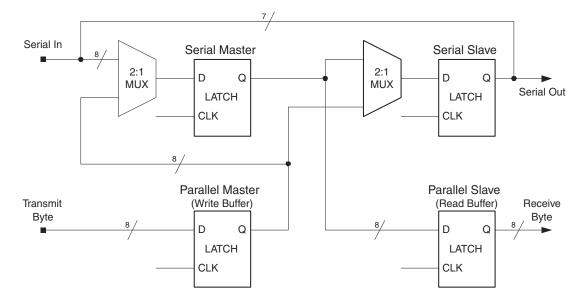


Figure 14-3. SPI Shift Register Diagram

The CPHA (<u>C</u>lock <u>PHA</u>se), CPOL (<u>C</u>lock <u>POL</u>arity), and SPR (<u>S</u>erial <u>P</u>eripheral clock <u>R</u>ate = baud rate) bits in SPCR control the shape and rate of SCK. The two SPR bits provide four possible clock rates when the SPI is in master mode. In slave mode, the SPI will operate at the rate of the incoming SCK as long as it does not exceed the maximum bit rate. There are also four possible combinations of SCK phase and polarity with respect to the serial data. CPHA and CPOL determine which format is used for transmission. The SPI data transfer formats are shown in Figure 14-4 and Figure 14-5. To prevent glitches on SCK from disrupting the interface, CPHA, CPOL, and SPR should be set up before the interface is enabled, and the master device should be enabled before the slave device(s).

Symbol	Parameter	Min	Max	Units
t _{CLCL}	Oscillator Period	41.6		ns
t _{scк}	Serial Clock Cycle Time	4t _{CLCL}		ns
t _{SHSL}	Clock High Time	t _{SCK} /2 - 25		ns
t _{SLSH}	Clock Low Time	t _{SCK} /2 - 25		ns
t _{SR}	Rise Time		25	ns
t _{SF}	Fall Time		25	ns
t _{sis}	Serial Input Setup Time	10		ns
t _{SIH}	Serial Input Hold Time	10		ns
t _{SOH}	Serial Output Hold Time		10	ns
t _{SOV}	Serial Output Valid Time		35	ns

 Table 14-4.
 SPI Master Characteristics

AT89S8253

Interrupt	Source	Vector Address
System Reset	RST or POR	0000H
External Interrupt 0	IEO	0003H
Timer 0 Overflow	TF0	000BH
External Interrupt 1	IE1	0013H
Timer 1 Overflow	TF1	001BH
Serial Port	RI or TI or SPIF	0023H

Table 15-1. Interrupt Enable (IE) Register

IE Addres	s = A8H						Reset Value	e = 0X00 0000B	
Bit Addres	ssable								
	EA	_	ET2	ES	ET1	EX1	ET0	EX0	
E	Enable Bit =	1 enables the	e interrupt, 0 d	isables the inte	errupt.				
Symbol	Position	Function							
EA	IE.7		•	EA = 0, no inte setting or cleari		•	= 1, each interrup	ot source is indiv	idually
-	IE.6	Reserved.							
ET2	IE.5	Timer 2 int	errupt enable	bit.					
ES	IE.4	SPI and U	ART interrupt	enable bit.					
ET1	IE.3	Timer 1 int	errupt enable	bit.					
EX1	IE.2	External in	terrupt 1 enal	ole bit.					
ET0	IE.1	Timer 0 int	errupt enable	bit.					
EX0	IE.0	External in	terrupt 0 enal	ole bit.					
User softv	vare should n	never write 1	s to reserved l	oits, because th	ney may be use	ed in future AT8	9 products.		

Table 15-2. IP – Interrupt Priority Register

IP = B8I	IP = B8H Reset Value = XX00 0000B									
Bit Addr	ressable									
	_	_	PT2	PS	PT1	PX1	PT0	PX0		
Bit	7	6	5	4	3	2	1	0		

Symbol	Function
PT2	Timer 2 Interrupt Priority Low
PS	Serial Port Interrupt Priority Low
PT1	Timer 1 Interrupt Priority Low
PX1	External Interrupt 1 Priority Low
PT0	Timer 0 Interrupt Priority Low
PX0	External Interrupt 0 Priority Low

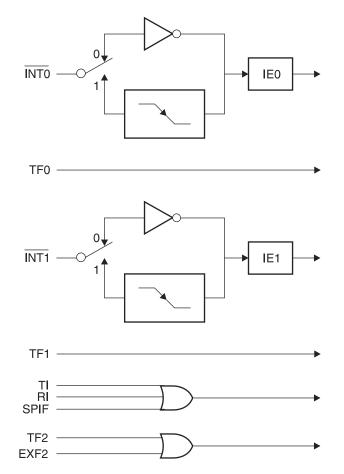


Table 15-3. IPH – Interrupt Priority High Register

IPH = B7H						Reset Value = XX00 0000B			
Not Bi	t Addressable								
	-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
Bit	7	6	5	4	3	2	1	0	
Symbol	Function								
PT2H	Timer 2 Interrupt Priority High								
PSH	Serial Port Interrupt Priority High								
PT1H	Timer 1 Interrupt Priority High								
PX1H	External Interrupt 1 Priority High								
PT0H	Timer 0 Interrupt Priority High								
PX0H	External Interrupt 0 Priority High								

Figure 15-1. Interrupt Sources

32 AT89S8253

16. Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 16-1 (A) and (B). Either a quartz crystal or ceramic resonator may be used. For frequencies above 16MHz it is recommended that C1 be replaced with R1 for improved startup performance. Note that the internal structure of the devices adds about 10 pF of capacitance to both XTAL1 and XTAL2. The total capacitance on XTAL1 or XTAL2, including the external load capacitor (C1/C2) plus internal device load, board trace and crystal loadings, should not exceed 20 pF. Figure 16-2, 16-3, 16-4 and 16-5 illustrate the relationship between clock loading and the respective resulting clock amplitudes.

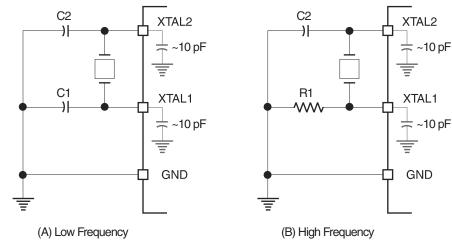


Figure 16-1. Oscillator Connections

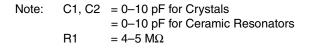


Figure 16-2. Quartz Crystal Clock Source (A)

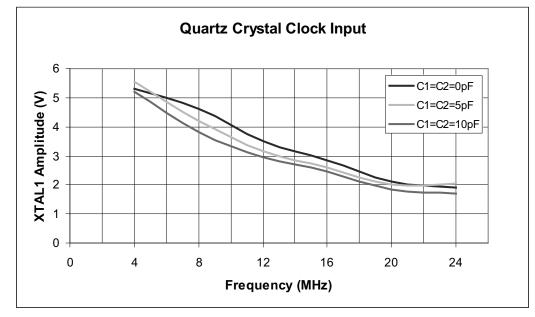
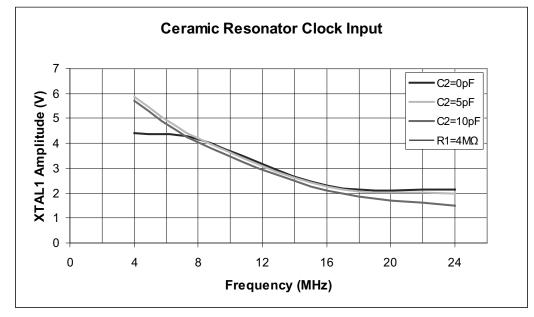
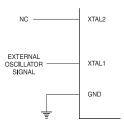




Figure 16-5. Ceramic Resonator Clock Source (B)

To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 16-6.

17. Idle Mode

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. This mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

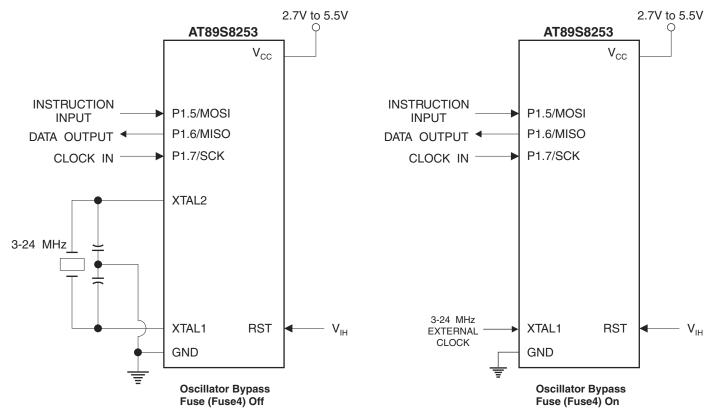
20. Programming the Flash and EEPROM

Atmel's AT89S8253 Flash microcontroller offers 12K bytes of In-System reprogrammable Flash code memory and 2K bytes of EEPROM data memory.

The AT89S8253 is normally shipped with the on-chip Flash code and EEPROM data memory arrays in the erased state (i.e. contents = FFH) and ready to be programmed. This device supports a parallel programming mode and a serial programming mode. The serial programming mode provides a convenient way to reprogram the AT89S8253 inside the user's system. The parallel programming mode is compatible with conventional third-party Flash or EPROM programmers.

The code and data memory arrays are mapped via separate address spaces in the parallel and serial programming modes: 0000H to 2FFFH for code memory and 000H to 7FFH for data memory.

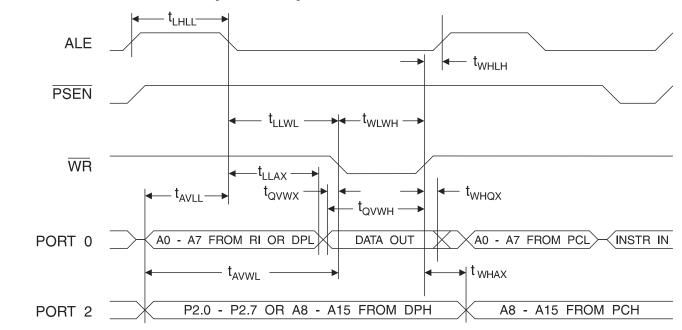
The code and data memory arrays in the AT89S8253 are programmed byte-by-byte or by page in either programming mode. To reprogram any non-blank byte in the parallel or serial mode, the user needs to invoke the Chip Erase operation first to erase both arrays since there is no built-in auto-erase capability.


Parallel Programming Algorithm: To program and verify the AT89S8253 in the parallel programming mode, the following sequence is recommended (see Figure 26-1):

- 1. Power-up sequence:
 - a. Apply power between V_{CC} and GND pins.
 - b. Set RST pin to "H".
 - c. Apply a 3 MHz to 24 MHz clock to XTAL1 pin and wait for at least 10 ms.
- 2. Set PSEN pin to "L"
 - a. ALE pin to "H"
 - b. EA pin to "H" and all other pins to "H".
- 3. Raise \overline{EA}/VPP to 12V to enable Flash programming, erase or verification. Enable the P3.0 pull-up (10 K Ω typical) for RDY/ \overline{BSY} operation.
- Apply the appropriate combination of "H" or "L" logic levels to pins P3.3, P3.4, P3.5, P3.6, P3.7 to select one of the programming operations shown in the Flash Programming Modes table.
- 5. Apply the desired byte address to pins P1.0 to P1.7 and P2.0 to P2.5.
 - a. Apply data to pins P0.0 to P0.7 for write code operation.
- 6. Pulse ALE/PROG once to load a byte in the code memory array, the data memory array, or the lock bits.
- 7. Repeat steps 5 and 6, changing the address and data for up to 64 bytes in the code memory page or 32 bytes in the data memory (EEPROM) page. When loading a page with individual bytes, the interval between consecutive byte loads should be no longer than 150 µs. Otherwise the device internally times out and assumes that the page load sequence is completed, rejecting any further loads before the page programming sequence has finished. This timing restriction also applies to Page Write of the 64-byte User Row.
- 8. After the last byte of the current page has been loaded, wait for 5 ms or monitor the RDY/BUSY pin until it transitions high. The page write cycle is self-timed and typically takes less than 5 ms.
- 9. To verify the last byte of the page just programmed, bring pin P3.4 to "L" and read the programmed data at pins P0.0 to P0.7.

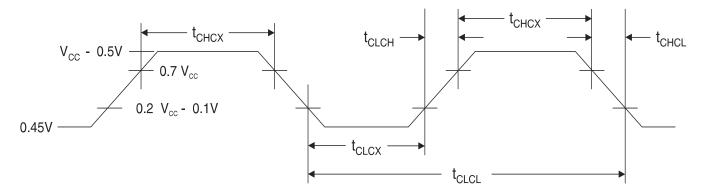
AT89S8253

31. AC Characteristics


The values shown in this table are valid for $T_A = -40^{\circ}C$ to $85^{\circ}C$ and $V_{CC} = 2.7$ to 5.5V, unless otherwise noted.

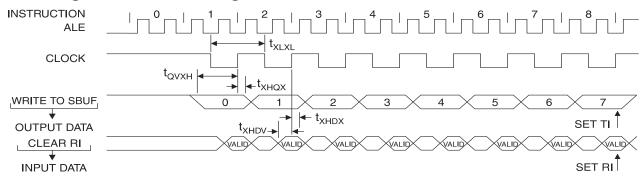
Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.

31.1 External Program and Data Memory Characteristics

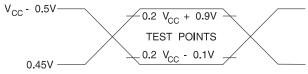

		Variable	Variable Oscillator		
Symbol	Parameter	Min	Мах	Units	
1/t _{CLCL}	Oscillator Frequency	0	24	MHz	
LHLL	ALE Pulse Width	2t _{CLCL} - 12		ns	
AVLL	Address Valid to ALE Low	t _{CLCL} - 12		ns	
LLAX	Address Hold after ALE Low	t _{CLCL} - 16		ns	
LLIV	ALE Low to Valid Instruction In		4t _{CLCL} - 50	ns	
LLPL	ALE Low to PSEN Low	t _{CLCL} - 12		ns	
PLPH	PSEN Pulse Width	3t _{CLCL} - 12		ns	
PLIV	PSEN Low to Valid Instruction In		3t _{CLCL} - 50	ns	
PXIX	Input Instruction Hold after PSEN	-10		ns	
PXIZ	Input Instruction Float after PSEN		t _{CLCL} - 20	ns	
PXAV	PSEN to Address Valid	t _{CLCL} - 4		ns	
AVIV	Address to Valid Instruction In		5t _{CLCL} - 50	ns	
PLAZ	PSEN Low to Address Float		20	ns	
RLRH	RD Pulse Width	6t _{CLCL}		ns	
WLWH	WR Pulse Width	6t _{CLCL}		ns	
RLDV	RD Low to Valid Data In		5t _{CLCL} - 50	ns	
RHDX	Data Hold after RD	0		ns	
RHDZ	Data Float after RD		2t _{CLCL} - 20	ns	
LLDV	ALE Low to Valid Data In		8t _{CLCL} - 50	ns	
AVDV	Address to Valid Data In		9t _{CLCL} - 50	ns	
LLWL	ALE Low to RD or WR Low	3t _{CLCL} - 24	3t _{CLCL}	ns	
AVWL	Address to RD or WR Low	4t _{CLCL} - 12		ns	
QVWX	Data Valid to WR Transition	2t _{CLCL} - 24		ns	
QVWH	Data Valid to WR High	8t _{CLCL} - 24		ns	
WHQX	Data Hold after WR	2t _{CLCL} - 24		ns	
RLAZ	RD Low to Address Float		0	ns	
WHLH	RD or WR High to ALE High	t _{CLCL} - 10	t _{CLCL} + 20	ns	
WHAX	Address Hold after RD or WR High	t _{CLCL} - 10		ns	

34. External Data Memory Write Cycle

35. External Clock Drive Waveforms

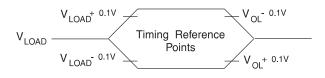

36. External Clock Drive

		V _{CC} = 2.7\		
Symbol	Parameter	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency	0	24	MHz
t _{CLCL}	Clock Period	41.6		ns
t _{CHCX}	High Time	12		ns
t _{CLCX}	Low Time	12		ns
t _{CLCH}	Rise Time		5	ns
t _{CHCL}	Fall Time		5	ns


37. Serial Port Timing: Shift Register Mode Test Conditions

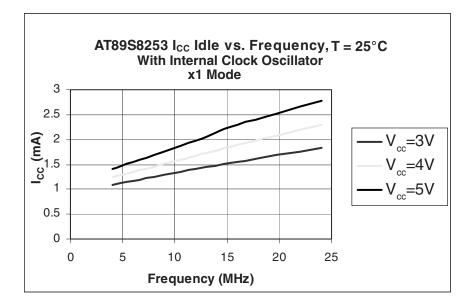
		Variable Oscillator		
Symbol	Parameter	Min	Max	Units

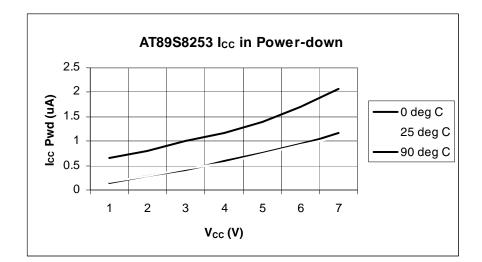
38. Shift Register Mode Timing Waveforms



39. AC Testing Input/Output Waveforms⁽¹⁾

Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.


40. Float Waveforms⁽¹⁾

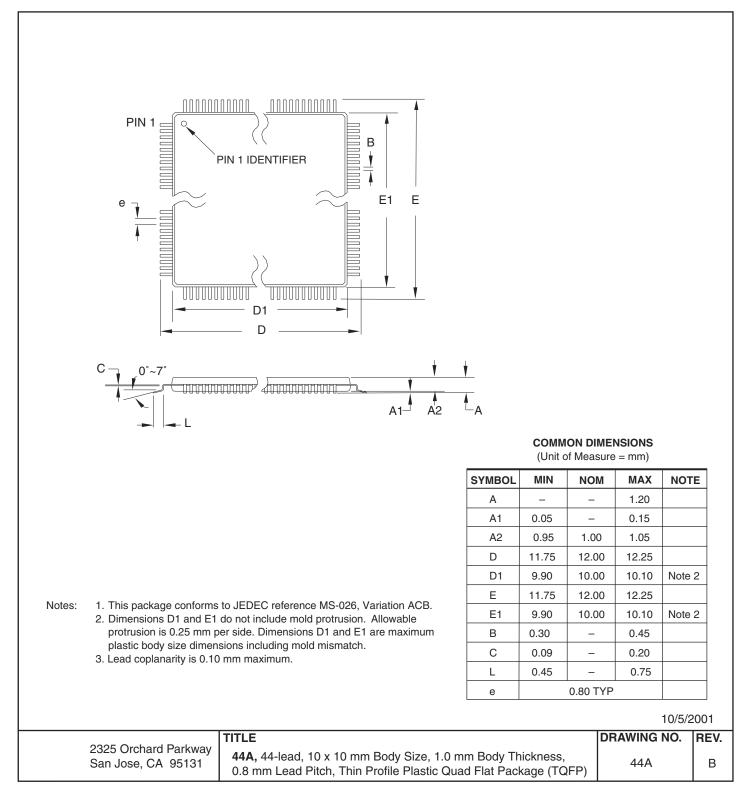


46. I_{CC} (Idle Mode) Measurements

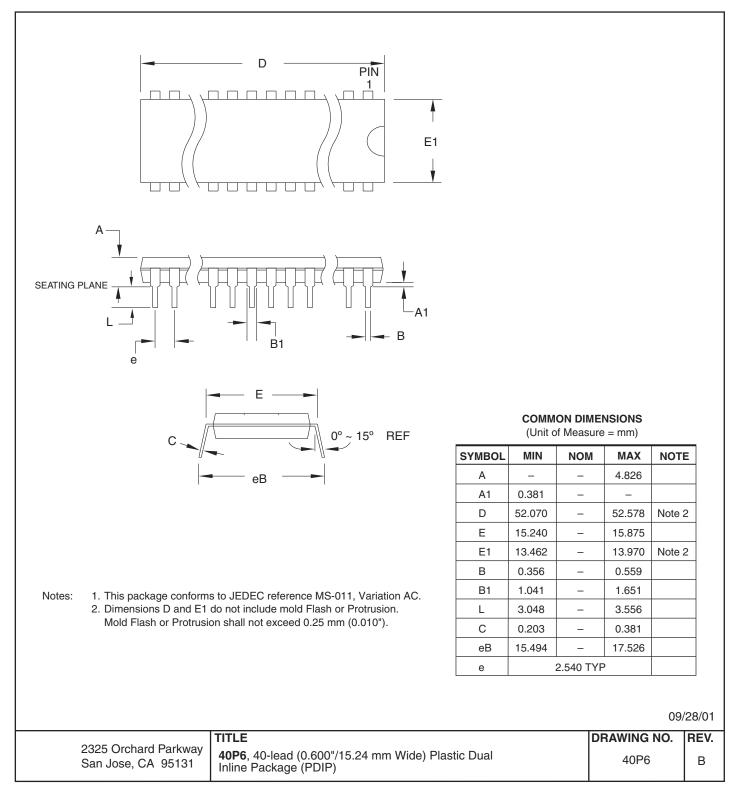
47. I_{CC} (Power Down Mode) Measurements

48. Ordering Information

48.1 Green Package (Pb/Halide-free)


Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
		AT89S8253-24AU	44A	
24		AT89S8253-24JU	44J	Industrial
24	2.7V to 5.5V	AT89S8253-24PU	40P6	(-40° C to 85° C)
		AT89S8253-24PSU	42PS6	

Package Type		
44 A	44-lead, Thin Plastic Gull Wing Quad Flat Package (TQFP)	
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)	
40P6	40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	
42PS6	42-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	


49. Package Information

56 **AT89S8253**

49.3 40P6 - PDIP

