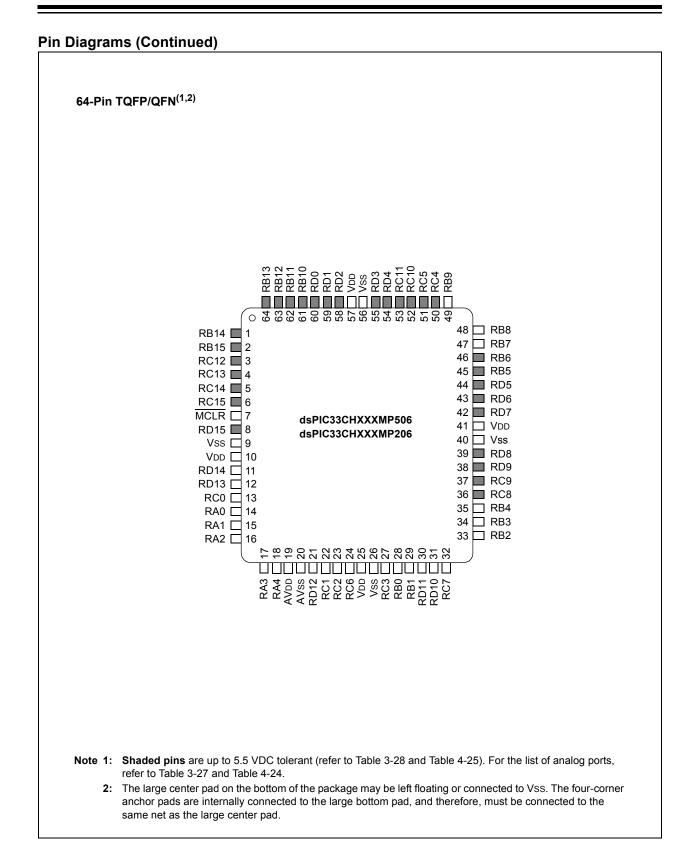


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-136: C1TEFCONH: CAN TRANSMIT EVENT FIFO CONTROL REGISTER HIGH

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	—	FSIZE<4:0> ⁽¹⁾					
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—		—	—	—		
bit 7	·	•				•	bit 0	
Legend:								
R = Readable	bit	W = Writable bi	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit			s unknown	
bit 15-13	Unimplemen	ted: Read as '0'						
bit 12-8	FSIZE<4:0>:	FIFO Size bits ⁽¹)					
	11111 = FIFC	D is 32 message	s deep					
	00010 = FIFC	D is 3 messages	deep					
	00001 = FIFC) is 2 messages	deep					
	00000 = FIFC	D is 1 message o	deep					
bit 7-0	Unimplemen	ted: Read as '0'	1					

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

R/W-0 R bit 15	R/W-0	R/W-0	R/W-0 EFMSG	R/W-0 CNT<15:8>	R/W-0	R/W-0	R/W-0
bit 15			EFMSG	CNT<15:8>			
bit 15							
							bit 8
R/W-0 R	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSG	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			1 as '0'				
-n = Value at POR	- Value at POR '1' = Bit is set '0' = Bit is cleared x = Bi		x = Bit is unkn	iown			

REGISTER 3-150: C1BDIAG1L: CAN BUS DIAGNOSTICS REGISTER 1 LOW

bit 15-0 EFMSGCNT<15:0>: Error-Free Message Counter bits

PTG Input Number	PTG Input Description
PTG Trigger Input 0	Trigger Input from Master PWM Channel 1
PTG Trigger Input 1	Trigger Input from Master PWM Channel 2
PTG Trigger Input 2	Trigger Input from Master PWM Channel 3
PTG Trigger Input 3	Trigger Input from Master PWM Channel 4
PTG Trigger Input 4	Trigger Input from Slave PWM Channel 1
PTG Trigger Input 5	Trigger Input from Slave PWM Channel 2
PTG Trigger Input 6	Trigger Input from Slave PWM Channel 3
PTG Trigger Input 7	Trigger Input from Master SCCP4
PTG Trigger Input 8	Trigger Input from Slave SCCP4
PTG Trigger Input 9	Trigger Input from Master Comparator 1
PTG Trigger Input 10	Trigger Input from Slave Comparator 1
PTG Trigger Input 11	Trigger Input from Slave Comparator 2
PTG Trigger Input 12	Trigger Input from Slave Comparator 3
PTG Trigger Input 13	Trigger Input Master ADC Done Group Interrupt
PTG Trigger Input 14	Trigger Input Slave ADC Done Group Interrupt
PTG Trigger Input 15	Trigger Input from INT2 PPS

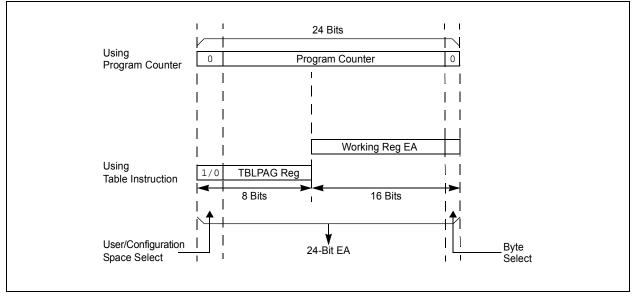

TABLE 3-46: PTG INPUT DESCRIPTIONS

TABLE 3-47: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description
PTGO0 to PTGO11	Reserved
PTGO12	Trigger for Master ADC TRGSRC<30>
PTGO13	Trigger for Slave ADC TRGSRC<30>
PTGO16 to PTGO23	Reserved
PTGO24	PPS Master Output RP46
PTGO25	PPS Master Output RP47
PTGO26	PPS Master Input RP6
PTGO27	PPS Master Input RP7
PTGO28	PPS Slave Output RP46
PTGO29	PPS Slave Output RP47
PTGO30	PPS Slave Input RP6
PTGO31	PPS Slave Input RP7

dsPIC33CH128MP508 FAMILY

FIGURE 4-13: ADDRESSING FOR TABLE REGISTERS

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

4.6.7 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.6.7.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

	REGISTER 4-89:	ADCON4L: ADC CONTROL REGISTER 4 LOW
--	----------------	-------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 Reserved: Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

REGISTER 6-18: APLLDIV: APLL OUTPUT DIVIDER REGISTER (SLAVE)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_		—	—	—	AVCODIV<1:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1	
—	APOST1DIV<2:0> ^(1,2)			—	APOST2DIV<2:0> ^(1,2)			
bit 7							bit 0	

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

- bit 9-8 AVCODIV<1:0>: APLL VCO Output Divider Select bits
 - 11 = AFvco 10 = AFvco/2 01 = AFvco/3 00 = AFvco/4

bit 7 Unimplemented: Read as '0'

bit 6-4 APOST1DIV<2:0>: APLL Output Divider #1 Ratio bits^(1,2)

APOST1DIV<2:0> can have a valid value, from 1 to 7 (APOST1DIVx value should be greater than or equal to the APOST2DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

bit 3 Unimplemented: Read as '0'

bit 2-0 APOST2DIV<2:0>: APLL Output Divider #2 Ratio bits^(1,2)

APOST2DIV<2:0> can have a valid value, from 1 to 7 (APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	
_	_	_	_	PMDLOCK	_	_	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	Unimplement	ted: Read as '	0'					
bit 11	PMDLOCK: F	MD Lock bit						
	1 = PMD bits	can be written						

REGISTER 7-9: PMDCON: SLAVE PMD CONTROL REGISTER

0 = PMD bits are not allowed to be written

Unimplemented: Read as '0'

bit 10-0

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	DMA1MD	DMA0MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-10	Unimplement	ted: Read as '	כי				
bit 9	DMA1MD: DN	/A1 Module Di	sable bit				
	1 = DMA1 mo	dule is disable	d				
	0 = DMA1 mo	dule is enabled	b				
bit 8	DMA0MD: DN	/A0 Module Di	sable bit				
	1 = DMA0 mo	dule is disable	d				

REGISTER 7-13: PMD6: SLAVE PERIPHERAL MODULE DISABLE 6 CONTROL REGISTER HIGH

0 = DMA0 module is enabled

TABLE 7-2: MASTER PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCONL	_	_	_	—	PMDLOCK		_	_		_						_
PMD1	_	_	_	—	T1MD	QEIMD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADC1MD
PMD2			_	_	_		_		CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD3	-	_	—	—	-	_	—	_	CRCMD	—	-	_	_	—	I2C2MD	_
PMD4	_	_	_	—	_	—	_	_	_	—	_	_	REFOMD	_	_	—
PMD6			DMA5MD	DMA4MD	DMA3MD	DMA2MD	DMA1MD	DMA0MD		_				_	_	_
PMD7	_	_	_	_	_		_	CMP1MD		_	_	_	PTGMD	—	_	_
PMD8	_	_	_	SENT2MD	SENT1MD		_	_	_	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	—

TABLE 7-3: SLAVE PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCON	_	—	—		PMDLOCK	_	—	—	—	—	_	_		_	—	—
PMD1	_	—		_	T1MD	QEIMD	PWMMD	-	I2C1MD	—	U1MD	_	SPI1MD	_		ADC1MD
PMD2	_	_		_	_	_	_	_	_	_	_	_	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD4	_	—		_	—	_	—	_		_		_	REFOMD	_		—
PMD6	_	_		_	_	_	DMA1MD	DMA0MD	_	_	_	_	_	_	_	_
PMD7	_	—	—		_	CMP3MD	CMP2MD	CMP1MD	—	_	—	—	—	—	PGA1MD	_
PMD8	_	PGA3MD	—		_	PGA2MD	_	—	—	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	_

REGISTER 11-4:	DACxCONH: DACx CONTROL HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	_	—	—	TMCE	3<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TMC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	

bit 15-10 **Unimplemented:** Read as '0'

-n = Value at POR

bit 9-0 **TMCB<9:0>:** DACx Leading-Edge Blanking bits These register bits specify the blanking period for the comparator, following changes to the DAC output during Change-of-State (COS), for the input signal selected by the HCFSEL<3:0> bits in Register 11-9.

'0' = Bit is cleared

REGISTER 11-5: DACxCONL: DACx CONTROL LOW REGISTER

'1' = Bit is set

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DACEN	IRQM1 ^(1,2)	IRQM0 ^(1,2)	—	_	CBE	DACOEN	FLTREN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPSTAT	CMPPOL	INSEL2	INSEL1	INSEL0	HYSPOL	HYSSEL1	HYSSEL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	

bit 15 DACEN: Individual DACx Module Enable bit

- 1 = Enables DACx module
- 0 = Disables DACx module to reduce power consumption; any pending Slope mode and/or underflow conditions are cleared
- bit 14-13 IRQM<1:0>: Interrupt Mode select bits^(1,2)
 - 11 = Generates an interrupt on either a rising or falling edge detect
 - 10 = Generates an interrupt on a falling edge detect
 - 01 = Generates an interrupt on a rising edge detect
 - 00 = Interrupts are disabled
- bit 12-11 Unimplemented: Read as '0'

Note 1: Changing these bits during operation may generate a spurious interrupt.

2: The edge selection is a post-polarity selection via the CMPPOL bit.

12.1 QEI Control and Status Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2	PIMOD1	PIMOD0	IMV1	IMV0
bit 15				•	•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0		1				-	
 bit 7	INTDIV2	INTDIV1	INTDIV0	CNTPOL	GATEN	CCM1	CCM0
							DIL
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = QEI modu	drature Encode ule is enabled ule is disabled;			or written		
bit 14	Unimplemen	ted: Read as ')'				
bit 13	QEISIDL: QE	I Stop in Idle M	ode bit				
		ues module ope s module opera			le mode		
bit 12-10	PIMOD<2:0>	: Position Cour	ter Initializatio	n Mode Select	bits		
	101 = Resets 100 = Secon QEIxIC 011 = First Ir registe 010 = Next Ir 001 = Every	d Index event a C register ndex event after er	ounter when th after Home event Home event in t initializes the nt resets the p	e position coun ent initializes th itializes the pos position counter osition counter	ne position cou sition counter w er with the con	QEIxGEC regis unter with the c vith the contents tents of the QE	ontents of the
bit 9-8		dex Match Valu		position count	.01		
	11 = Index m 10 = Index m 01 = Index m 00 = Index m	atch occurs wh atch occurs wh atch occurs wh atch occurs wh	en QEBx = 1 a en QEBx = 1 a en QEBx = 0 a en QEBx = 0 a	and QEAx = 0 and QEAx = 1			
bit 7	-	ted: Read as '					
bit 6-4	velocity count	ter and Index of prescale value rescale value rescale value rescale value escale value escale value escale value				nain timer (pos	ition counter)
bit 3	-	sition, Velocity	and Index Cou	inter/Timer Dire	ection Select bi	t	
		direction is nega					

REGISTER 12-1: QEIXCON: QEIX CONTROL REGISTER

REGISTER 13-14: UXRXCHK: UARTX RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RXCH	K<7:0>					
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as '0	3						
bit 7-0	RXCHK<7:0>	: Receive Cheo	cksum bits (cal	culated from RX	K words)				
	LIN Modes:								
				ion carries, inclu					
	C0EN = 0: Su	im of all receive	ed data + addit	ion carries, excl	uding PID.				
	LIN Slave:								
Cleared when Break is detected.									
	LIN Master/Slave:								
	Cleared when Break is detected.								
	Other Modes:								
	C0EN = 1: Sum of every byte received + addition carries.								

C0EN = 0: Value remains unchanged.

NOTES:

REGISTER 21-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	R = Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware
	0 = WDT controller via the ON bit (WDTCONL<15>)
bit 14-10	SWDTPS<4:0>: Sleep Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL<1:0>: Watchdog Timer Clock Select bits
	11 = LPRC clock
	10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC
	00 = Reserved
bit 4-0	RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2

REGISTER 21-9: FDMTIVTL CONFIGURATION REGISTER
--

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	—		—	—	—	—	
bit 23		•				•	bit 16	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<15:8>								

bit 15

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<7:0>								
bit 7 b								

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16Unimplemented: Read as '1'bit 15-0DMTIVT<15:0>: DMT Window Interval Lower 16 bits

REGISTER 21-10: FDMTIVTH CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
		—		—			—
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIVT	<31:24>			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIVT	<23:16>			
bit 7							bit 0

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16 **Unimplemented:** Read as '1'

bit 15-0 DMTIVT<31:16>: DMT Window Interval Higher 16 bits

bit 8

REGISTER 21-15: FALTREG CONFIGURATION REGISTER (CONTINUED)

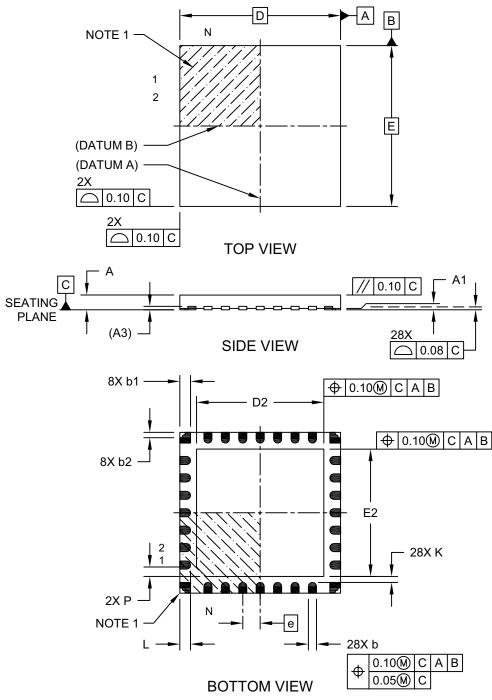
- bit 2-0 **CTXT1<2:0>:** Specifies the Alternate Working Register Set #1 with Interrupt Priority Levels (IPL) bits 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 =Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1

REGISTER 21-16: FMBXM CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23			•				bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
MBXM14	MBXM13	MBXM12	MBXM11	MBXM10	MBXM9	MBXM8
						bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
MBXM6	MBXM5	MBXM4	MBXM3	MBXM2	MBXM1	MBXM0
	R/PO-1	MBXM14 MBXM13 R/PO-1 R/PO-1	MBXM14 MBXM13 MBXM12 R/PO-1 R/PO-1 R/PO-1	MBXM14 MBXM13 MBXM12 MBXM11 R/PO-1 R/PO-1 R/PO-1 R/PO-1	MBXM14 MBXM13 MBXM12 MBXM11 MBXM10 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1	MBXM14 MBXM13 MBXM12 MBXM11 MBXM10 MBXM9 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 23-16	Unimplemented: Read as '1'
bit 15	MBXM15: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #15 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #15 is configured for Master data write (Master to Slave data transfer)
bit 14	MBXM14: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #14 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #14 is configured for Master data write (Master to Slave data transfer)
bit 13	MBXM13: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #13 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #13 is configured for Master data write (Master to Slave data transfer)
bit 12	MBXM12: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #12 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #12 is configured for Master data write (Master to Slave data transfer)
bit 11	MBXM11: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #11 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #11 is configured for Master data write (Master to Slave data transfer)
bit 10	MBXM10: Mailbox Data Register Channel Direction Fuses bits
	 1 = Mailbox Register #10 is configured for Master data read (Slave to Master data transfer) 0 = Mailbox Register #10 is configured for Master data write (Master to Slave data transfer)

bit 7

bit 0

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-385B Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820