
Microchip Technology - DSPIC33CH128MP203T-I/M5 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor dsPIC

Core Size 16-Bit Dual-Core

Speed 180MHz, 200MHz

Connectivity I²C, IrDA, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT

Number of I/O 27

Program Memory Size 152KB (152K x 8)

Program Memory Type FLASH, PRAM

EEPROM Size -

RAM Size 20K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 31x12b; D/A 4x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 36-UFQFN Exposed Pad

Supplier Device Package 36-UQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp203t-i-m5

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic33ch128mp203t-i-m5-4391081
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC33CH128MP508 FAMILY
FIGURE 3-20: REMAPPABLE INPUT FOR
U1RX

Example 3-2 provides a configuration for bidirectional
communication with flow control using UART1. The
following input and output functions are used:

• Input Functions: U1RX, U1CTS

• Output Functions: U1TX, U1RTS

EXAMPLE 3-2: CONFIGURING UART1
INPUT AND OUTPUT
FUNCTIONS

VSS

CMP1

RP32

0

1

32
U1RX Input

U1RXR<7:0>

to Peripheral

RP181

n

Note: For input only, Peripheral Pin Select functionality
does not have priority over TRISx settings.
Therefore, when configuring an RPn pin for input,
the corresponding bit in the TRISx register must
also be configured for input (set to ‘1’).
Physical connection to a pin can be made
through RP32 through RP71. There are internal
signals and virtual pins that can be connected to
an input. Table 3-30 shows the details of the
input assignment.

//

// Unlock Registers

//***

__builtin_write_RPCON(0x0000);

//***

// Configure Input Functions (See Table 3-31)

// Assign U1Rx To Pin RP35

//***************************

_U1RXR = 35;

// Assign U1CTS To Pin RP36

//***************************

_U1CTSR = 36;

//***

// Configure Output Functions (See Table 3-33)

//***

// Assign U1Tx To Pin RP37

//***************************

_RP37 = 1;

//***************************

// Assign U1RTS To Pin RP38

//***************************

_RP38 = 2;

//***

// Lock Registers

//***

__builtin_write_RPCON(0x0800);
 2017-2018 Microchip Technology Inc. DS70005319B-page 125

dsPIC33CH128MP508 FAMILY
60 RP60 Port Pin RC12

61 RP61 Port Pin RC13

62 RP62 Port Pin RC14

63 RP63 Port Pin RC15

64 RP64 Port Pin RD0

65 RP65 Port Pin RD1

66 RP66 Port Pin RD2

67 RP67 Port Pin RD3

68 RP68 Port Pin RD4

69 RP69 Port Pin RD5

70 RP70 Port Pin RD6

71 RP71 Port Pin RD7

72-169 RP72-RP169 Reserved

170 RP170 Slave Virtual S1RPV0

171 RP171 Slave Virtual S1RPV1

172 RP172 Slave Virtual S1RPV2

173 RP173 Slave Virtual S1RPV3

174 RP174 Slave Virtual S1RPV4

175 RP175 Slave Virtual S1RPV5

176 RP176 Master Virtual RPV0

177 RP177 Master Virtual RPV1

178 RP178 Master Virtual RPV2

179 RP179 Master Virtual RPV3

180 RP180 Master Virtual RPV4

181 RP181 Master Virtual RPV5

TABLE 3-30: MASTER REMAPPABLE PIN INPUTS (CONTINUED)

 RPINRx<15:8>
or RPINRx<7:0 >

Function Available on Ports
 2017-2018 Microchip Technology Inc. DS70005319B-page 127

dsPIC33CH128MP508 FAMILY
bit 1-0 PTGITM<1:0>: PTG Input Trigger Operation Selection bit(1)

11 = Single-level detect with Step delay not executed on exit of command (regardless of the PTGCTRL
command) (Mode 3)

10 = Single-level detect with Step delay executed on exit of command (Mode 2)
01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the

PTGCTRL command) (Mode 1)
00 = Continuous edge detect with Step delay executed on exit of command (Mode 0)

REGISTER 3-183: PTGCST: PTG CONTROL/STATUS LOW REGISTER (CONTINUED)

Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

2: This bit is only used with the PTGCTRL Step command software trigger option.

3: The PTGSSEN bit may only be written when in Debug mode.
 2017-2018 Microchip Technology Inc. DS70005319B-page 249

dsPIC33CH128MP508 FAMILY
TABLE 3-45: PTG COMMAND OPTIONS

bit 3-0 Step
Command

OPTION<3:0> Command Description

PTGWHI(1)
or
PTGWLO(1)

0000 PTGI0 (see Table 3-46 for input assignments).

•

•

•

•

•

•

1111 PTGI15 (see Table 3-46 for input assignments).

PTGIRQ(1) 0000 Generate PTG Interrupt 0.

•

•

•

•

•

•

0111 Generate PTG Interrupt 7.

1000 Reserved; do not use.

•

•

•

•

•

•

1111 Reserved; do not use.

PTGTRIG 0000 PTGO0 (see Table 3-47 for output assignments).

0001 PTGO1 (see Table 3-47 for output assignments).

•

•

•

•

•

•

1110 PTGO30 (see Table 3-47 for output assignments).

1111 PTGO31 (see Table 3-47 for output assignments).

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP
instruction).
DS70005319B-page 258  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
4.1.5 PROGRAMMER’S MODEL

The programmer’s model for the
dsPIC33CH128MP508S1 family is shown in Figure 4-2.
All registers in the programmer’s model are memory-
mapped and can be manipulated directly by
instructions. Table 4-1 lists a description of each
register.

In addition to the registers contained in the programmer’s
model, the dsPIC33CH128MP508S1 devices contain
control registers for Modulo Addressing, Bit-Reversed
Addressing and interrupts. These registers are
described in subsequent sections of this document.

All registers associated with the programmer’s model
are memory-mapped, as shown in Figure 4-3.

TABLE 4-1: PROGRAMMER’S MODEL REGISTER DESCRIPTIONS

Register(s) Name Description

W0 through W15(1) Working Register Array

W0 through W14(1) Alternate 1 Working Register Array

W0 through W14(1) Alternate 2 Working Register Array

W0 through W14(1) Alternate 3 Working Register Array

W0 through W14(1) Alternate 4 Working Register Array

ACCA, ACCB 40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)

PC 23-Bit Program Counter

SR ALU and DSP Engine STATUS Register

SPLIM Stack Pointer Limit Value Register

TBLPAG Table Memory Page Address Register

DSRPAG Extended Data Space (EDS) Read Page Register

RCOUNT REPEAT Loop Counter Register

DCOUNT DO Loop Counter Register

DOSTARTH(2), DOSTARTL(2) DO Loop Start Address Register (High and Low)

DOENDH, DOENDL DO Loop End Address Register (High and Low)

CORCON Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.
DS70005319B-page 264  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
TABLE 4-8: SLAVE SFR BLOCK 800h

Register Address All Resets Register Address All Resets Register Address All Resets

Interrupts IPC2 844 -100-100-100-100 IPC34 884 -100-100-100-100

IFS0 800 0000000000-00000 IPC3 846 -100-100-100-100 IPC35 886 ---------100-100

IFS1 802 0000000000000000 IPC4 848 -100-100-100-100 IPC35 886 ---------100-100

IFS2 804 00000-00-00000-- IPC5 84A -100-100-100-100 IPC36 888 -----100--------

IFS3 806 000--------00000 IPC6 84C -100-100-100-100 IPC42 894 -100-100-100-100

IFS4 808 --000----0000-00 IPC8 850 -100-100-------- IPC43 896 -100-100-100-100

IFS5 80A 000000000000000- IPC9 852 -----100-100-100 IPC44 898 -100-100-100-100

IFS6 80C 0000000000000000 IPC10 854 -100-----100-100 IPC45 89A -------------100

IFS7 80E 0000000000000--- IPC12 858 -100-100-100-100 IPC47 89E -----100-100----

IFS8 810 --0000000000000- IPC15 85E -100-100-100---- INTCON1 8C0 000000000000000-

IFS9 812 --0---00-00--0-- IPC16 860 -100-----100-100 INTCON2 8C2 000----0----0000

IFS10 814 00000000-------- IPC17 862 -----100-100-100 INTCON3 8C4 -------0---0---0

IFS11 816 -00--------00000 IPC18 864 -100------------ INTCON4 8C6 --------------00

IEC0 820 0000000000-00000 IPC19 866 ---------100-100 INTTREG 8C8 000-000000000000

IEC1 822 0000000000000000 IPC20 868 -100-100-100---- Flash

IEC2 824 00000-00-00000-- IPC21 86A -100-100-100-100 NVMCON 8D0 0000--00----0000

IEC3 826 000--------00000 IPC22 86C -100-100-100-100 NVMADR 8D2 0000000000000000

IEC4 828 --000----0000-00 IPC23 86E -100-100-100-100 NVMADRU 8D4 --------00000000

IEC5 82A 000000000000000- IPC24 870 -100-100-100-100 NVMKEY 8D6 --------00000000

IEC6 82C 0000000000000000 IPC25 872 -100-100-100-100 NVMSRCADRL 8D8 0000000000000000

IEC7 82E 0000000000000--- IPC26 874 -100-100-100-100 NVMSRCADRH 8DA --------00000000

IEC8 830 --0000000000000- IPC27 876 -100-100-100-100 PGA1CON 8E0 00000000---0-010

IEC8 830 --0000000000000- IPC28 878 -100------------ PGA1CAL 8E2 --------00000000

IEC9 832 --0---00-00--0-- IPC29 87A -100-100-100-100 PGA2CON 8E4 00000000---0-010

IEC10 834 00000000------00 IPC30 87C -100-100-100-100 PGA2CAL 8E6 --------00000000

IEC11 836 -00--------00000 IPC31 87E -100-100-100-100 PGA3CON 8E8 00000000---0-010

IPC0 840 -100-100-100-100 IPC32 880 -100-100-100---- PGA3CAL 8EA --------00000000

IPC1 842 -100-100-----100 IPC33 882 -100-100-100-100

Legend: x = unknown or indeterminate value; “-” = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.
 2017-2018 Microchip Technology Inc. DS70005319B-page 281

dsPIC33CH128MP508 FAMILY
EXAMPLE 4-2: SLAVE PRAM LOAD AND
VERIFY ROUTINE

The __program_slave(core#, verify, &slave_image)
routine only supports Slave images created with a com-
patible Microchip language tools format. Slave PRAM
images not following this format will require a custom
routine that follows all requirements for the PRAM
Master to Slave image loading process described in
this chapter.

4.3.4 PRAM DUAL PARTITION
CONSIDERATIONS

For dsPIC33CH128MP508S1 family devices operating
in Dual Partition PRAM Program Memory modes, both
partitions would be loaded using the Master to Slave
image loading process. The Master can load the active
partition of the PRAM only when SLVEN = 0 (Slave is
not running). The Master can load the PRAM Inactive
Partition any time. To support LiveUpdate, the Master
would load the PRAM Inactive Partition while the Slave
is running and then the Slave would execute the
BOOTSWP instruction to swap partitions.

4.3.4.1 PRAM Partition Swapping

At device Reset, the default PRAM partition is
Partition 1. The BOOTSWP instruction provides the
means of swapping the Active and Inactive Partitions
(soft swap) without the need for a device Reset. The
BOOTSWP must always be followed by a GOTO instruc-
tion. The BOOTSWP instruction swaps the Active and
Inactive Partitions, and the PC vectors to the location
specified by the GOTO instruction in the newly Active
Partition.

It is important to note that interrupts should temporarily
be disabled while performing the soft swap sequence,
and that after the partition swap, all peripherals and
interrupts which were enabled remain enabled. Addi-
tionally, the RAM and stack will maintain their state after
the switch. As a result, it is recommended that applica-
tions using soft swaps jump to a routine that will
reinitialize the device in order to ensure the firmware
runs as expected. The Configuration registers will have
no effect during a soft swap.

For robustness of operation, in order to execute the
BOOTSWP instruction, it is necessary to execute the
NVM unlocking sequence as follows:

1. Write 0x55 to NVMKEY.

2. Write 0xAA to NVMKEY.

3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the
BOOTSWP instruction will be executed as a forced NOP
and a GOTO instruction, following the BOOTSWP instruc-
tion, will be executed, causing the PC to jump to that
location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON
register are used to determine a successful swap of the
Active and Inactive Partitions, as well as which partition
is active. After the BOOTSWP and GOTO instructions, the
SFTSWP bit should be polled to verify the partition
swap has occurred and then cleared for the next panel
swap event.

4.3.4.2 Dual Partition Modes

While operating in Dual Partition mode, the
dsPIC33CH128MP508S1 family devices have the
option for both partitions to have their own defined
security segments, as shown in Figure .

Alternatively, the device can operate in Protected Dual
Partition mode, where Partition 1 becomes perma-
nently write-protected. Protected Dual Partition mode
allows for a “Factory Default” mode, which provides a
fail-safe backup image to be stored in Partition 1.

#include <libpic30.h>
//__program_slave(core#, verify, &slave_image)
if (__program_slave(1, 0, &slave) == 0)
{

/* now verify */
if (__program_slave(1, 1, &slave) ==
ESLV_VERIFY_FAIL)
{

asm("reset"); // try again
}

}

 2017-2018 Microchip Technology Inc. DS70005319B-page 301

d
sP

IC
3

3C
H

12
8

M
P

50
8 FA

M
ILY

D
S

7
0

0
0

5
3

1
9

B
-p

a
g

e
 3

4
8


 2

0
1

7
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

— — — — —

— — — — —

NT2R4 INT2R3 INT2R2 INT2R1 INT2R0

— — — — —

CKI1R4 TCKI1R3 TCKI1R2 TCKI1R1 TCKI1R0

CKI2R4 TCKI2R3 TCKI2R2 TCKI2R1 TCKI2R0

CKI3R4 TCKI3R3 TCKI3R2 TCKI3R1 TCKI3R0

CKI4R4 TCKI4R3 TCKI4R2 TCKI4R1 TCKI4R0

CFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0

CI8R4 PCI8R3 PCI8R2 PCI8R1 PCI8R0

CI10R4 PCI10R3 PCI10R2 PCI10R1 PCI10R0

EIA1R4 QEIA1R3 QEIA1R2 QEIA1R1 QEIA1R0

INDX1R4 QEINDX1R3 QEINDX1R2 QEINDX1R1 QEINDX1R0

1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0

DI1R4 SDI1R3 SDI1R2 SDI1R1 SDI1R0

SS1R4 SS1R3 SS1R2 SS1R1 SS1R0

— — — — —

— — — — —

CI18R4 PCI18R3 PCI18R2 PCI18R1 PCI18R0

M12R4 PWM12R3 PWM12R2 PWM12R1 PWM12R0

CI14R4 PCI14R3 PCI14R2 PCI14R1 PCI14R0

CI16R4 PCI16R3 PCI16R2 PCI16R1 PCI16R0

— — — — —

CINBR4 CLCINBR3 CLCINBR2 CLCINBR1 CLCINBR0

CINDR4 CLCINDR3 CLCINDR2 CLCINDR1 CLCINDR0
TABLE 4-29: SLAVE PPS INPUT CONTROL REGISTERS

Register Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

RPCONL — — — — IOLOCK — — — — — —

RPINR0 INT1R7 INT1R6 INT1R5 INT1R4 INT1R3 INT1R2 INT1R1 INT1R0 — — —

RPINR1 INT3R7 INT3R6 INT3R5 INT3R4 INT3R3 INT3R2 INT3R1 INT3R0 INT2R7 INT2R6 INT2R5 I

RPINR2 T1CKR7 T1CKR6 T1CKR5 T1CKR4 T1CKR3 T1CKR2 T1CKR1 T1CKR0 — — —

RPINR3 ICM1R7 ICM1R6 ICM1R5 ICM1R4 ICM1R3 ICM1R2 ICM1R1 ICM1R0 TCKI1R7 TCKI1R6 TCKI1R5 T

RPINR4 ICM2R7 ICM2R6 ICM2R5 ICM2R4 ICM2R3 ICM2R2 ICM2R1 ICM2R0 TCKI2R7 TCKI2R6 TCKI2R5 T

RPINR5 ICM3R7 ICM3R6 ICM3R5 ICM3R4 ICM3R3 ICM3R2 ICM3R1 ICM3R0 TCKI3R7 TCKI3R6 TCKI3R5 T

RPINR6 ICM4R7 ICM4R6 ICM4R5 ICM4R4 ICM4R3 ICM4R2 ICM4R1 ICM4R0 TCKI4R7 TCKI4R6 TCKI4R5 T

RPINR11 OCFBR7 OCFBR6 OCFBR5 OCFBR4 OCFBR3 OCFBR2 OCFBR1 OCFBR0 OCFAR7 OCFAR6 OCFAR5 O

RPINR12 PCI9R7 PCI9R6 PCI9R5 PCI9R4 PCI9R3 PCI9R2 PCI9R1 PCI9R0 PCI8R7 PCI8R6 PCI8R5 P

RPINR13 PCI11R7 PCI11R6 PCI11R5 PCI11R4 PCI11R3 PCI11R2 PCI11R1 PCI11R0 PCI10R7 PCI10R6 PCI10R5 P

RPINR14 QEIB1R7 QEIB1R6 QEIB1R5 QEIB1R4 QEIB1R3 QEIB1R2 QEIB1R1 QEIB1R0 QEIA1R7 QEIA1R6 QEIA1R5 Q

RPINR15 QEIHOM1R7 QEIHOM1R6 QEIHOM1R5 QEIHOM1R4 QEIHOM1R3 QEIHOM1R2 QEIHOM1R1 QEIHOM1R0 QEINDX1R7 QEINDX1R6 QEINDX1R5 QE

RPINR18 U1DSRR7 U1DSRR6 U1DSRR5 U1DSRR4 U1DSRR3 U1DSRR2 U1DSRR1 U1DSRR0 U1RXR7 U1RXR6 U1RXR5 U

RPINR20 SCK1R7 SCK1R6 SCK1R5 SCK1R4 SCK1R3 SCK1R2 SCK1R1 SCK1R0 SDI1R7 SDI1R6 SDI1R5 S

RPINR21 REFOIR7 REFOIR6 REFOIR5 REFOIR4 REFOIR3 REFOIR2 REFOIR1 REFOIR0 SS1R7 SS1R6 SS1R5

RPINR23 U1CTSR7 U1CTSR6 U1CTSR5 U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0 — — —

RPINR37 PCI17R7 PCI17R6 PCI17R5 PCI17R4 PCI17R3 PCI17R2 PCI17R1 PCI17R0 — — —

RPINR38 — — — — — — — — PCI18R7 PCI18R6 PCI18R5 P

RPINR42 PCI13R7 PCI13R6 PCI13R5 PCI13R4 PCI13R3 PCI13R2 PCI13R1 PCI13R0 PCI12R7 PCI12R6 PWM12R5 PW

RPINR43 PCI15R7 PCI15R6 PCI15R5 PCI15R4 PCI15R3 PCI15R2 PCI15R1 PCI15R0 PCI14R7 PCI14R6 PCI14R5 P

RPINR44 — — — — — — — — PCI16R7 PCI16R6 PCI16R5 P

RPINR45 CLCINAR7 CLCINAR6 CLCINAR5 CLCINAR4 CLCINAR3 CLCINAR2 CLCINAR1 CLCINAR0 — — —

RPINR46 CLCINCR7 CLCINCR6 CLCINCR5 CLCINCR4 CLCINCR3 CLCINCR2 CLCINCR1 CLCINCR0 CLCINBR7 CLCINBR6 CLCINBR5 CL

RPINR47 ADCTRGR7 ADCTRGR6 ADCTRGR5 ADCTRGR4 ADCTRGR3 ADCTRGR2 ADCTRGR1 ADCTRGR0 CLCINDR7 CLCINDR6 CLCINDR5 CL

dsPIC33CH128MP508 FAMILY
REGISTER 4-47: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

QEIHOM1R7 QEIHOM1R6 QEIHOM1R5 QEIHOM1R4 QEIHOM1R3 QEIHOM1R2 QEIHOM1R1 QEIHOM1R0

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

QEINDX1R7 QEINDX1R6 QEINDX1R5 QEINDX1R4 QEINDX1R3 QEINDX1R2 QEINDX1R1 QEINDX1R0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 QEIHOM1R<7:0>: Assign QEI Home 1 Input (S1QEIHOM1) to the Corresponding S1RPn Pin bits

See Table 4-27.

bit 7-0 QEINDX1R<7:0>: Assign QEI Index 1 Input (S1QEINDX1) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-48: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

U1DSRR7 U1DSRR6 U1DSRR5 U1DSRR4 U1DSRR3 U1DSRR2 U1DSRR1 U1DSRR0

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

U1RXR7 U1RXR6 U1RXR5 U1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 U1DSRR<7:0>: Assign UART1 Data-Set-Ready (S1U1DSR) to the Corresponding S1RPn Pin bits

See Table 4-27.

bit 7-0 U1RXR<7:0>: Assign UART1 Receive (S1U1RX) to the Corresponding S1RPn Pin bits

See Table 4-27.
 2017-2018 Microchip Technology Inc. DS70005319B-page 361

dsPIC33CH128MP508 FAMILY
5.2 Slave MSI Control Registers

The following registers are associated with the Slave
MSI module and are located in the Slave SFR space.

• Register 5-9: SI1CON

• Register 5-10: SI1STAT

• Register 5-11: SI1MBX

• Register 5-12: SI1MBXnD

• Register 5-13: SI1FIFOCS

• Register 5-14: SWMRFDATA

• Register 5-15: SRMWFDATA

REGISTER 5-9: SI1CON: MSI1 SLAVE CONTROL REGISTER

U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — — RFITSEL1 RFITSEL0 STMIRQ MTSIACK

bit 15 bit 8

R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

MRSTIE — — — — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as ‘0’

bit 11-10 RFITSEL<1:0>: Read FIFO Interrupt Threshold Select bits

11 = Triggers data valid interrupt when FIFO is full after Slave write
10 = Triggers data valid interrupt when FIFO is 75% full after Slave write
01 = Triggers data valid interrupt when FIFO is 50% full after Slave write
00 = Triggers data valid interrupt when 1st FIFO entry is written by Slave

bit 9 STMIRQ: Slave to Master Interrupt Request bit

1 = Interrupts the Master
0 = Does not interrupt the Master

bit 8 MTSIACK: Slave to Acknowledge Master Interrupt bit

1 = If MTSIRQ = 1, Slave Acknowledges Master interrupt request, else protocol error
0 = If MTSIRQ = 0, Slave has not yet Acknowledged Master interrupt request, else no Master to Slave

interrupt request is pending

bit 7 MRSTIE: Master Reset Event Interrupt Enable bit

1 = Slave Master Reset event interrupt occurs when Master enters Reset state
0 = Slave Master Reset event interrupt does not occur when Master enters Reset state

bit 6-0 Unimplemented: Read as ‘0’
DS70005319B-page 424  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
Equation 6-3 provides the relationship between the
APLL Input Frequency (AFPLLI) and the AVCO Output
Frequency (AFVCO).

EQUATION 6-3: MASTER/SLAVE CORE AFVCO CALCULATION

Equation 6-4 provides the relationship between the
APLL Input Frequency (AFPLLI) and APLL Output
Frequency (AFPLLO).

EQUATION 6-4: MASTER/SLAVE CORE AFPLLO CALCULATION

EXAMPLE 6-3: CODE EXAMPLE FOR USING MASTER OR SLAVE AUXILIARY PLL WITH THE
INTERNAL FRC OSCILLATOR

AFVCO = AFPLLI  = AFPLLI  APLLFBDIV<7:0>
APLLPRE<3:0>













M
N1

Note: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

Where:

M = APLLFBDIV<7:0>
N1 = APLLPRE<3:0>
N2 = APOST1DIV<2:0>
N3 = APOST2DIV<2:0>

AFPLLO = AFPLLI  = AFPLLI 
APLLFBDIV<7:0>

APLLPRE<3:0> POST1DIV<2:0>POST2DIV<2:0>












M
N1 N2N3

//code example for AFVCO = 1 GHz and AFPLLO = 500 MHz using 8 MHz internal FRC
// Configure the source clock for the APLL
ACLKCON1bits.FRCSEL = 1; // Select internal FRC as the clock source
// Configure the APLL prescaler, APLL feedback divider, and both APLL postscalers.
ACLKCON1bits.APLLPRE = 1; // N1 = 1
APLLFBD1bits.APLLFBDIV = 125; // M = 125
APLLDIV1bits.APOST1DIV = 2; // N2 = 2
APLLDIV1bits.APOST2DIV = 1; // N3 = 1
// Enable APLL
ACLKCON1bits.APLLEN = 1;
DS70005319B-page 438  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
NOTES:
DS70005319B-page 490  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
9.2 Architecture Overview

The PWM module consists of a common set of controls
and features, and multiple instantiations of PWM
Generators (PGs). Each PWM Generator can be inde-
pendently configured or multiple PWM Generators can

be used to achieve complex multiphase systems. PWM
Generators can also be used to implement sophisticated
triggering, protection and logic functions. A high-level
block diagram is shown in Figure 9-1.

FIGURE 9-1: PWM HIGH-LEVEL BLOCK DIAGRAM

Common
PWM

Controls and
Data

PG1

PG2

PGx

PWM1H

PWM1L

PWM2H

PWM2L

PWMxH

PWMxL
DS70005319B-page 502  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
REGISTER 9-7: CMBTRIGL: COMBINATIONAL TRIGGER REGISTER LOW

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

CTA8EN CTA7EN CTA6EN CTA5EN CTA4EN CTA3EN CTA2EN CTA1EN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’

bit 7 CTA8EN: Enable Trigger Output from PWM Generator #8 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 6 CTA7EN: Enable Trigger Output from PWM Generator #7 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 5 CTA6EN: Enable Trigger Output from PWM Generator #6 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 4 CTA5EN: Enable Trigger Output from PWM Generator #5 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 3 CTA4EN: Enable Trigger Output from PWM Generator #4 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 2 CTA3EN: Enable Trigger Output from PWM Generator #3 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 1 CTA2EN: Enable Trigger Output from PWM Generator #2 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled

bit 0 CTA1EN: Enable Trigger Output from PWM Generator #1 as Source for Combinational Trigger A bit

1 = Enables specified trigger signal to be OR’d into the Combinatorial Trigger A signal
0 = Disabled
 2017-2018 Microchip Technology Inc. DS70005319B-page 507

dsPIC33CH128MP508 FAMILY
REGISTER 13-4: UxSTAH: UARTx STATUS REGISTER HIGH

U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0

— UTXISEL2 UTXISEL1 UTXISEL0 — URXISEL2(1) URXISEL1(1) URXISEL0(1)

bit 15 bit 8

HS/R/W-0 R/W-0 R/S-1 R-0 R-1 R-1 R/S-1 R-0

TXWRE STPMD UTXBE UTXBF RIDLE XON URXBE URXBF

bit 7 bit 0

Legend: HS = Hardware Settable bit S = Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 UTXISEL<2:0>: UART Transmit Interrupt Select bits

111 = Sets transmit interrupt when there is one empty slot left in the buffer
...
010 = Sets transmit interrupt when there are six empty slots or more in the buffer
001 = Sets transmit interrupt when there are seven empty slots or more in the buffer
000 = Sets transmit interrupt when there are eight empty slots in the buffer; TX buffer is empty

bit 11 Unimplemented: Read as ‘0’

bit 10-8 URXISEL<2:0>: UART Receive Interrupt Select bits(1)

111 = Triggers receive interrupt when there are eight words in the buffer; RX buffer is full
...
001 = Triggers receive interrupt when there are two words or more in the buffer
000 = Triggers receive interrupt when there is one word or more in the buffer

bit 7 TXWRE: TX Write Transmit Error Status bit

LIN and Parity Modes:
1 = A new byte was written when the buffer was full or when P2<8:0> = 0 (must be cleared by software)
0 = No error

Address Detect Mode:
1 = A new byte was written when the buffer was full or to P1<8:0> when P1x was full (must be cleared

by software)
0 = No error

Other Modes:
1 = A new byte was written when the buffer was full (must be cleared by software)
0 = No error

bit 6 STPMD: Stop Bit Detection Mode bit

1 = Triggers RXIF at the end of the last Stop bit
0 = Triggers RXIF in the middle of the first (or second, depending on the STSEL<1:0> setting) Stop bit

bit 5 UTXBE: UART TX Buffer Empty Status bit

1 = Transmit buffer is empty; writing ‘1’ when UTXEN = 0 will reset the TX FIFO Pointers and counters
0 = Transmit buffer is not empty

bit 4 UTXBF: UART TX Buffer Full Status bit

1 = Transmit buffer is full
0 = Transmit buffer is not full

bit 3 RIDLE: Receive Idle bit

1 = UART RX line is in the Idle state
0 = UART RX line is receiving something

Note 1: The receive watermark interrupt is not set if PERIF or FERIF is set and the corresponding IE bit is set.
DS70005319B-page 592  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
NOTES:
DS70005319B-page 604  2017-2018 Microchip Technology Inc.

d
sP

IC
3

3C
H

12
8

M
P

50
8 F

A
M

IL
Y

D
S

7
0

0
0

5
3

1
9

B
-p

a
g

e
 6

6
8


 2

0
1

7
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

— BSEN BSS1 BSS0 BWRP

— — — — —

— — FNOSC2 FNOSC1 FNOSC0

— — OSCIOFNC POSCMD1 POSCMD0

WDTPS4 RWDTPS3 RWDTPS2 RWDTPS1 RWDTPS0

r(1) — — — —

— — — ICS1 ICS0

— — — — DMTDIS

ALTI2C2 ALTI2C1 r(1) — —

— CTXT1<2:0>

BXHSB0 MBXHSA3 MBXHSA2 MBXHSA1 MBXHSA0

BXHSF0 MBXHSE3 MBXHSE2 MBXHSE1 MBXHSE0

HS<H:A>EN

CPRA<4:0>
TABLE 21-2: MASTER CONFIGURATION REGISTERS MAP

Register
Name

Bits 23-16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5

FSEC — AIVTDIS — — — CSS2 CSS1 CSS0 CWRP GSS1 GSS0 GWRP

FBSLIM — — — — BSLIM<12:0>

FSIGN — r(2) — — — — — — — — — —

FOSCSEL — — — — — — — — — IESO — —

FOSC — — — — XTBST XTCFG1 XTCFG0 — r(1) FCKSM1 FCKSM0 —

FWDT — FWDTEN SWDTPS4 SWDTPS3 SWDTPS2 SWDTPS1 SWDTPS0 WDTWIN1 WDTWIN0 WINDIS RCLKSEL1 RCLKSEL0 R

FPOR — — — — — — — — — — — r(1)

FICD — — — — — — — — — r(1) — JTAGEN

FDMTIVTL — DMTIVT<15:0>

FDMTIVTH — DMTIVT<31:16>

FDMTCNTL — DMTCNT<15:0>

FDMTCNTH — DMTCNT<31:16>

FDMT — — — — — — — — — — — —

FDEVOPT — — — SPI2PIN — — SMBEN r(1) r(1) r(1) — —

FALTREG — — CTXT4<2:0> — CTXT3<2:0> — CTXT2<2:0>

FMBXM — MBXM<15:0>

FMBXHS1 — MBXHSD3 MBXHSD2 MBXHSD1 MBXHSD0 MBXHSC3 MBXHSC2 MBXHSC1 MBXHSC0 MBXHSB3 MBXHSB2 MBXHSB1 M

FMBXHS2 — MBXHSH3 MBXHSH2 MBXHSH1 MBXHSH0 MBXHSG3 MBXHSG2 MBXHSG1 MBXHSG0 MBXHSF3 MBXHSF2 MBXHSF1 M

FMBXHSEN — — — — — — — — —

FCFGPRA0 — — — — — — — — — — — —

FCFGPRB0 — CPRB<15:0>

FCFGPRC0 — CPRC<15:0>

FCFGPRD0 — CPRD<15:0>

FCFGPRE0 — CPRE<15:0>

Legend: — = unimplemented bit, read as ‘1’; r = reserved bit.

Note 1: Bit is reserved, maintain as ‘1’.

2: Bit is reserved, maintain as ‘0’.

dsPIC33CH128MP508 FAMILY
23.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16 and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

23.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the
assembly process

23.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

23.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
DS70005319B-page 724  2017-2018 Microchip Technology Inc.

dsPIC33CH128MP508 FAMILY
25.0 PACKAGING INFORMATION

25.1 Package Marking Information

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

28-Lead UQFN (6x6 mm)

XXXXXXXX
XXXXXXXX
YYWWNNN

33CH64MP
202

1810017

Example

XXXXXXX

36-Lead UQFN (5x5 mm)

XXXXXXX
XXXXXXX

28-Lead SSOP (5.30 mm)

XXXXXXXXXXXX
XXXXXXXXXXXX

YYWWNNN

Example

dsPIC33CH64
MP202

1810017

YYWWNNN

dsPIC33

Example

CH64MP
203

1810017
 2017-2018 Microchip Technology Inc. DS70005319B-page 767

dsPIC33CH128MP508 FAMILY
�������	
���
��	&���	'���	(��
)���	�
&�	�	*�+*�+*	��	� �!,	����	��	"&'(
#

$
��%
�� ������ �!"�����#
$�%
�&"�
�'��� ���(�)"&�'"!&�)
�����&
#�*�&����&�
���&��
#���
��
�� 0��'%
�!��&�����
�!���
��
&�����?�!�@
�'��� ����
,� ��'
�!���!������#�+��#����&�����"#
�'��#�%��!�����
��&�"!���!�����#�%��!�����
��&�"!���!�!�������&�
$�

#����.�''�

��!�#
�
�� ��'
�!���������#�&��
��������

�����+�-���.��

/�01 /�!�����'
�!�������
��
&�������
$��&� ��"
�!��*��*�&��"&�&��
����
!�
�+21 �
%
�
��
���'
�!���(�"!"�����*�&��"&�&��
����
(�%�����%��'�&����
"�
�!
!������

$
�% 2���&�
�'�!&��"��
�&�
��3��
�#��*���!(�
�
�!
�!

�&�
���������
����3�������

��%���&��������&
#��&�
�&&
144***�'�������
���'4
��3�����

5��&! ��66��+�+��
��'
�!����6�'�&! ��7 78� ��9

7"')
���%�6
�#! 7 :�
6
�#���&��
 ��.��/�0
8
�����;
���& � < < ����
���#
#����3��
�����3�
!! �� ���. ���� ���.
�&��#�%%�� �� ���. < ���.
2��&�6
��&� 6 ���. ���� ���.
2��&
���& 6� ������+2
2��&�����
 � �> ,�.> �>
8
�����=�#&� + ������/�0
8
�����6
��&� � ������/�0
���#
#����3��
�=�#&� +� ������/�0
���#
#����3��
�6
��&� �� ������/�0
6
�#�����3�
!! � ���� < ����
6
�#�=�#&�) ���� ���� ����
���#����%&�����
���
 � ��> ��> �,>
���#����%&�����
�/�&&�' � ��> ��> �,>

D

D1

E

E1
e

b N

NOTE 1
12 3 NOTE 2

A

A2
L1

A1
L

c

α

β
φ

��������
 �
�������� ���*��� 0��	���/
 2017-2018 Microchip Technology Inc. DS70005319B-page 789

