

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Master Core	Slave Core	Shared
Core Frequency	90 MIPS @ 180 MHz	100 MIPS @ 200 MHz	—
Program Memory	64K-128 Kbytes	24 Kbytes (PRAM) ⁽²⁾	_
Internal Data RAM	16 Kbytes	4 Kbytes	—
16-Bit Timer	1	1	_
DMA	6	2	—
SCCP (Capture/Compare/Timer)	8	4	—
UART	2	1	—
SPI/I ² S	2	1	—
l ² C	2	1	—
CAN FD	1	-	—
SENT	2	-	—
CRC	1	—	—
QEI	1	1	—
PTG	1	-	—
CLC	4	4	—
16-Bit High-Speed PWM	4	8	—
ADC 12-Bit	1	3	—
Digital Comparator	4	4	—
12-Bit DAC/Analog CMP Module	1	3	—
Watchdog Timer	1	1	—
Deadman Timer	1	—	—
Input/Output	69	69	69
Simple Breakpoints	5	2	—
PGAs ⁽¹⁾	—	3	3
DAC Output Buffer	_	_	1
Oscillator	1	1	1

TABLE 1: MASTER AND SLAVE CORE FEATURES

Note 1: Slave owns the peripheral/feature, but it is shared with the Master.

2: Dual Partition feature is available on Slave PRAM.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
r							
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	Ibled				
hit 14		ccumulator A (Overflow Tran F	-lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator A			
	0 = Trap was	s not caused by	y an overflow o	f Accumulator A	4		
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	-lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator B	_		
	0 = Trap was	s not caused by	y an overflow o	f Accumulator E	3		
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	\perp = Trap was 0 = Trap was	s caused by a (s not caused b	v a catastrophic ov	erriow of Accurr	cumulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by a	catastrophic ov	erflow of Accun	nulator B		
	0 = Trap was	s not caused by	y a catastrophic	c overflow of Ac	cumulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove	rflow of Accum	nulator A				
1.10		Isabled	a				
bit 9		cumulator B OV	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	isabled					
bit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit			
	1 = Trap cata	astrophic overf	low of Accumu	lator A or B is e	nabled		
	0 = Trap is d	isabled					
bit 7	SFTACERR	Shift Accumu	lator Error State	us bit			
	1 = Math err	or trap was cau	used by an inva	alid accumulator	r shift		
	o = wath error	or trap was not	caused by an	invalio accumu	iator snift		

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM3R7 | ICM3R6 | ICM3R5 | ICM3R4 | ICM3R3 | ICM3R2 | ICM3R1 | ICM3R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	TCKI3R0
bit 7							bit 0
Logondy							

REGISTER 3-41: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM3R<7:0>: Assign SCCP Capture 3 (ICM3) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI3R<7:0>:** Assign SCCP Timer3 (TCKI3) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-42: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM4R7 | ICM4R6 | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI4R7 | TCKI4R6 | TCKI4R5 | TCKI4R4 | TCKI4R3 | TCKI4R2 | TCKI4R1 | TCKI4R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM4R<7:0>: Assign SCCP Capture 4 (ICM4) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI4R<7:0>:** Assign SCCP Timer4 (TCKI4) Input to the Corresponding RPn Pin bits See Table 3-30.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFBR7 | OCFBR6 | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-47: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **OCFBR<7:0>:** Assign SCCP Fault B (OCFB) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **OCFAR<7:0>:** Assign SCCP Fault A (OCFA) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-48: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI9R7 | PCI9R6 | PCI9R5 | PCI9R4 | PCI9R3 | PCI9R2 | PCI9R1 | PCI9R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI8R7 | PCI8R6 | PCI8R5 | PCI8R4 | PCI8R3 | PCI8R2 | PCI8R1 | PCI8R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **PCI9R<7:0>:** Assign PWM Input 9 (PCI9) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 PCI8R<7:0>: Assign PWM Input 8 (PCI8) to the Corresponding RPn Pin bits See Table 3-30.

3.7 Deadman Timer (DMT) (Master Only)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The Slave core does not have any DMT module; only the Master has the DMT.

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

FIGURE 3-22: DEADMAN TIMER BLOCK DIAGRAM

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected. Table 3-41 shows an overview of the DMT module.

TABLE 3-41:	DMT MODULE OVERVIEW
-------------	---------------------

	No. of DMT Modules	Identical (Modules)
Master Core	1	No
Slave Core	None	NA

Figure 3-22 shows a block diagram of the Deadman Timer module.

REGISTER 3-135: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7)

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_		FIFOCI4 ⁽¹⁾	FIFOCI3 ⁽¹⁾	FIFOCI2 ⁽¹⁾	FIFOCI1 ⁽¹⁾	FIFOCI0 ⁽¹⁾		
bit 15					•		bit 8		
R-0	R-0	R-0	HS/C-0	HS/C-0	R-0	R-0	R-0		
TXABT ⁽³	ⁱ⁾ TXLARB ⁽²⁾	TXERR ⁽²⁾	TXATIF	RXOVIF	TFERFFIF	TFHRFHIF	TFNRFNIF		
bit 7							bit 0		
Legend:		HS = Hardwar	e Settable bit	C = Clearable	e bit				
R = Reada	ble bit	W = Writable b	it	U = Unimpler	mented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as '0	,						
bit 12-8	FIFOCI<4:0>	: FIFO Message	e Index bits ⁽¹⁾						
	$\frac{\text{TXEN} = 1 \text{ (FI)}}{1 \text{ (FI)}}$	FO configured a	is a transmit b	uffer):					
	A read of this $TYEN = 0$ (EI	register will ret	urn an index to	o the message	that the FIFO V	vill next attemp	t to transmit.		
	A read of this	s register will re	turn an index	to the messa	age that the FIF	O will use to	save the next		
	message.				.ge				
bit 7	TXABT: Mess	sage Aborted St	atus bit ⁽³⁾						
	1 = Message	was aborted							
	0 = Message	completed succ	essfully	(2)					
bit 6	TXLARB: Me	ssage Lost Arb	tration Status	bit ⁽²⁾					
	1 = Message	did not lose arb	while being se itration while b	nt Deina sent					
bit 5		r Detected Duri	na Transmissi	on hit ⁽²⁾					
bit o	1 = A bus error	or occurred whil	e the message	e was being se	ent				
	0 = A bus erro	or did not occur	while the mes	sage was beir	ng sent				
bit 4	TXATIF: Tran	smit Attempts E	xhausted Inte	rrupt Pending	bit				
	<u>TXEN = 1 (FI</u>	FO configured a	as a transmit b	uffer):					
	1 = Interrupt i	s pending							
	0 = Interrupt I TXEN = 0 (EI	S not pending	as a receive hi	(ffer):					
	Unused, read	as '0'.							
bit 3	RXOVIF: Red	eive FIFO Over	flow Interrupt	Flag bit					
	TXEN = 1 (FIFO configured as a transmit buffer):								
	Unused, read	as '0'.							
	$\frac{\text{TXEN} = 0 \text{ (FI)}}{1 = 0 \text{ (FI)}}$	FO configured a	as a receive bu	uffer):					
	$\perp = OVERTIOW$ 0 = No overflo	event has occur	curred						
Note 1:	FIFOCI < 4:0 > gives	s a zero-indexe	d value to the	message in th	e FIFO. If the F	IFO is four me	ssages deep		
2:	These bits are unc	lated when a m	essage compli	etes (or aborts	s) or when the F	IFO is reset	<i>.</i> .		
		ese bits are updated when a message completes (or aborts) or when the FIFO is reset.							

3: This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

4.6 Slave I/O Ports

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **"I/O Ports with Edge Detect"** (DS70005322) in the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: The I/O ports are shared by the Master core and Slave core. All input goes to both the Master and Slave. The I/O ownership is defined by the Configuration bits.
 - 3: The TMS pin function may be active multiple times during ICSP™ device erase, programming and debugging. When the TMS function is active, the integrated pull-up resistor will pull the pin to VDD. Proper care should be taken if there are sensitive circuits connected on the TMS pin during programming/erase and debugging.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The Master and the Slave have the same number of I/O ports and are shared. The Master PORT registers are located in the Master SFR and the Slave PORT registers are located in the Slave SFR, respectively.

All of the input goes to both Master and Slave. For example, a high in RA0 can be read as high on both Master and Slave as long as the TRISA0 bit is maintained as an input of both Master and Slave. The ownership of the output functionality is assigned by the Configuration registers, FCFGPRA0 to FCFGPRE0. Setting the bits in the FCFGPRA0 to FCFGPRE0 registers assigns ownership to the Master or Slave pin.

4.6.1 PARALLEL I/O (PIO) PORTS

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 4-17 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have twelve registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 4-24 shows the pin availability. Table 4-25 shows the 5V input tolerant pins across this device.

4.6.5 PERIPHERAL PIN SELECT (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

4.6.5.1 Available Pins

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "S1RPn", in their full pin designation, where "n" is the remappable pin number. "S1RP" is used to designate pins that support both remappable input and output functions.

4.6.5.2 Available Peripherals

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

4.6.5.3 Controlling Peripheral Pin Select

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = Bit is unknown				

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-90: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	_	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		_	C1CHS1	C1CHS0	C0CHS1	C0CHS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15-4	Unimplement	ted: Read as 'd)'				
bit 3-2	C1CHS<1:0>	: Dedicated AD	C Core 1 Inpu	t Channel Sele	ction bits		
	11 = S1ANC1						
	10 = SPGA2						
	01 = S1ANA1						
h #4.0	00 = STANT		0.0		-4:		
DIT 1-0	CUCH5<1:0>	Dedicated AD	C Core U Inpu	t Channel Sele	ction dits		
	11 = S1ANC0						
	10 = SPGAT						
	00 = S1AN0						

R-0	U-0	U-0	U-0	R-0	R/C-0	R-0	R-1
SRFEN	—	—	—	SRFOF	SRFUF	SRFFULL	SRFEMPTY
bit 15							bit 8
							5.4
R-0	U-0	U-0	U-0	R/C-0	R-0	R-0	
SVVFEN		_	_	SWFOF	SWFUF	SWFFULL	SWFEMPTY
DIL 7							DIL U
Legend:		C = Clearable	bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	SRFEN: Slav	e Read (Maste	r Write) FIFO	Enable bit			
	1 = Enables	Slave Read (M	aster Write) F	IFO			
	0 = Disables	Slave Read (M	laster Write) I	FIFO			
bit 14-12		ted: Read as '					
DIT	1 - Slave Re	e Read (Maste	r vvrite) FIFO				
	0 = No Slave	Read FIFO over	erflow is dete	cted			
bit 10	SRFUF: Slave	e Read (Maste	r Write) FIFO	Underflow bit			
	1 = Slave Re	ad (Master Wri	te) FIFO und	erflow is detect	ed		
	0 = No Slave	Read (Master	Write) FIFO ι	underflow is det	tected		
bit 9	SRFFULL: SI	ave Read (Mas	ster Write) FIF	FO Full Status b	pit		
	1 = Slave Re was into	ad (Master Wr	ation	III; last write by	Master to Slave	e Read FIFO (SRMWFDAIA)
	0 = Slave Re	ad (Master Wri	te) FIFO is no	ot full			
bit 8	SRFEMPTY:	Slave Read (M	aster Write) F	IFO Empty Sta	atus bit		
	1 = Slave Re	ad (Master Wr	ite) FIFO is e	empty; last read	d by Slave from	Read FIFO (SRMWFDATA)
	0 = Slave Re	the FIFO of all ad (Master Wri	valid data or l te) FIFO cont	-IFO is disable ains valid data	d (and initialized not vet read by	to the empty the Slave	state)
bit 7	SWFEN: Slav	ve Write (Maste	r Read) FIFC	Enable bit			
	1 = Enables	Slave Write (M	aster Read) F	IFO			
	0 = Disables	Slave Write (N	laster Read) I	FIFO			
bit 6-4	Unimplemen	ted: Read as '	כ'				
bit 3	SWFOF: Slav	ve Write (Maste	r Read) FIFC	Overflow bit			
	1 = Slave Wr 0 = No Slave	ite (Master Rea Write (Master	ad) FIFO ovei Read) FIFO (tiow is detected	d ected		
bit 2	SWFUF: Slav	ve Write (Maste	r Read) FIFO	Underflow bit			
	1 = Slave Wr	ite (Master Rea	ad) FIFO und	erflow is detect	ed		
	0 = No Slave	Write (Master	Read) FIFO (underflow is def	tected		
bit 1	SWFFULL: S	lave Write (Ma	ster Read) Fl	FO Full Status	bit		
	1 = Slave Wr	rite (Master Real location	ad) FIFO is fu	ill; last write by	Slave to FIFO	(SWMRFDAT	A) was into the
	0 = Slave Wr	ite (Master Rea	ad) FIFO is no	ot full			
bit 0	SWFEMPTY:	Slave Write (M	laster Read)	FIFO Empty Sta	atus bit		
	1 = Slave Wr	ite (Master Rea	ad) FIFO is er	npty; last read b	by Master from	Read FIFO em	nptied the FIFO
	of all vali	d data or FIFO	is disabled (a	ind initialized to	the empty stat	e) the Master	
	U = Slave Wr	ite (master Rea	au) FIFU con	anis valid data	not yet read by	ule master	

REGISTER 5-13: SI1FIFOCS: MSI1 SLAVE FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
_	_	_	_	_	_		_
bit 15	÷			·			bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
			APLLF	BDIV<7:0>			
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
bit 15-12	Unimpleme	nted: Read as '	0'				
bit 11-8	Reserved: N	//aintain as '0'					
bit 7-0	APLLFBDIV	/<7:0>: APLL Fe	eedback Divid	er bits			
	11111111 =	Reserved					
		- 200 maximum	(1)				
	10010110 =	= 150 (default)					
	 00010000 =	= 16 minimum ⁽¹⁾					
	 00000010 =	Reserved					
	00000001 =	Reserved					
	00000000 =	Reserved					

REGISTER 6-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER (MASTER)

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

U-0 U-0 HS/R/W-0 HS/R/W-0 U-0 HS/R/W-0 HS/R/W-0 HS/R/W-0 RXRPTIF TXRPTIF BTCIF WTCIF GTCIF ____ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 RXRPTIE TXRPTIE BTCIE WTCIE GTCIE bit 7 bit 0 Legend: HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 **RXRPTIF:** Receive Repeat Interrupt Flag bit 1 = Parity error has persisted after the same character has been received five times (four retransmits) 0 = Flag is cleared **TXRPTIF:** Transmit Repeat Interrupt Flag bit bit 12 1 = Line error has been detected after the last retransmit per TXRPT<1:0> 0 = Flag is cleared bit 11 Unimplemented: Read as '0' bit 10 **BTCIF:** Block Time Counter Interrupt Flag bit 1 = Block Time Counter has reached 0 0 = Block Time Counter has not reached 0 bit 9 WTCIF: Waiting Time Counter Interrupt Flag bit 1 = Waiting Time Counter has reached 0 0 = Waiting Time Counter has not reached 0 bit 8 **GTCIF:** Guard Time Counter Interrupt Flag bit 1 = Guard Time Counter has reached 0 0 = Guard Time Counter has not reached 0 bit 7-6 Unimplemented: Read as '0' **RXRPTIE:** Receive Repeat Interrupt Enable bit bit 5 1 = An interrupt is invoked when a parity error has persisted after the same character has been received five times (four retransmits) 0 = Interrupt is disabled bit 4 **TXRPTIE:** Transmit Repeat Interrupt Enable bit 1 = An interrupt is invoked when a line error is detected after the last retransmit per TXRPT<1:0> has been completed 0 = Interrupt is disabled bit 3 Unimplemented: Read as '0' bit 2 BTCIE: Block Time Counter Interrupt Enable bit 1 = Block Time Counter interrupt is enabled 0 = Block Time Counter interrupt is disabled bit 1 WTCIE: Waiting Time Counter Interrupt Enable bit 1 = Waiting Time Counter interrupt is enabled 0 = Waiting Time Counter Interrupt is disabled bit 0 **GTCIE:** Guard Time Counter interrupt enable bit 1 = Guard Time Counter interrupt is enabled 0 = Guard Time Counter interrupt is disabled

REGISTER 13-16: UXSCINT: UARTX SMART CARD INTERRUPT REGISTER

dsPIC33CH128MP508 FAMILY

FIGURE 14-6: SPIX MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 14-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 14-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 14-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$

Where:

FPB is the Peripheral Bus Clock Frequency.

15.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 15-1.

EQUATION 15-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \bullet FCY/2) - 2$

- **Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.
 - 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
 - **3:** Typical value of delay varies from 110 ns to 150 ns.
 - 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

15.3 Slave Address Masking

The I2CxMSK register (Register 15-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 15-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Fcy	Faci	I2CxBRG Value		
	FSCL	Decimal	Hexadecimal	
100 MHz	1 MHz	41	29	
100 MHz	400 kHz	116	74	
100 MHz	100 kHz	491	1EB	
80 MHz	1 MHz	32	20	
80 MHz	400 kHz	92	5C	
80 MHz	100 kHz	392	188	
60 MHz	1 MHz	24	18	
60 MHz	400 kHz	69	45	
60 MHz	100 kHz	294	126	
40 MHz	1 MHz	15	0F	
40 MHz	400 kHz	45	2D	
40 MHz	100 kHz	195	C3	
20 MHz	1 MHz	7	7	
20 MHz	400 kHz	22	16	
20 MHz	100 kHz	97	61	

TABLE 15-1:I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 24-7: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (MASTER RUN/SLAVE SLEEP)

DC CHARACTERISTICS	Master Slave	(Run) + (Sleep)	Standard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C = TA \le +85^{\circ}C$ for Industrial				
Demonster No.			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	тур.	Max.	Units	Inits Conditions			
Operating Current (IDD) ⁽¹⁾							
DC20b	7.9	9.8	mA	-40°C	- 3.3∨	10 MIPS (N = 1, N2 = 5,	
	8.0	13.4	mA	+25°C		N3 = 2, M = 50, Fvco = 400 MHz,	
	8.2	19.5	mA	+85°C			
	12.2	26.3	mA	+125°C		FPLLO = 40 MHZ)	
DC21b	10.3	12.4	mA	-40°C		20 MIPS (N = 1, N2 = 5, N3 = 1, M = 50, Fvco = 400 MHz,	
	10.5	16.0	mA	+25°C			
	10.6	22.1	mA	+85°C			
	14.6	28.7	mA	+125°C	1	Fpllo = 80 MHz)	
DC22b	14.2	16.5	mA	-40°C		40 MIPS (N = 1 N2 = 3	
	14.4	20.3	mA	+25°C	2.21/	N3 = 1, M = 60, Fvco = 480 MHz, FPLLO = 160 MHz)	
	14.5	26.3	mA	+85°C	- 3.3V		
	18.4	32.6	mA	+125°C			
DC23b	22.3	25.4	mA	-40°C		70 MIPS (N = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz, Fpllo = 280 MHz)	
	22.5	29.4	mA	+25°C	3.3V		
	22.4	34.9	mA	+85°C			
	26.4	40.7	mA	+125°C			
DC24b	25.6	29.0	mA	-40°C	2.21/	90 MIPS (N = 1, N2 = 2, N3 = 1, M = 90, Fvco = 720 MHz, FPLLO = 360 MHz)	
	25.8	33.1	mA	+25°C			
	25.7	38.2	mA	+85°C	3.3V		
	29.4	43.8	mA	+125°C			

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- FIN = 8 MHz, FPFD = 8 MHz
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- · No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- · JTAG is disabled

SPI Master Transmit Only (Half-Duplex)	SPI Master Transmit/Receive (Full-Duplex)	SPI Slave Transmit/Receive (Full-Duplex)	СКЕ	Maximum Data Rate (MHz)	Condition
Figure 24-7		_	0	15	Using PPS
Table 24-35	—			40	Dedicated Pin
Figure 24-8		_	1	15	Using PPS
Table 24-35	—			40	Dedicated Pin
_	Figure 24-9 Table 24-36	_	0	9	Using PPS
				40	Dedicated Pin
Figu Tab	Figure 24-10	_	1	9	Using PPS
	Table 24-37			40	Dedicated Pin
_	—	Figure 24-12 Table 24-39	0	15	Using PPS
				40	Dedicated Pin
_	—	Figure 24-13 Table 24-38	1	15	Using PPS
				40	Dedicated Pin

TABLE 24-34: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 24-7: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2