

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp202-e-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-6: DATA MEMORY MAP FOR dsPIC33CH128MP508 DEVICES

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
l ² C			U1P2	24E	000000000	SPI1CON1H	2AE	000000000000000000000000000000000000000
I2C1CONL	200	0-01000000000000	U1P3	250	000000000000000000000000000000000000000	SPI1CON2L	2B0	00000
I2C1CONH	202	0000000	U1P3H	252	00000000	SPI1CON2H	2B2	
I2C1STAT	204	00000000000000	U1TXCHK	254	00000000	SPI1STATL	2B4	000001-1-00
I2C1ADD	208	0000000000	U1RXCHK	256	00000000	SPI1STATH	2B6	000000000000
I2C1MSK	20C	0000000000	U1SCCON	258	00000-	SPI1BUFL	2B8	000000000000000000000000000000000000000
I2C1BRG	210	000000000000000000000000000000000000000	U1SCINT	25A	00-00000-000	SPI1BUFH	2BA	000000000000000000000000000000000000000
I2C1TRN	214	111111111	U1INT	25C	000	SPI1BRGL	2BC	xxxxxxxxxxxxxxx
I2C1RCV	218	00000000	U2MODE	260	0-000-0000000000	SPI1BRGH	2BE	
I2C2CONL	21C	0-01000000000000	U2MODEH	262	0000000000000	SPI1IMSKL	2C0	000000-0-00
I2C2CONH	21E	0000000	U2STA	264	00000001000000	SPI1IMSKH	2C2	0-000000-000000
I2C2STAT	220	00000000000000	U2STAH	266	-000-00000101110	SPI1URDTL	2C4	000000000000000000000000000000000000000
I2C2ADD	224	0000000000	U2BRG	268	000000000000000000000000000000000000000	SPI1URDTH	2C6	000000000000000000000000000000000000000
I2C2MSK	228	0000000000	U2BRGH	26A	0000	SPI2CON1L	2C8	0-00000000000000
I2C2BRG	22C	000000000000000000000000000000000000000	U2RXREG	26C	xxxxxxxx	SPI2CON1H	2CA	000000000000000000000000000000000000000
I2C2TRN	230	111111111	U2TXREG	270	xxxxxxxxx	SPI2CON2L	2CC	00000
I2C2RCV	234	00000000	U2P1	274	000000000	SPI2CON2H	2CE	
UART			U2P2	276	000000000	SPI2STATL	2D0	000001-1-00
U1MODE	238	0-000-000000000	U2P3	278	000000000000000000000000000000000000000	SPI2STATH	2D2	000000000000
U1MODEH	23A	0000000000000	U2P3H	27A	00000000	SPI2BUFL	2D4	000000000000000000000000000000000000000
U1STA	23C	00000001000000	U2TXCHK	27C	00000000	SPI2BUFH	2D6	000000000000000000000000000000000000000
U1STAH	23E	-000-00000101110	U2RXCHK	27E	00000000	SPI2BRGL	2D8	xxxxxxxxxxxxxx
U1BRG	240	000000000000000000000000000000000000000	U2SCCON	280	00000-	SPI2BRGH	2DA	
U1BRGH	242	0000	U2SCINT	282	00-00000-000	SPI2IMSKL	2DC	000000-0-00
U1RXREG	244	xxxxxxxx	U2INT	284	000	SPI2IMSKH	2DE	0-000000-000000
U1TXREG	248	xxxxxxxxx	SPI			SPI2URDTL	2E0	000000000000000000000000000000000000000
U1P1	24C	000000000	SPI1CON1L	2AC	0-000000000000000	SPI2URDTH	2E2	000000000000000000000000000000000000000

TABLE 3-6:MASTER SFR BLOCK 200h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
r							
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	Ibled				
hit 14		ccumulator A (Overflow Tran F	lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator A			
	0 = Trap was	s not caused by	y an overflow o	f Accumulator A	4		
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	-lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator B	_		
	0 = Trap was	s not caused by	y an overflow o	f Accumulator E	3		
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	\perp = Trap was 0 = Trap was	s caused by a (s not caused b	v a catastrophic ov	erriow of Accurr	cumulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by a	catastrophic ov	erflow of Accun	nulator B		
	0 = Trap was	s not caused by	y a catastrophic	c overflow of Ac	cumulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove	rflow of Accum	nulator A				
		Isabled	a				
bit 9		cumulator B OV	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	isabled					
bit 8	COVTE: Catastrophic Overflow Trap Enable bit						
	1 = Trap cata	astrophic overf	low of Accumu	lator A or B is e	nabled		
	0 = Trap is d	isabled					
bit 7	SFTACERR	Shift Accumu	lator Error State	us bit			
	1 = Math err	or trap was cau	used by an inva	alid accumulator	r shift		
	o = wath error	or trap was not	caused by an	invalio accumu	iator snift		

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1

Legend:							
bit 7							bit 0
SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
R/W-0							
bit 15							bit 8
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
R/W-0							

REGISTER 3-57: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 3-30.

 bit 7-0
 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-58: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CAN1RXR7 | CAN1RXR6 | CAN1RXR5 | CAN1RXR4 | CAN1RXR3 | CAN1RXR2 | CAN1RXR1 | CAN1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CAN1RXR<7:0>: Assign CAN1 Input (CAN1RX) to the Corresponding RPn Pin bits See Table 3-30.

3.9.3 ADC CONTROL/STATUS REGISTERS

REGISTER 3-157: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15 ADON: ADC Enable bit⁽¹⁾
 - 1 = ADC module is enabled
 - 0 = ADC module is off
- bit 14 Unimplemented: Read as '0'
- bit 13 ADSIDL: ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-0 Unimplemented: Read as '0'
- **Note 1:** Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

4.2.6.3 Modulo Addressing Applicability

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:	The modulo corrected Effective Address
	is written back to the register only when
	Pre-Modify or Post-Modify Addressing
	mode is used to compute the Effective
	Address. When an address offset (such as
	[W7 + W2]) is used, Modulo Addressing
	correction is performed, but the contents of
	the register remain unchanged.

4.2.7 BIT-REVERSED ADDRESSING

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.2.7.1 Bit-Reversed Addressing Implementation

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

4.4 Slave Resets

Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Reset**" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is shown in Figure 4-15.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.2 "Slave Memory Organization" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 4-15).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value after a
	device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

FIGURE 4-15: RESET SYSTEM BLOCK DIAGRAM

4.4.2 SLAVE RESET CONTROL REGISTER

REGISTER 4-15: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR					СМ	VREGS
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
]
Legend:						(0)	
R = Readable		vv = vvritable	DIT	U = Unimpler	nented bit, read		
-n = value at P	UR	"I" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	nown
bit 15	TDADD. Tran	Reset Flag hit					
bit 15	$1 = A \operatorname{Trap} Co$	inflict Reset ha	s occurred				
	0 = A Trap Co	onflict Reset ha	s not occurred	d			
bit 14	IOPUWR: Illeg	gal Opcode or	Uninitialized V	N Register Acc	ess Reset Flag) bit	
	1 = An Illegal	I Opcode, an	Illegal Addres	s mode or Ur	initialized W R	egister used a	s an Address
	0 = An Illegal	aused a Reset Opcode or Un	initialized W F	Register Reset	has not occurre	ed	
bit 13-10	Unimplement	ted: Read as ')'				
bit 9	CM: Configura	ation Mismatch	Flag bit				
	1 = A Configu	ration Mismato	h Reset has d	occurred.			
	0 = A Configu	ration Mismato	h Reset has r	not occurred			
bit 8	VREGS: Volta	age Regulator	Standby Durin	g Sleep bit			
	1 = Voltage re	egulator is active active active active active action action action action action action action action action a	ve during Slee	ep ande during Sk	een		
bit 7	EXTR: Extern	al Reset (MCI	R. S1MCI Rx) Pin bit	566		
2	1 = A Master (Clear (pin) Res	set has occurr	ed			
	0 = A Master (Clear (pin) Res	set has not oc	curred			
bit 6	SWR: Softwar	re reset (Inst	ruction) Flag b	bit			
	$1 = \mathbf{A} \text{ RESET } \mathbf{i}$	instruction has	been execute	ed autod			
hit 5	U - A RESELL	ted: Read as 'i	noi been exe	culeu			
bit 4	WDTO: Watch	ndog Timer Tin	ne-out Elaα bit	ł			
	1 = WDT time	out has occur	red	•			
	0 = WDT time	-out has not o	curred				
bit 3	SLEEP: Wake	e-up from Slee	p Flag bit				
	1 = Device ha	s been in Slee	p mode				
hit 2		is not been in a	bieep mode				
DIL Z	1 = Device ha	ip ironn iule Fie is been in Idle i	ng bil mode				
	0 = Device ha	s not been in I	dle mode				
bit 1	BOR: Brown-o	out Reset Flag	bit				
	1 = A Brown-c	out Reset has o	occurred				
	0 = A Brown-c	but Reset has r	not occurred				

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

'1' = Bit is set

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
bit 15	-					•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

REGISTER 4-76: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP65R<5:0>: Peripheral Output Function is Assigned to S1RP65 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP64R<5:0>: Peripheral Output Function is Assigned to S1RP64 Output Pin bits

REGISTER 4-77: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

(see Table 4-31 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP67R5	RP67R4	RP67R3	RP67R2	RP67R1	RP67R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP66R5	RP66R4	RP66R3	RP66R2	RP66R1	RP66R0
bit 7				·			bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x		x = Bit is unkr	nown				

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP67R<5:0>:** Peripheral Output Function is Assigned to S1RP67 Output Pin bits (see Table 4-31 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP66R<5:0>:** Peripheral Output Function is Assigned to S1RP66 Output Pin bits (see Table 4-31 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15						•	bit 8
R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
FORM	SHRRES1	SHRRES0	_	—	—	—	—
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplement	ted: Read as 'd)'				
bit 7	FORM: Fraction	onal Data Outp	out Format bit				
	1 = Fractional 0 = Integer						
bit 6-5	SHRRES<1:0	>: Shared ADC	C Core Resolut	ion Selection b	its		
	11 = 12-bit res 10 = 10-bit res 01 = 8-bit res 00 = 6-bit res	solution solution olution olution					
bit 4-0	Unimplement	ted: Read as 'o)'				

REGISTER 4-84: ADCON1H: ADC CONTROL REGISTER 1 HIGH

					,		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		—	PLLPRE3 ⁽⁴⁾	PLLPRE2 ⁽⁴⁾	PLLPRE1 ⁽⁴⁾	PLLPRE0 ⁽⁴⁾
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ROI: Recove 1 = Interrupts 0 = Interrupt	r on Interrupt bi s will clear the D s have no effec	t OZEN bit and [:] t on the DOZE	the processor clo	ock, and the pe	ripheral clock ra	atio is set to 1:1
511 14-12	111 = FP divi 110 = FP divi 101 = FP divi 100 = FP divi 011 = FP divi 010 = FP divi 001 = FP divi 000 = FP divi	ided by 128 ided by 64 ided by 32 ided by 16 ided by 8 (defau ided by 4 ided by 2 ided by 1	ilt)				
bit 11	DOZEN: Doz	e Mode Enable	bit ^(2,3)				
	1 = DOZE<2 0 = Processo	:0> field specifie or clock and peri	es the ratio be ipheral clock r	tween the peripl atio is forced to	heral clocks an 1:1	d the processo	or clocks
bit 10-8	FRCDIV<2:0 111 = FRC d 110 = FRC d 101 = FRC d 100 = FRC d 011 = FRC d 011 = FRC d 010 = FRC d 001 = FRC d	Internal Fast livided by 256 livided by 64 livided by 32 livided by 16 livided by 8 livided by 4 livided by 2 livided by 1 (def	RC Oscillator	Postscaler bits			
bit 7-6	Unimplemer	ted: Read as ')'				
bit 5-4	Reserved: R	ead as '0'					
Note 1:	The DOZE<2:0> DOZE<2:0> are i	bits can only be	e written to wh	en the DOZEN	bit is clear. If D	OZEN = 1, any	y writes to
2:	The DOZEN bit of	a when the ROI cannot be set if I	DIT IS SET and and a DOZE<2.0> =		UIS. 2·0> = 000 and	v attempt hv us	er software to
0.	set the DOZEN b	oit is ignored.				, allompt by us	

REGISTER 6-13: CLKDIV: CLOCK DIVIDER REGISTER (SLAVE)

4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	PGA3MD	—		_	PGA2MD	_	
bit 15				·			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15	Unimplement	ted: Read as 'o)'				
bit 14	PGA3MD: PG	GA3 Module Dis	able bit				
	1 = PGA3 mo	dule is disabled	ł				
	0 = PGA3 mo	dule is enabled					
bit 13-11	Unimplement	ted: Read as '0)'				
bit 10	PGA2MD: PG	GA2 Module Dis	able bit				
	1 = PGA2 mo	dule is disabled	ł				
	0 = PGA2 mo	dule is enabled					
bit 9-6	Unimplement	ted: Read as '0)'				
bit 5	CLC4MD: CL	C4 Module Dis	able bit				
	$1 = CLC4 \mod 0$	dule is disabled					
bit 1			abla bit				
DIL 4	1 = CLC3 mod	dule is disabled					
	0 = CLC3 mo	dule is enabled	I				
bit 3	CLC2MD: CL	C2 Module Dis	able bit				
	1 = CLC2 module is disabled						
	0 = CLC2 mod	dule is enabled					
bit 2	CLC1MD: CL	C1 Module Disa	able bit				
	1 = CLC1 mod	dule is disabled					
	0 = CLC1 mod	dule is enabled					
bit 1-0	Unimplement	ted: Read as '0)'				

REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

REGISTER 8-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7	•						bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	Reserved: Maintain as '0'
bit 11	Unimplemented: Read as '0'
bit 10	NULLW: Null Write Mode bit
	 1 = A dummy write is initiated to DMASRCn for every write to DMADSTn 0 = No dummy write is initiated
bit 9	RELOAD: Address and Count Reload bit ⁽¹⁾
	 1 = DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the start of the next operation 0 = DMASRCn, DMADSTn and DMACNTn are not reloaded on the start of the next operation⁽²⁾
bit 8	CHREO: DMA Channel Software Request hit ⁽³⁾
bit o	 1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer 0 = No DMA request is pending
bit 7-6	SAMODE<1:0>: Source Address Mode Selection bits
	 11 = DMASRCn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMASRCn is decremented based on the SIZE bit after a transfer completion 01 = DMASRCn is incremented based on the SIZE bit after a transfer completion 00 = DMASRCn remains unchanged after a transfer completion
bit 5-4	DAMODE<1:0>: Destination Address Mode Selection bits
	 11 = DMADSTn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMADSTn is decremented based on the SIZE bit after a transfer completion 01 = DMADSTn is incremented based on the SIZE bit after a transfer completion 00 = DMADSTn remains unchanged after a transfer completion
bit 3-2	TRMODE<1:0>: Transfer Mode Selection bits
	 11 = Repeated Continuous 10 = Continuous 01 = Repeated One-Shot 00 = One-Shot
bit 1	SIZE: Data Size Selection bit
	1 = Byte (8-bit) 0 = Word (16-bit)
bit 0	CHEN: DMA Channel Enable bit
	 1 = The corresponding channel is enabled 0 = The corresponding channel is disabled
Note 1: Or	hy the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn values.

DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
 The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

REGISTER 9-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)

bit 5	CAP: Capture Status bit ⁽¹⁾
	1 = PWM Generator time base value has been captured in PGxCAP0 = No capture has occurred
bit 4	UPDATE: PWM Data Register Update Status/Control bit
	 1 = PWM Data register update is pending – user Data registers are not writable 0 = No PWM Data register update is pending
bit 3	UPDREQ: PWM Data Register Update Request bit
	User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending.
bit 2	STEER: Output Steering Status bit (Push-Pull Output mode only)
	1 = PWM Generator is in 2nd cycle of Push-Pull mode
	0 = PWM Generator is in 1st cycle of Push-Pull mode
bit 1	CAHALF: Half Cycle Status bit (Center-Aligned modes only)
	 1 = PWM Generator is in 2nd half of time base cycle 0 = PWM Generator is in 1st half of time base cycle
bit 0	TRIG: PWM Trigger Status bit
	1 = PWM Generator is triggered and PWM cycle is in progress0 = No PWM cycle is in progress

Note 1: User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

ASDG <x> Bit</x>	Auto-Shutdown/Gating Source								
	SCCP1	SCCP2	SCCP3	SCCP4	SCCP5	SCCP6	SCCP7	SCCP8	
0	Master Comparator 1 Output								
1	Slave Comparator 1 Output								
2	Slave Comparator 2 Output								
3	Slave Comparator 3 Output								
4	Master ICM1 ⁽¹⁾	Master ICM2 ⁽¹⁾	Master ICM3 ⁽¹⁾	Master ICM4 ⁽¹⁾	Master ICM5 ⁽¹⁾	Master ICM6 ⁽¹⁾	Master ICM7 ⁽¹⁾	Master ICM8 ⁽¹⁾	
5	Master CLC1 ⁽¹⁾								
6	Master OCFA ⁽¹⁾								
7	Master OCFB ⁽¹⁾								

TABLE 10-8: AUTO-SHUTDOWN AND GATING SOURCES (MASTER)

Note 1: Selected by Peripheral Pin Select (PPS).

TABLE 10-9: AUTO-SHUTDOWN AND GATING SOURCES (SLAVE)

ASDG <x> Bit</x>	Auto-Shutdown/Gating Source						
	SCCP1	SCCP2	SCCP3	SCCP4			
0	Master Comparator 1 Output						
1	Slave Comparator 1 Output						
2	Slave Comparator 2 Output						
3	Slave Comparator 3 Output						
4	Slave ICM1 ⁽¹⁾	Slave ICM2 ⁽¹⁾	Slave ICM3 ⁽¹⁾	Slave ICM4 ⁽¹⁾			
5	Slave CLC1 ⁽¹⁾						
6	Slave OCFA ⁽¹⁾						
7	Slave OCFB ⁽¹⁾						

Note 1: Selected by Peripheral Pin Select (PPS).

dsPIC33CH128MP508 FAMILY

15.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 15-1.

EQUATION 15-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \bullet FCY/2) - 2$

- **Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.
 - 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
 - **3:** Typical value of delay varies from 110 ns to 150 ns.
 - 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

15.3 Slave Address Masking

The I2CxMSK register (Register 15-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 15-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

For	Faci	I2CxBRG Value			
FCY	FSCL	Decimal	Hexadecimal		
100 MHz	1 MHz	41	29		
100 MHz	400 kHz	116	74		
100 MHz	100 kHz	491	1EB		
80 MHz	1 MHz	32	20		
80 MHz	400 kHz	92	5C		
80 MHz	100 kHz	392	188		
60 MHz	1 MHz	24	18		
60 MHz	400 kHz	69	45		
60 MHz	100 kHz	294	126		
40 MHz	1 MHz	15	0F		
40 MHz	400 kHz	45	2D		
40 MHz	100 kHz	195	C3		
20 MHz	1 MHz	7	7		
20 MHz	400 kHz	22	16		
20 MHz	100 kHz	97	61		

TABLE 15-1:I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

REGISTER 21-1: FSEC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
			_	—		—	—
bit 23 bit 16							
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
AIVTDIS		—		CSS2	CSS1	CSS0	CWRP
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	11-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
GSS1	GSS0	GWRP	_	BSEN	BSS1	BSS0	BWRP
bit 7		0			2001		bit 0
							J
Legend:		PO = Program	Once bit				
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 23-16	Unimplemen	ted: Read as '1	,				
bit 15	AIVTDIS: Alte	ernate Interrupt	Vector Table E	Disable bit			
	1 = Disables 0 = Enables	AIV I AIV/T					
bit 14-12	Unimplemen	ted: Read as '1	,				
bit 11-9	CSS<2:0>: C	onfiguration Se	ament Code F	lash Protection	Level bits		
	111 = No pro	tection (other th	an CWRP wri	te protection)			
	110 = Standa	ard security					
	10x = Enhan 0xx = High solution	ced security					
bit 8	CWRP: Confi	auration Seame	ent Write-Prote	ect bit			
	1 = Configuration Segment is not write-protected						
	0 = Configura	ation Segment i	s write-protect	ed			
bit 7-6	GSS<1:0>: General Segment Code Flash Protection Level bits						
	11 = No prote	ection (other tha	n GWRP write	protection)			
	10 = Standard0x = High sec	curity					
bit 5	GWRP: General Segment Write-Protect bit						
	1 = User prog	gram memory is	not write-prot	ected			
	0 = User program memory is write-protected						
bit 4	Unimplemen	ted: Read as '1	,				
bit 3	BSEN: Boot Segment Control bit						
	1 = NO BOOT	Segment iment size is de	termined by B	SI IM<12·0>			
bit 2-1	BSS<1:0>: B	oot Segment Co	ode Flash Prot	ection Level bit	ts		
	11 = No prote	ection (other tha	n BWRP write	protection)			
	10 = Standard	d security		. ,			
h : h O	0x = High sec		Durate et 1.1				
U JIQ	BWKP: Boot	Segment Write-	Protect bit	ected			
	0 = User prog	gram memory is	s write-protecte	ed			

REGISTER 21-37: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = Power-on Reset has occurred
 - 0 = Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.