

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp202-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.5.1 Paged Memory Scheme

The dsPIC33CH128MP508 architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 3-7. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 3-8.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

FIGURE 3-7: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

3.6.16 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.16.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| REFOIR7 | REFOIR6 | REFOIR5 | REFOIR4 | REFOIR3 | REFOIR2 | REFOIR1 | REFOIR0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |

REGISTER 3-55: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **REFOIR<7:0>:** Assign Reference Clock Input (REFOI) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-56: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK2R7 | SCK2R6 | SCK2R5 | SCK2R4 | SCK2R3 | SCK2R2 | SCK2R1 | SCK2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI2R7 | SDI2R6 | SDI2R5 | SDI2R4 | SDI2R3 | SDI2R2 | SDI2R1 | SDI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SCK2R<7:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **SDI2R<7:0>:** Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits See Table 3-30.

bit 7

bit 0

3.7 Deadman Timer (DMT) (Master Only)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The Slave core does not have any DMT module; only the Master has the DMT.

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

FIGURE 3-22: DEADMAN TIMER BLOCK DIAGRAM

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected. Table 3-41 shows an overview of the DMT module.

TABLE 3-41:	DMT MODULE OVERVIEW
-------------	---------------------

	No. of DMT Modules	Identical (Modules)
Master Core	1	No
Slave Core	None	NA

Figure 3-22 shows a block diagram of the Deadman Timer module.

4.4 Slave Resets

Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Reset**" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is shown in Figure 4-15.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.2 "Slave Memory Organization" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 4-15).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value after a
	device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

FIGURE 4-15: RESET SYSTEM BLOCK DIAGRAM

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
GIE	DISI	SWTRAP	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	—	INT3EP	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
r								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	GIE: Global I	Interrupt Enable	e bit					
	1 = Interrupts	s and associate	d IE bits are e	enabled				
bit 14		nstruction Statu	is hit					
Sit I I	1 = DISI ins	truction is activ	e					
	0 = DISI ins	truction is not a	active					
bit 13	SWTRAP: S	oftware Trap St	atus bit					
	1 = Software	trap is enabled	l					
	0 = Software	trap is disabled	d					
bit 12-4	Unimplemented: Read as '0'							
bit 3	INT3EP: External Interrupt 3 Edge Detect Polarity Select bit							
	\perp = Interrupt 0 = Interrupt	on negative ed	ge Ie					
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edae Detect	Polarity Selec	t bit			
	1 = Interrupt on negative edge							
	0 = Interrupt on positive edge							
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit							
	1 = Interrupt on negative edge							
		0 = Interrupt on positive edge						
bit 0	INIOEP: Exte	ernal Interrupt () Edge Detect	Polarity Selec	t bit			
	$\perp = interrupt$ 0 = Interrupt	on positive ed	ye Ie					
			, -					

REGISTER 4-19: INTCON2: SLAVE INTERRUPT CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP68R5	RP68R4	RP68R3	RP68R2	RP68R1	RP68R0
bit 7							bit 0

REGISTER 4-78: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP69R<5:0>: Peripheral Output Function is Assigned to S1RP69 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP68R<5:0>: Peripheral Output Function is Assigned to S1RP68 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-79: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8**RP71R<5:0>:** Peripheral Output Function is Assigned to S1RP71 Output Pin bits
(see Table 4-31 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP70R<5:0>:** Peripheral Output Function is Assigned to S1RP70 Output Pin bits (see Table 4-31 for peripheral function numbers)

4.7.2 ANALOG-TO-DIGITAL CONVERTER RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.7.2.1 Key Resources

- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.7.3 ADC CONTROL/STATUS REGISTERS

REGISTER 4-83: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	r-0	U-0	U-0	U-0				
ADON ⁽¹⁾	—	ADSIDL	—	r	—	_					
bit 15											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 7							bit 0				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 11	Reserved: Maintain as '0'
bit 12	Unimplemented: Read as '0'
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 13	ADSIDL: ADC Stop in Idle Mode bit
bit 14	Unimplemented: Read as '0'
bit 15	ADON: ADC Enable bit ⁽¹⁾ 1 = ADC module is enabled 0 = ADC module is off

Note 1: Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

R-0	R/W-0	R-0	R-0	R/W-0	R-0	R-0	R-0				
SLVRST	SLVWDRST	SLVPWR1	SLVPWR0	VERFERR	SLVP2ACT	STMIRQ	MTSIACK				
bit 15							bit 8				
R-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0				
SLVDBG	—	—	—			_					
bit 7							bit 0				
· · · · ·											
Legend:		r = Reserved	bit			(a)					
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15 SLVRST: Slave Reset Status bit Indicates when the Slave is in Reset as the result of any Reset source. Generates a Slave Reset ever interrupt to the Master on leading edge of being set when MTSIRQ (MSI1CON<9>) = 1. 1 = Slave is in Reset 0 = Slave is not in Reset											
bit 14	bit 14 SLVWDRST: Slave Watchdog Timer (WDT) Reset Status bit Indicates when the Slave has been reset as the result of a WDT time-out. The SLVRST bit will also set (at the same time this bit is set) by the hardware. 1 = Slave has been reset by the WDT 0 = Slave has not been reset by the WDT										
bit 13-12	SLVPWR<1:0)>: Slave Low-	Power Operat	ting Mode Statu	us bits						
	11 = Reserve 10 = Slave is 01 = Slave is 00 = Slave is	ed in Sleep mode in Idle mode not in a Low-F	e Power mode	-							
bit 11	VERFERR: P	RAM Verify Er	ror Status bit								
	1 = Error dete 0 = No error d	ected during ex detected during	ecution of ∇F	FSLV (PRAM write verify) instruction of VFSLV (PRAM write verify) instruction							
bit 10	SLVP2ACT: S	Slave PRAM P	anel 2 Active	Status bit							
	This bit is a toggled after operation). 1 = Slave NV 0 = Slave NV	reflection of th successful ex M controller, P M controller P	e Slave NVM cecution of a 2ACTIV (NVM 2ACTIV (NVM	controller, P2 BOOTSWP inst ICON<10>) = 1 CON<10>) = 0	ACTIV (NVMCC ruction (during	ON<10>) statu a Slave PRA	s bit, which is M LiveUpdate				
bit 9	STMIRQ: Sla	ve to Master I	nterrupt Reque	est Status bit							
	1 = Slave has 0 = Slave has	s issued an inte s not issued a l	errupt request Master interrup	to the Master ot request							
bit 8	MTSIACK: A	cknowledge St	atus bit (Slave	acknowledge	d)						
	1 = If MTSIR 0 = If MTSIR interrupt	Q = 1, Slave A Q = 1, Slave h request is pen	Acknowledges as not yet Ackr ding	Master interrup nowledged Mas	ot request, else ster interrupt req	protocol error Juest, else no N	laster to Slave				
bit 7	SLVDBG: Sla	Slave Debug Mode Status bit									
	1 = Slave is c 0 = Slave is c	perating in De	bug mode ssion or Applic	ation mode							
bit 6-0	Reserved: Re	ead as '0'									

REGISTER 5-2: MSI1STAT: MSI1 MASTER STATUS REGISTER

S1MSRE	S1SSRE	SLVEN Bit Reset Source	Application Effect
0	0	Master Resets ⁽¹⁾	 Slave is reset and disabled in the event of a POR, BOR or MCLR Reset. Master must re-enable Slave.
			 Slave Run-Time Resets will not disable Slave. Slave will reset and continue execution (and may optionally interrupt Master).
1	0	Master Resets ⁽¹⁾	 Slave is reset and disabled in the event of a POR, BOR or MCLR Reset. Master must re-enable Slave.
			 Slave Run-Time Resets will not disable Slave. Slave will reset and continue execution (and may optionally interrupt Master).
0	1	Master Resets ⁽¹⁾ and Slave Resets ⁽²⁾	 Slave is reset and disabled in the event of any Slave Run-Time Reset (and may optionally interrupt Master). Master must re-enable Slave to execute the Slave code.
			 Master Run-Time Resets will not affect Slave operation.
1	1	POR/BOR/MCLR ⁽¹⁾ Slave Resets ⁽²⁾	 Slave is reset and disabled in the event of any Slave Run-Time Reset or Master Reset. Master must re-enable Slave. This represents the default state (S1MSRE and S1SSRE are unprogrammed).

TABLE 5-1: APPLICATION MODE SLVEN RESET CONTROL TRUTH TABLE

Note 1: Master Resets include any Master Reset, such as POR/BOR/MCLR Resets.

2: Slave Resets include any Slave Reset, plus POR/BOR/MCLR Resets (in Application mode).

5.4.1 INTER-PROCESSOR INTERRUPT REQUEST AND ACKNOWLEDGE

The Master and Slave processors may interrupt each other directly. The Master may issue an interrupt request to the Slave by asserting the MTSIRQ (MSI1CON<9>) control bit. Similarly, the Slave may issue an interrupt request to the Master by asserting the STMIRQ (MSI1STAT<9>) control bit.

The interrupts are Acknowledged through the use of the Interrupt Acknowledge bits, MTSIACK (MSI1STAT<8>) for the Master to Slave interrupt request and STMIACK (MSI1CON<8>) for the Slave to Master interrupt request.

5.4.2 READ ADDRESS POINTERS FOR FIFOs

The MSI macro may also include a set of two FIFOs, one for data reads from the Slave and the other for data writes to the Slave. The Read Address Pointers for the Read and Write FIFOs are held in the RDPTR<6:0> bits (MSI1CON<6:0>) and WRPTR<6:0 bits (MSI1STAT<6:0>), respectively. These bits are accessible only from within Debug mode.

REGISTER 7-12: PMD4: SLAVE PERIPHERAL MODULE DISABLE 4 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		—	—	—	—	—				
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0			
	—	—	_	REFOMD	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				

bit 15-4 Unimplemented: Read as '0'

- bit 3 **REFOMD:** Reference Clock Module Disable bit
 - 1 = Reference clock module is disabled
 - 0 = Reference clock module is enabled
- bit 2-0 Unimplemented: Read as '0'

TABLE 7-2: MASTER PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCONL	—	—	—	—	PMDLOCK		—	—		—	—	—	—	—	—	_
PMD1	_	_	—	_	T1MD	QEIMD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADC1MD
PMD2	—	_	_	_	_		_	_	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD3	—	—	—	—	—	-	—	—	CRCMD	—	—	—	—	—	I2C2MD	_
PMD4	_	_	—	_	—	_	—	—	_	_	—	—	REFOMD	_	_	_
PMD6	_	_	DMA5MD	DMA4MD	DMA3MD	DMA2MD	DMA1MD	DMA0MD		_	_	_	_	_	_	_
PMD7	_	_	—	_	—	_	—	CMP1MD	_	_	—	—	PTGMD	_	_	_
PMD8	_	_	—	SENT2MD	SENT1MD	_	—	—	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	_

TABLE 7-3: SLAVE PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCON	_	_	_	—	PMDLOCK	—	—	_	_	—	—	—	—	—	—	—
PMD1	_	_	_	—	T1MD	QEIMD	PWMMD	_	I2C1MD	—	U1MD	_	SPI1MD	_		ADC1MD
PMD2	_	_	-	_	_	_	_	_	_	_	_	_	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD4	_	_	_	_	—	—	—	_	_	_	_	—	REFOMD	_	_	—
PMD6	_	_	_	_	—	—	DMA1MD	DMA0MD	_	_	_	—	_	_	_	—
PMD7	_	_	-	_	_	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_
PMD8	_	PGA3MD	_	_	_	PGA2MD	_	_	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD		_

REGISTER 9-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDCSE	L MPERSEL	MPHSEL		MSTEN	UPDMOD2	UPDMOD1	UPDMOD0		
bit 15							bit 8		
			K						
U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	TRGMOD	—	—	SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^(1,2,3)		
bit 7									
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'			
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clear	red	x = Bit is unkno	own		
bit 15 bit 14	bit 15 MDCSEL: Master Duty Cycle Register Select bit 1 = PWM Generator uses the MDC register instead of PGxDC 0 = PWM Generator uses the PGxDC register bit 14 MPERSEL: Master Period Register Select bit 1 = PWM Generator uses the MPER register instead of PGxPER								
bit 13	MPHSEL: M 1 = PWM G 0 = PWM G	 MPHSEL: Master Phase Register Select bit 1 = PWM Generator uses the MPHASE register instead of PGxPHASE 0 = PWM Generator uses the PGxPHASE register 							
bit 12	Unimpleme	nted: Read a	s '0'						
bit 11	MSTEN: Ma	aster Update E	nable bit						
	1 = PWM G PWM G 0 = PWM G	Senerator broa Senerators Senerator does	s not broadcas	are set/clear of t	status bit state or	EOC signal	signal to other		
bit 10-8	UPDMOD<2	2:0>: PWM Bu	uffer Update M	lode Selection b	oits				
	011 = Slaved immediate update Data registers immediately, or as soon as possible, when a Master update request is received. A Master update request will be transmitted if MSTEN = 1 and UPDATE = 1 for the requesting PWM Generator.								
	Data reque	registers at s est will be tran	start of next c smitted if MS	ycle if a Master TEN = 1 and UF	update request DATE = 1 for the	is received. A requesting PW	Master update 'M Generator.		
	001 = Imme Data be clu clear 000 = SOC Data	 001 = Immediate update Data registers immediately, or as soon as possible, if UPDATE = 1. The UPDATE status bit will be cleared automatically after the update occurs (UPDATE = 1). The UPDATE status bit will be cleared automatically after the update occurs. 000 = SOC update Data registers at start of next PWM cycle. 							
bit 7	Unimpleme	nted: Read a	s '0'						
Note 1:	The PCI selecters SOCS<3:0> bits	ed Sync signa s if the PCI Sy	l is always ava	ailable to be OR enabled.	'd with the select	ed SOC signal ı	per the		
2:	The source sele Generator. If no synchronized to	ected by the S ot, the source to the PWM Ge	OCS<3:0> bit must be route enerator clock	s MUST operate d through the P domain.	e from the same c CI Sync logic so t	lock source as t he trigger signa	the local PWM I may be		

3: PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 16-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 4 **PS:** SENTx Module Clock Prescaler (divider) bits
 - 1 = Divide-by-4 0 = Divide-by-1
- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives six data nibbles in a SENT data pocket
 - 101 = Module transmits/receives five data nibbles in a SENT data pocket
 - 100 = Module transmits/receives four data nibbles in a SENT data pocket
 - 011 = Module transmits/receives three data nibbles in a SENT data pocket
 - 010 = Module transmits/receives two data nibbles in a SENT data pocket
 - $\tt 001$ = Module transmits/receives one data nibble in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - **2:** This bit has no function in Transmit mode (RCVEN = 0).

Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FS10SCSEL	—	_	-	_	_	_	-	_	—	S1IESO	—	—	—	_	S1FN	NOSC<2:0>	
FS1OSC	_	_	_	_	_	_	_	_	r(1)	S1FCK	SM<1:0>	_	_	_	S10SCI0FNC	_	_
FS1WDT	_	S1FWDTEN		S18	SWDTPS<4:0	>		S1WDTV	VIN<1:0>	S1WINDIS	S1RCLKS	EL<1:0>		S1	RWDTPS<4:0>		
FS1POR	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
FS1ICD	_	S1NOBTSWP	_	S1ISOLAT	_	_	_	_	_	_۲ (1)	_	_	_	_	_	S1ICS	S<1:0>
FS1DEVOPT	_	S1MSRE	S1SSRE	S1SPI1PIN	_	_	_	_	_	-	_	_	_	S1ALTI2C1	_	_	_
FS1ALTREG	_	_		S1CTXT4<2:0>		_	S	1CTXT3<2:0	>	—	S	1CTXT2<2:0	>	—	S1C	TXT1<2:0>	

Legend: — = unimplemented bit, read as '1'; r = reserved bit.

Note 1: Bit is reserved, maintain as '1'.

REGISTER 21-1: FSEC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	—		_	—		—	—			
bit 23							bit 16			
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
AIVTDIS		—		CSS2	CSS1	CSS0	CWRP			
bit 15	Dit 15 Dit									
R/PO-1	R/PO-1	R/PO-1	11-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
GSS1	GSS0	GWRP	_	BSEN	BSS1	BSS0	BWRP			
bit 7		0			2001		bit 0			
							J			
Legend:		PO = Program	Once bit							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 23-16	Unimplemen	ted: Read as '1	,							
bit 15	AIVTDIS: Alte	ernate Interrupt	Vector Table E	Disable bit						
	1 = Disables 0 = Enables	AIV I AIV/T								
bit 14-12	Unimplemen	ted: Read as '1	,							
bit 11-9	CSS<2:0>: C	onfiguration Se	ament Code F	lash Protection	Level bits					
	111 = No pro	tection (other th	an CWRP wri	te protection)						
	110 = Standa	ard security								
	10x = Enhan	ced security								
bit 8	CWRP: Confi	auration Seame	ent Write-Prote	ect bit						
	1 = Configura	ation Segment i	s not write-pro	tected						
	0 = Configura	ation Segment i	s write-protect	ed						
bit 7-6	GSS<1:0>: General Segment Code Flash Protection Level bits									
	11 = No prote	ection (other tha	n GWRP write	protection)						
	10 = Standard0x = High sec	curity								
bit 5	GWRP: Gene	eral Segment W	rite-Protect bit							
	1 = User prog	gram memory is	not write-prot	ected						
	0 = User prog	gram memory is	s write-protecte	ed						
bit 4	Unimplemen	ted: Read as '1	,							
bit 3	BSEN: Boot S	Segment Contro	ol bit							
	\perp = No Boot Sec	Segment iment size is de	termined by B	SI IM<12·0>						
bit 2-1	BSS<1:0>: B	oot Segment Co	ode Flash Prot	ection Level bit	ts					
	11 = No prote	ection (other tha	n BWRP write	protection)						
	10 = Standard	d security		. ,						
h : h O	0x = High sec		Durate et 1.1							
U JIQ	BWKP: Boot	Segment Write-	Protect bit	ected						
	0 = User prog	gram memory is	s write-protecte	ed						

REGISTER 21-14: FDEVOPT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
—	—	—	—	—	—	—	—			
bit 23							bit 16			
U-1	U-1	R/PO-1	U-1	U-1	R/PO-1	r-1	r-1			
—	—	SPI2PIN ⁽¹⁾	—	_	SMBEN	—	—			
bit 15							bit 8			
r-1	U-1	U-1	R/PO-1	R/PO-1	r-1	U-1	U-1			
—	_	_	ALTI2C2	ALTI2C1	—	—	—			
bit 7							bit 0			
Legend:		PO = Prograr	n Once bit	r = Reserved	bit					
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 23-14	Unimpleme	nted: Read as	'1'							
bit 13	SPI2PIN: Ma	aster SPI #2 Fa	st I/O Pad Dis	able bit ⁽¹⁾						
	1 = Master S	SPI2 uses PPS	(I/O remap) to	make connect	ions with devic	e pins				
	0 = Master S	SPI2 uses direc	t connections	with specified d	levice pins					
bit 12-11	Unimpleme	nted: Read as	'1'	2						
bit 10	SMBEN: Se	lect Input Voltag	ge Threshold f	or I ² C Pads to	be SMBus 3.0	Compliant bit				
	1 = Enables 0 = I ² C pad i	SMBus 3.0 inp input buffer ope	ut threshold vo eration	oltage						
bit 9-7	Reserved: N	Maintain as '1'								
bit 6-5	Unimpleme	nted: Read as	'1'							
bit 4	ALTI2C2: AI	ALTI2C2: Alternate I2C2 Pin Mapping bit								
	1 = Default l	ocation for SCL	2/SDA2 pins							
	0 = Alternate	e location for SO	CL2/SDA2 pins	s (ASCL2/ASD/	42)					
bit 3	ALTI2C1: AI	ternate I2C1 Pi	n Mapping bit							
	1 = Default l 0 = Alternate	ocation for SCL e location for SC	.1/SDA1 pins CL1/SDA1 pins	s (ASCL1/ASD/	41)					
bit 2	Reserved: N	Maintain as '1'								
bit 1-0	Unimpleme	nted: Read as	'1'							
	-									

Note 1: Fixed pin option is only available for higher pin packages (48-pin, 64-pin and 80-pin).

АС СНА	ARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy (BRG + 1)	—	μs			
			400 kHz mode	Tcy (BRG + 1)	—	μs			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy (BRG + 1)	—	μs			
			400 kHz mode	Tcy (BRG + 1)		μs			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 x (VDD/5.5V)	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	120	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	120	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns			
		Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	50		ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs			
			400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0	0.3	μs			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy (BRG + 1)	_	μs	Only relevant for		
			400 kHz mode	Tcy (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	μs	After this period, the		
			400 kHz mode	Tcy (BRG + 1)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μs	generated		
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy (BRG + 1)	_	μs			
		Setup Time	400 kHz mode	Tcy (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy (BRG + 1)	_	μs			
		Hold Time	400 kHz mode	Tcy (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3450	ns			
		from Clock	400 kHz mode	—	900	ns			
			1 MHz mode ⁽²⁾	—	450	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF			
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	(Note 3)		

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

ECCCONH (ECC Fault Injection	
Configuration Lligh)	
Configuration Fight)	
ECCCONL (ECC Fault Injection	
Configuration Low)	
ECCSTATH (ECC System Status Display High) 309	
ECCSTATL (ECC System Status Display Low) 309	
FALTREG Configuration	
FBSLIM Configuration	
FCFGPRA0 (PORTA Configuration)	
ECEGPRB0 (PORTB Configuration) 687	
ECEGPRC0 (PORTC Configuration) 687	
ECECPRD(PORT) Configuration) 688	
ECECDEED (DORTE Configuration)	
FCFGFREU (FORTE COnfiguration	
FDEVOPT Configuration	
FDMT Configuration	
FDMTCNTH Configuration	
FDMTCNTL Configuration	
FDMTIVTH Configuration677	
FDMTIVTL Configuration	
FICD Configuration	
FMBXHS1 Configuration	
FMBXHS2 Configuration	
EMBXHSEN Configuration 686	
EMBXM Configuration 682	
FOSC Configuration 672	
FOSC Configuration	
FOSCSEL Configuration	
FPOR Configuration	
FS1ALTREG Configuration (Slave)	
FS1DEVOPT Configuration (Slave)	
FS1ICD Configuration (Slave)693	
FS1OSC Configuration (Slave)	
FS1OSCSEL Configuration (Slave)	
FS1POR Configuration (Slave)	
FS1WDT Configuration (Slave)	
ESCI (Frequency Scale) 504	
ESEC Configuration 670	
FSIGN Configuration 671	
ESMINDED (Frequency Scaling	
FSIMINPER (Frequency Scaling	
Winimum Period)	
FWD1 Configuration	
I2CxCONH (I2Cx Control High)	
I2CxCONL (I2Cx Control Low)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
IBIASCONH (Current Bias Generator Current	
Source Control High)	
IBIASCONL (Current Bias Generator Current	
Source Control Low) 666	
INDXxCNTH (Index x Counter High) 579	
INDY/CNTL (Index x Counter Low) 570	
INDXXCITE (Index x Counter Lold Lligh) 590	
INDXXILLDI (Index x Counter Hold Fight)	
INDAXALDL (Index & Counter Hold Low)	
INTCON1 (Interrupt Control 1)106	
INTCON1 (Slave Interrupt Control 1)	
INTCON2 (Interrupt Control 2) 108	
INTCON2 (Slave Interrupt Control 2)	
INTCON3 (Interrupt Control 3) 109	
INTCON3 (Slave Interrupt Control 3)	
INTCON4 (Interrupt Control 4)110	
INTCON4 (Slave Interrupt Control 4)	
INTTREG (Interrupt Control and Status) 111	
INTTREG (Slave Interrupt Control and Status) 329	
INTYTMRH (Interval v Timer High) 577	
INTVTMPL (Interval x Timer Low) 577	
INTYVIIL (Interval & Timer LOW)	
INTAATIEDIT (ITUEA & COUTTET TOTO TIGTT)	

INTXxHLDL (Index x Counter Hold Low)	578
	220
LATX (Output Data for PORTX) 118,	336
LFSR (Linear Feedback Shift)	513
LOCONIC (Entrationation of DM/M Logic Control)	500
LOGCONY (Combinatorial PVVIVI Logic Control y)	509
MDC (Master Duty Cycle)	505
MDED (Maatar Daried)	FOG
MPER (Master Period)	506
MPHASE (Master Phase)	505
MRSWFDATA (Master Read (Slave Write)	
FIFO Data)	423
MOIAOON (MOIA Master Osatas)	440
MSITCON (MSIT Master Control)	418
MSI1FIFOCS (MSI1 Master FIFO	
Control/Status)	422
MSI1KEY (MSI1 Master Interlock Kev)	420
	720
MSI1MBXnD (MSI1 Master Mailbox n Data)	421
MSI1MBXS (MSI1 Master Mailbox Data	
I ransfer Status)	420
MSI1STAT (MSI1 Master Status)	110
	413
MWSRFDATA (Master Write (Slave Read)	
	123
FIFO Dala)	423
NVMADR (Nonvolatile Memory Lower Address)	84
NVIVIADR (Slave Flogram Memory	
Lower Address)	305
NIV/MADDLL (Nenvelatile Mamony Linner Address)	04
NVMADRU (Nonvolatile Memory Upper Address)	84
NVMADRU (Slave Program Memory	
	005
Upper Address)	305
NVMCON (Nonvolatile Memory (NVM) Control)	82
NVMCON (Program Memory Slave Control)	303
NV/MKEY (Nonvolatile Memory Key)	85
	00
NVMKEY (Slave Nonvolatile Memory Key)	306
NIV/MSPCADP (NIV/M Source Data Address)	85
	05
NVMSRCADR (Slave NVM Source	
Data Addross)	306
Dala Autiess)	500
ODCx (Open-Drain Enable for PORTx) 118,	336
OSCCON (Master Oscillator Control)	112
	442
OSCCON (Slave Oscillator Control)	455
	447
USCIUN (Master FRC Oscillator Tuning)	447
PCI KCON (PWM Clock Control)	503
PGAXCAL (PGAX Calibration)	416
PGAxCON (PGAx Control)	415
PGxCAP (PWM Generator x Capture)	534
PGxCONH (PWM Generator x Control High)	515
PGxCONL (PWM Generator x Control Low)	514
PGyDC (PWM Generator x Duty Cycle)	530
	550
PGxDCA (PWM Generator x	
Duty Cycle Adjustment)	531
	551
PGxDTH (PWM Generator x Dead-Time High)	533
PCvDTL (PWM Cenerator v Dead-Time Low)	533
	555
PGxEVTH (PWM Generator x Event High)	527
PCvEV/TL (PW/M Concrator v Evont Low)	526
	520
PGxIOCONH (PWM Generator x	
1/O Control Lligh)	E 0 0
	520
PGxIOCONL (PWM Generator x	
1/O Control Low	E10
	519
PGxLEBH (PWM Generator x Leading-Edge	
Disables (Contraction of Contraction (Contraction)	
Blanking Hign)	529
PGxLEBL (PWM Generator x Leading-Edge	
Blanking Low)	528
PGxPER (PWM Generator x Period)	531
	501
PGXPHASE (PWM Generator x Phase)	530
PGYSTAT (PWM Generator v Status)	517
	517
PGxTRIGA (PWM Generator x Trigger A)	532
DCvTDICR (DWM Concreter v Trigger P)	520
I GATRIGD (FWW Generator & Higger D)	032
PGxTRIGC (PWM Generator x Triager C)	532
	504
гохурып (Pvvivi Generator xy PCI Hign)	JZ4
PGxyPCIL (PWM Generator xy PCI Low)	521
, . , , ,	