

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-95: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
COUNTER<15:8>										
bit 15	bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	COUNTER<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkno				nown						

bit 15-0 **COUNTER<15:0>:** Read Current Contents of Lower DMT Counter bits

REGISTER 3-96: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			COUNT	ER<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			COUNT	ER<23:16>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x			x = Bit is unkr	nown				

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

REGISTER 3-97: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSCNT<15:8>										
bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PSCNT<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkno				nown						

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 3-98: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSCNT<31:24>										
bit 15	bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSCNT<23:16>										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 3-131: C1TXQCONL: CAN TRANSMIT QUEUE CONTROL REGISTER LOW

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	_	_		_	FRESET	TXREQ	UINC			
bit 15							bit 8			
							,			
R-0	U-0	U-0	HS/C-0	U-0	R/W-0	U-0	R/W-0			
TXEN	—	—	TXATIE	—	TXQEIE	—	TXQNIE			
bit 7							bit 0			
Legend:		HS = Hardware	e Settable bit	C = Clearab	le bit					
R = Readable	bit	W = Writable bi	it	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-11	Unimplemented: Read as '0'									
bit 10	FRESET: FIF	O Reset bit								
	1 = FIFO will	I be reset when	bit is set, cle	eared by hard	ware when FIF	O is reset; us	er should poll			
	0 = No effect	this dit is clear d	etore taking a	iny action						
hit 9	TXREQ: Mes	sage Send Regi	lest hit							
Sito	1 = Requests	s sending a mes	sage: the bit	will automatic	ally clear when	all the messad	es aueued in			
	the TXQ	are successfully	sent		,		,,			
	0 = Clearing	the bit to '0' whil	le set ('1') will	request a me	essage abort					
bit 8	UINC: Increm	ent Head/Tail bi	t							
	When this bit	is set, the FIFO	head will incr	ement by a si	ngle message.					
bit 7	TXEN: TX En	able bit								
bit 6-5	Unimplemen	ted: Read as '0'	1							
bit 4	TXATIE: Tran	ismit Attempts E	xhausted Inte	errupt Enable	bit					
	1 = Enables in	nterrupt								
hit 2		interrupt	,							
DIL 3			untur lunta un untu	Enchla hit						
DIL Z	1 = Interrunt i		ipiy interrupi i O omntv	Enable bit						
	0 = Interrupt i	s disabled for TX	KQ empty							
bit 1	Unimplemen	ted: Read as '0'								
bit 0	TXQNIE: Trai	nsmit Queue No	t Full Interrup	t Enable bit						
	1 = Interrupt i 0 = Interrupt i	s enabled for TX s disabled for TX	(Q not full KQ not full							

REGISTER 3-136: C1TEFCONH: CAN TRANSMIT EVENT FIFO CONTROL REGISTER HIGH

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	—	FSIZE<4:0> ⁽¹⁾							
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-13	Unimplemer	ted: Read as '0	,							
bit 12-8	FSIZE<4:0>:	FIFO Size bits ⁽¹)							
	11111 = FIF	O is 32 message	s deep							
	00010 = FIF(O is 3 messages	deep							
00001 = FIFO is 2 message deep										
hit 7-0		ted: Read as '0	,							
	CHIMPICHICI	$1 \mathbf{c} \mathbf{u}$								

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

EXAMPLE 4-2: SLAVE PRAM LOAD AND VERIFY ROUTINE

```
#include <libpic30.h>
//_program_slave(core#, verify, &slave_image)
if (__program_slave(1, 0, &slave) == 0)
{
    /* now verify */
    if (__program_slave(1, 1, &slave) ==
    ESLV_VERIFY_FAIL)
    {
        asm("reset"); // try again
    }
}
```

The __program_slave(core#, verify, &slave_image) routine only supports Slave images created with a compatible Microchip language tools format. Slave PRAM images not following this format will require a custom routine that follows all requirements for the PRAM Master to Slave image loading process described in this chapter.

4.3.4 PRAM DUAL PARTITION CONSIDERATIONS

For dsPIC33CH128MP508S1 family devices operating in Dual Partition PRAM Program Memory modes, both partitions would be loaded using the Master to Slave image loading process. The Master can load the active partition of the PRAM only when SLVEN = 0 (Slave is not running). The Master can load the PRAM Inactive Partition any time. To support LiveUpdate, the Master would load the PRAM Inactive Partition while the Slave is running and then the Slave would execute the BOOTSWP instruction to swap partitions.

4.3.4.1 PRAM Partition Swapping

At device Reset, the default PRAM partition is Partition 1. The BOOTSWP instruction provides the means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition. It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence, and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain their state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap.

For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

4.3.4.2 Dual Partition Modes

While operating in Dual Partition mode, the dsPIC33CH128MP508S1 family devices have the option for both partitions to have their own defined security segments, as shown in Figure .

Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

TABLE 4-30: SLAVE REMAPPABLE OUTPUT PIN REGISTERS

Register	S1RP Pin	I/O Port
RPOR0<5:0>	S1RP32	Port Pin S1RB0
RPOR0<13:8>	S1RP33	Port Pin S1RB1
RPOR1<5:0>	S1RP34	Port Pin S1RB2
RPOR1<13:8>	S1RP35	Port Pin S1RB3
RPOR2<5:0>	S1RP36	Port Pin S1RB4
RPOR2<13:8>	S1RP37	Port Pin S1RB5
RPOR3<5:0>	S1RP38	Port Pin S1RB6
RPOR3<13:8>	S1RP39	Port Pin S1RB7
RPOR4<5:0>	S1RP40	Port Pin S1RB8
RPOR4<13:8>	S1RP41	Port Pin S1RB9
RPOR5<5:0>	S1RP42	Port Pin S1RB10
RPOR5<13:8>	S1RP43	Port Pin S1RB11
RPOR6<5:0>	S1RP44	Port Pin S1RB12
RPOR6<13:8>	S1RP45	Port Pin S1RB13
RPOR7<5:0>	S1RP46	Port Pin S1RB14
RPOR7<13:8>	S1RP47	Port Pin S1RB15
RPOR8<5:0>	S1RP48	Port Pin S1RC0
RPOR8<13:8>	S1RP49	Port Pin S1RC1
RPOR9<5:0>	S1RP50	Port Pin S1RC2
RPOR9<13:8>	S1RP51	Port Pin S1RC3
RPOR10<5:0>	S1RP52	Port Pin S1RC4
RPOR10<13:8>	S1RP53	Port Pin S1RC5
RPOR11<5:0>	S1RP54	Port Pin S1RC6
RPOR11<13:8>	S1RP55	Port Pin S1RC7
RPOR12<5:0>	S1RP56	Port Pin S1RC8
RPOR12<13:8>	S1RP57	Port Pin S1RC9
RPOR13<5:0>	S1RP58	Port Pin S1RC10
RPOR13<13:8>	S1RP59	Port Pin S1RC11
RPOR14<5:0>	S1RP60	Port Pin S1RC12
RPOR14<13:8>	S1RP61	Port Pin S1RC13
RPOR15<5:0>	S1RP62	Port Pin S1RC14
RPOR15<13:8>	S1RP63	Port Pin S1RC15
RPOR16<5:0>	S1RP64	Port Pin S1RD0
RPOR16<13:8>	S1RP65	Port Pin S1RD1
RPOR17<5:0>	S1RP66	Port Pin S1RD2
RPOR17<13:8>	S1RP67	Port Pin S1RD3
RPOR18<5:0>	S1RP68	Port Pin S1RD4
RPOR18<13:8>	S1RP69	Port Pin S1RD5
RPOR19<5:0>	S1RP70	Port Pin S1RD6
RPOR19<13:8>	S1RP71	Port Pin S1RD7
	S1RP181-S1RP176	Reserved
RPOR20<5:0>	S1RP170	Virtual Pin S1RPV0
RPOR20<13:8>	S1RP171	Virtual Pin S1RPV1
RPOR21<5:0>	S1RP172	Virtual Pin S1RPV2
RPOR21<13:8>	S1RP173	Virtual Pin S1RPV3
RPOR22<5:0>	S1RP174	Virtual Pin S1RPV4
RPOR22<13:8>	S1RP175	Virtual Pin S1RPV5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0	R/W-0	HSC/R-0			
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH			
bit 15				-		•	bit 8			
R/W-0	HSC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0			
bit 7							bit 0			
Legend:		U = Unimplen	nented bit, rea	d as '0'						
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	earable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-13	REFSEL<2:0	>: ADC Refere	nce Voltage S	election bits						
	Value	VREFH	VREFL							
	000	AVDD	AVss							
	001-111 = U	nimplemented	: Do not use							
bit 12	SUSPEND: A	ADC Core Tr	iqqers Disable	bit						
	1 = All new tri	igger events for	all ADC core	s are disabled						
	0 = All ADC c	ores can be trig	ggered							
bit 11	SUSPCIE: Su	uspend All ADC	Cores Comm	ion Interrupt Ena	able bit					
	1 = Common	interrupt will b	e generated w	hen ADC core t	riggers are sus	pended (SUSF	PEND bit = 1)			
	and all pr 0 = Common	interrupt is not	tions are finisr	suspend ADC	Dit becomes se	et)				
bit 10	SUSPRDY: A	II ADC Cores S	Suspended Fla	a bit						
	1 = All ADC c	ores are suspe	nded (SUSPE	ND bit = 1) and	have no conve	ersions in progr	ess			
	0 = ADC core	s have previou	s conversions	in progress						
bit 9	SHRSAMP: S	Shared ADC Co	ore Sampling [Direct Control bi	t					
	This bit shoul	d be used with	the individual	channel conver	sion trigger co	ntrolled by the	CNVRTCH bit.			
	extending the	e sampling time	e. This bit is n	ot controlled by	/ hardware and	a snared ADC c	red before the			
	conversion st	arts (setting CN	IVRTCH to '1').						
	1 = Shared A	DC core sampl	es an analog i	nput specified b	y the CNVCHS	SEL<5:0> bits				
hit 0		is controlled by	/ the shared A		are Ior hit					
DILO	1 = Single trial	ager is generat	ed for an analo	onversion myg	d by the CNVC	HSEL<5:0> hit	s: when the hit			
	is set, it i	s automatically	cleared by ha	rdware on the n	ext instruction	cycle	3, which the bit			
	0 = Next indi	vidual channel	conversion trig	gger can be gen	erated					
bit 7	SWLCTRG: S	Software Level-	Sensitive Con	nmon Trigger bit	t					
	1 = Triggers	are continuous	ly generated	for all channels	with the softw	vare, level-sens	sitive common			
	trigger selected as a source in the ADTRIGhL and ADTRIGhH registers 0 = No software, level-sensitive common triggers are generated									
bit 6	SWCTRG: So	oftware Commo	on Triager bit							
	1 = Single tri	gger is generat	ed for all chan	nels with the so	ftware; commo	n trigger select	ed as a source			
	in the Al	OTRIGnL and	ADTRIGnH re	gisters; when t	he bit is set, i	t is automatica	ally cleared by			
	hardware	e on the next in:	struction cycle	ommon triggor						
bit 5-0		5:0>: Channel	Number Sele	ction for Softwar	e Individual Ch	annel Conversi	ion Trigger bite			
	These bits de	fine a channel	to be converte	d when the CN	VRTCH bit is se	et.	ion mgger bits			

REGISTER 4-87: ADCON3L: ADC CONTROL REGISTER 3 LOW

HSC/R-0	U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0			
SHRRDY	—		—			C1RDY	CORDY			
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
SHRPWR	—	—	—		—	C1PWR	C0PWR			
bit 7 bit 0										
Legend:		U = Unimplem	nented bit, read	d as '0'						
R = Readable	e bit	W = Writable	oit	HSC = Hardw	vare Settable/C	learable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	SHRRDY: Shared ADC Core Ready Flag bit									
	1 = ADC core is powered and ready for operation									
	0 = ADC core is not ready for operation									
DIT 14-10	Unimplemen	ted: Read as 10								
bit 9	C1RDY: Dedi	cated ADC Cor	e 1 Ready Fla	g bit						
	1 = ADC Core 0 = ADC Core	e 1 is powered a	and ready for c for operation	operation						
bit 8	CORDY: Dedi	cated ADC Cor	e 0 Ready Fla	g bit						
	1 = ADC Core	e 0 is powered	and ready for c	operation						
	0 = ADC Core	e 0 is not ready	for operation							
bit 7	SHRPWR: St	nared ADC Cor	e Power Enabl	e bit						
	1 = ADC core	is powered								
	0 = ADC core	is off								
bit 6-2	Unimplemen	ted: Read as '0)'							
bit 1	C1PWR: Ded	icated ADC Co	re 1 Power En	able bit						
	1 = ADC Core	e 1 is powered								
hit 0			ro 0 Dowor En	abla bit						
	1 = ADC Core	e 0 is off								

REGISTER 4-91: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 4-111: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0					
FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY					
bit 15				1			bit 8					
11.0	11.0	11.0		D/M/ 0								
			FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0					
bit 7			TEORIGEET	TEOHOLLO	TEOHOLLE	TEOHOLLI	bit (
Legend:		U = Unimpler	mented bit, read	1 as '0'								
R = Readab	le bit	W = Writable	bit	HSC = Hardw	are Settable/C	learable bit						
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown					
=												
Dit 15	FLEN: Filter	Enable bit										
	1 = Filter is e 0 = Filter is d	lisabled and the	RDY bit is clea	ared								
bit 14-13	MODE<1:0>	: Filter Mode bi	ts									
	11 = Averaging mode											
	10 = Reserve	10 = Reserved										
	01 = Reserve	01 = Keserved										
	00 = Oversa	mpling mode										
bit 12-10	OVRSAM<2	UVROANISZ:UZ: FIITER AVERAGING/UVERSAMPIING RATIO DITS										
	IT MODE<1: U > = 00: 111 = 128x (16-bit result in the ADEL xDAT register is in 12.4 format)											
	110 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format)											
	101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)											
	100 = 2x (13	100 = 2x (13-bit result in the ADFLxDAT register is in 12.1 format)										
	011 = 256x (011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)										
	010 = 64x(1)	010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)										
	001 = 10x (14-bit result in the ADFLxDAT register is in 12.2 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)											
	If MODE<1:0	If MODE<1:0> = 11 (12-bit result in the ADEL xDAT register is all instances).										
	111 = 256x	x		0								
	110 = 128x											
	101 = 64x											
	100 = 32x 011 = 16x											
	110 = 8x											
	001 = 4x											
	000 = 2x											
bit 9	IE: Filter Cor	IE: Filter Common ADC Interrupt Enable bit										
	1 = Common 0 = Common	ADC interrupt	will be generate will not be gene	ed when the filt erated for the fi	ter result will be Iter	ready						
bit 8	RDY: Oversa	ampling Filter D	ata Ready Flag	bit								
	This bit is cle 1 = Data in the ADE	eared by hardware ne ADFLxDAT r	are when the re register is ready	sult is read from	m the ADFLxD	AT register.	ot ready					
hit 7-5		ted: Read as '	∩'	and new uala		in register is f	lot ready					
n 7-0	ommplemer	neu. Nedu dS	U									

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	—	—	—	—	—	CMP1MD	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	
_	_	—	—	PTGMD		—	—	
bit 7			•			•	bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '	כ'					
bit 8	CMP1MD: Co	omparator 1 Mc	dule Disable b	it				
	1 = Comparat 0 = Comparat	tor 1 module is tor 1 module is	disabled enabled					
1.11.77.4			-1					

REGISTER 7-7: PMD7: MASTER PERIPHERAL MODULE DISABLE 7 CONTROL REGISTER LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	CMP1MD: Comparator 1 Module Disable bit
	1 = Comparator 1 module is disabled0 = Comparator 1 module is enabled
bit 7-4	Unimplemented: Read as '0'
bit 3	PTGMD: PTG Module Disable bit
	1 = PTG module is disabled 0 = PTG module is enabled
bit 2-0	Unimplemented: Read as '0'

8.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

- Note 1: This data sheet summarizes the features of this group of dsPIC33 devices. It is not intended to be a comprehensive reference source. For more information, refer to "Direct Memory Access Controller (DMA)" (DS39742) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The DMA is identical for both Master core and Slave core. The x is common for both Master and Slave (where the x represents the number of the specific module being addressed).
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where S1 indicates the Slave device.

Table 8-1 shows an overview of the DMA module.

	Number of DMA Modules	Identical (Modules)
Master Core	6	Yes
Slave Core	2	Yes

TABLE 8-1:DMA MODULE OVERVIEW

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus, between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals.

The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations, causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- A Total of Eight (Six Master, Two Slave), Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown if Figure 8-1.

CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<6:0>		Trigger (Interrupt)
0000000	00h	INT0 – External Interrupt 0	0100011	23h	(Reserved, do not use)	1000101	45h	CLC2 Interrupt
0000001	01h	SCCP1 Interrupt	0100100	24h	PWM Event C	1000110	46h	SPI1 – Fault Interrupt
0000010	02h	SPI1 Receiver	0100101	25h	SENT1 TX/RX	1000111	47h	SPI2 – Fault Interrupt
0000011	03h	SPI1 Transmitter	0100110	26h	SENT2 TX/RX	1001000	48h	(Reserved, do not use)
0000100	04h	UART1 Receiver	0100111	27h	ADC1 Group Convert Done	1001001	49h	(Reserved, do not use)
0000101	05h	UART1 Transmitter	0101000	28h	ADC Done AN0	1001010	4Ah	MSI Slave Initiated Slave IRQ
0000110	06h	ECC Single Bit Error	0101001	29h	ADC Done AN1	1001011	4Bh	MSI Protocol A
0000111	07h	NVM Write Complete	0101010	2Ah	ADC Done AN2	1001100	4Ch	MSI Protocol B
0001000	08h	INT1 – External Interrupt 1	0101011	2Bh	ADC Done AN3	1001101	4Dh	MSI Protocol C
0001001	09h	SI2C1 – I2C1 Slave Event	0101100	2Ch	ADC Done AN4	1001110	4Eh	MSI Protocol D
0001010	0Ah	MI2C1 – I2C1 Master Event	0101101	2Dh	ADC Done AN5	1001111	4Fh	MSI Protocol E
0001010	0Bh	INT2 – External Interrupt 2	0101110	2Eh	ADC Done AN6	1010000	50h	MSI Protocol F
0001100	0Ch	SCCP2 Interrupt	0101111	2Fh	ADC Done AN7	1010001	51h	MSI Protocol G
0001101	0Dh	INT3 – External Interrupt 3	0110000	30h	ADC Done AN8	1010010	52h	MSI Protocol H
0001110	0Eh	UART2 Receiver	0110001	31h	ADC Done AN9	1010011	53h	MSI Master Read FIFO Data Ready IRQ
0001111	0Fh	UART2 Transmitter	0110010	32h	ADC Done AN10	1010100	54h	MSI Master Write FIFO Empty IRQ
0010000	10h	SPI2 Receiver	0110011	33h	ADC Done AN11	1010101	55h	MSI Fault (Over/Underflow)
0010001	11h	SPI2 Transmitter	0110100	34h	ADC Done AN12	1010110	56h	MSI Master Reset IRQ
0010010	12h	SCCP3 Interrupt	0110101	35h	ADC Done AN13	1010111	57h	PWM Event D
0010011	13h	SI2C2 – I2C2 Slave Event	0110110	36h	ADC Done AN14	1011000	58h	PWM Event E
0010100	14h	MI2C2 – I2C1 Master Event	0110111	37h	ADC Done AN15	1011001	59h	PWM Event F
0010101	15h	SCCP4 Interrupt	0111000	38h	ADC Done AN16	1011010	5Ah	Slave ICD Breakpoint Interrupt
0010110	16h	SCCP5 Interrupt	0111001	39h	ADC Done AN17	1011011	5Bh	(Reserved, do not use)
0010111	17h	SCCP6 Interrupt	0111010	3Ah	(Reserved, do not use)	1011100	5Ch	SCCP7 Interrupt
0011000	18h	CRC Generator Interrupt	0111010	3Bh	(Reserved, do not use)	1011101	5Dh	SCCP8 Interrupt
0011001	19h	PWM Event A	0111100	3Ch	(Reserved, do not use)	1011110	5Eh	Slave Clock Fail Interrupt
0011011	1Bh	PWM Event B	0111101	3Dh	(Reserved, do not use)	1011111	5Fh	ADC FIFO Ready Interrupt
0011100	1Ch	PWM Generator 1	0111110	3Eh	(Reserved, do not use)	1100000	60h	CLC3 Positive Edge Interrupt
0011101	1Dh	PWM Generator 2	0111111	3Fh	(Reserved, do not use)	1100001	61h	CLC4 Positive Edge Interrupt
0011110	1Eh	PWM Generator 3	1000000	40h	AD1FLTR1 – Oversample Filter 1	1100001	62h	
0011111	1Fh	PWM Generator 4	1000001	41h	AD1FLTR2 – Oversample Filter 2			(Reserved, do not use)
0100000	20h	(Reserved, do not use)	1000010	42h	AD1FLTR3 – Oversample Filter 3	1111111	7Fh	
0100001	21h	(Reserved, do not use)	1000011	43h	AD1FLTR4 – Oversample Filter 4			-
0100010	22h	(Reserved, do not use)	1000100	44h	CLC1 Interrupt			

TABLE 8-2: DMA CHANNEL TRIGGER SOURCES (MASTER)

REGISTER 12-21: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<15:8>			
			42.01				
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is			x = Bit is unkr	nown			

bit 15-0 **QEIGEC<15:0>:** QEIx Greater Than or Equal Compare bits

REGISTER 12-22: QEIxGECH: QEIx GREATER THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIGEC<31:24>								
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIGE	C<23:16>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 **QEIGEC<31:16>:** QEIx Greater Than or Equal Compare bits

14.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The SPI is Identical for both Master core and Slave core. The x is common for both Master and Slave (where the x represents the number of the specific module being addressed). The number of SPI modules available on the Master and Slave is different and they are located in different SFR locations.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device. The Master is SPI1 and SPI2, and the Slave is SPI1.

Table 14-1 shows an overview of the SPI module.

TABLE 14-1: SPI MODULE OVERVIEW

	Number of SPI Modules	ldentical (Modules)		
Master Core	2	Yes		
Slave Core	1	Yes		

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola® SPI and SIOP interfaces. All devices in the dsPIC33CH128MP508 family include three SPI modules: two SPIs for the Master core and one for the Slave core. One of the SPI modules can work up to 50 MHz speed when selected as a non-PPS pin. For the Master core, it will be SPI2 and for the Slave core, it will be SPI1. The selection is done using the SPI2PIN bit (FDEVOPT<13>) for the Master and the S1SPI1PIN bit (FS1DEVOPT<13>) for the Slave. If the bit for SPI2PIN/S1SPI1PIN is '1', the PPS pin will be used. If the SPI2PIN/S1SPI1PIN is '0', it will use the dedicated SPI pads.

The module supports operation in two Buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Note:	FIFO depth for this device is four (in 8-Bit
	Data mode).

Variable length data can be transmitted and received, from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified mode
- · Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Slaves. Because the audio protocols require free-running clocks, the Master can be a third-party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx/S1SDIx: Serial Data Input
- SDOx/S1SDOx: Serial Data Output
- SCKx/S1SCKx: Shift Clock Input or Output
- SSx/S1SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the 3-pin mode, SSx/S1SSx is not used. In the 2-pin mode, both SDOx/S1SDOx and SSx/S1SSx are not used. The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxGIF. This event occurs when:
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 14-1 and Figure 14-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

23.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 24-18: I/O PIN INPUT SPECIFICATIONS

$\begin{array}{l} \mbox{Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V		
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled	
	Vih	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽³⁾	0.8 VDD	—	Vdd	V		
		5V Tolerant I/O Pins and MCLR ⁽³⁾	0.8 VDD	—	5.5	V		
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	0.8 VDD	—	5.5	V	SMBus disabled	
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	2.1	—	5.5	V	SMBus enabled	
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	0.8 Vdd	—	Vdd	V	SMBus disabled	
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	2.1	—	Vdd	V	SMBus enabled	
DI30	ICNPU	Input Change Notification Pull-up Current ^(2,4)	175	360	545	μA	VDD = 3.6V, VPIN = VSS	
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁴⁾	65	215	360	μA	VDD = 3.6V, VPIN = VDD	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: All parameters are characterized but not tested during manufacturing.

TABLE 24-19: I/O PIN INPUT SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.SymbolCharacteristicMin.Max.UnitsConditions									
DI50	lı∟	Input Leakage Current ⁽¹⁾							
		I/O Pins 5V Tolerant ⁽²⁾	-700	+700	nA	VPIN = VSS or VDD			
		I/O Pins Not 5V Tolerant ⁽²⁾	-700	+700	nA				
		MCLR	-700	+700	nA				
		OSCI	-700	+700	nA	XT and HS modes			

Note 1: Negative current is defined as current sourced by the pin.

2: See the "Pin Diagrams" section for the 5V tolerant I/O pins. All parameters are characterized but not tested during manufacturing.

FIGURE 24-17: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 24-42: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	ⁿ Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67			ns		
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500			ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Din	nension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	е		0.50 BSC		
Overall Height	А	_	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11° 12° 13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B