

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp205-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: SLAVE CORE CODE TRANSFER BLOCK DIAGRAM

REGISTER 3-11: ECCADDRL: ECC FAULT INJECT ADDRESS COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAE	DR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCA	DDR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 ECCADDR<15:0>: ECC Fault Injection NVM Address Match Compare bits

REGISTER 3-12: ECCADDRH: ECC FAULT INJECT ADDRESS COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAE	DR<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAD	DR<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown

bit 15-0 ECCADDR<31:16>: ECC Fault Injection NVM Address Match Compare bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PLSIZE2 ⁽¹⁾	PLSIZE1 ⁽¹⁾	PLSIZE0 ⁽¹⁾	FSIZE4 ⁽¹⁾	FSIZE3 ⁽¹⁾	FSIZE2 ⁽¹⁾	FSIZE1 ⁽¹⁾	FSIZE0 ⁽¹⁾	
bit 15							bit 8	
U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	TXAT1	TXAT0	TXPRI4	TXPRI3	TXPRI2	TXPRI1	TXPRI0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13 bit 12-8	bit 15-13 PLSIZE<2:0 : Payload Size bits ⁽¹⁾ 111 = 64 data bytes 110 = 48 data bytes 101 = 32 data bytes 100 = 24 data bytes 01 = 20 data bytes 010 = 16 data bytes 001 = 12 data bytes 000 = 8 data bytes bit 12-8 FSIZE<4:0 : FIFO Size bits ⁽¹⁾ 1111 = FIFO is 32 messages deep 00010 = FIFO is 3 messages deep 00010 = FIFO is 2 messages deep							
bit 7	Unimplemen	ted: Read as '0	, 					
bit 6-5	 TXAT<1:0>: Retransmission Attempts bits This feature is enabled when RTXAT (C1CONH<0>) is set. 11 = Unlimited number of retransmission attempts 10 = Unlimited number of retransmission attempts 01 = Three retransmission attempts 00 = Disables retransmission attempts 							
bit 4-0	TXPRI<4:0>:	Message Trans	mit Priority bit	ts				
	11111 = Hig ł	nest message pr	iority					
	 00000 = Low	est message pri	ority					

REGISTER 3-130: C1TXQCONH: CAN TRANSMIT QUEUE CONTROL REGISTER HIGH

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Logond:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-141: C1TEFUAH: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **TEFUA<31:16>:** Transmit Event FIFO User Address bits

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-142: C1TEFUAL: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER LOW⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **TEFUA<15:0>:** Transmit Event FIFO User Address bits A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-163:	ADCON5L: ADC CONTROL	REGISTER 5 LOW
-----------------	----------------------	-----------------------

HSC/R-0	U-0						
SHRRDY	—	—	—	—	—	—	—
bit 15					•	•	bit 8
R/W-0	U-0						

10000	00	00	00	00	00	00	00
SHRPWR	_		_		_		—
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit HSC = Hardware Settable/Clearable bit		learable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	SHRRDY: Shared ADC Core Ready Flag bit				
	1 = ADC core is powered and ready for operation				
	0 = ADC core is not ready for operation				
bit 14-8	Unimplemented: Read as '0'				
bit 7	SHRPWR: Shared ADC Core Power Enable bit				
	1 = ADC core is powered				
	0 = ADC core is off				
bit 6-0	Unimplemented: Read as '0'				

REGISTER 4-89:	ADCON4L: ADC	CONTROL	REGISTER 4 LOW
----------------	--------------	---------	-----------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 Reserved: Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	EISEL2	EISEL1	EISEL0	RES1	RES2
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own	

REGISTER 4-94: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 TO 1)

bit 15-13 **Unimplemented:** Read as '0'

bit 12-10	EISEL<2:0>: ADC Core x Early Interrupt Time Selection bits
	111 = Early interrupt is set and an interrupt is generated 8 TADCORE clocks prior to when the data is ready 110 = Early interrupt is set and an interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and an interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 2 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and an interrupt is generated 1 TADCORE clocks prior to when the data is ready
bit 9-8	RES<1:0>: ADC Core x Resolution Selection bits
	11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution ⁽¹⁾ 00 = 6-bit resolution ⁽¹⁾
bit 7	Unimplemented: Read as '0'
bit 6-0	ADCS<6:0>: ADC Core x Input Clock Divider bits These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period (TADCORE). 1111111 = 254 Source Clock Periods
	0000011 = 6 Source Clock Periods 0000010 = 4 Source Clock Periods 0000001 = 2 Source Clock Periods 0000000 = 2 Source Clock Periods

Note 1: For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from '100' to '111', are not valid and should not be used. For the 8-bit ADC core resolution (RES<1:0> = 01), the EISEL<2:0> bits settings, '110' and '111', are not valid and should not be used.

5.3 Slave Processor Control

The MSI contains three control bits related to Slave processor control within the MSI1CON register.

5.3.1 SLAVE ENABLE (SLVEN) CONTROL

The SLVEN (MSI1CON<15>) control bit provides a means for the Master processor to enable or disable the Slave processor.

The Slave is disabled when SLVEN (MSI1CON<15>) = 0. In this state:

- · The Slave is held in the Reset state
- The Master has access to the Slave PRAM (to load it out of a device Reset)
- The Slave Reset status bit, SLVRST (MSI1STAT<15>) = 1

The Slave is enabled when SLVEN (MSI1CON<15>) = 1. In this state:

- The Slave Reset is released and it will start to execute code in whatever mode it is configured to operate in
- The Master processor will no longer have access to the Slave PRAM
- The Slave Reset status bit, SLVRST (MSI1STAT<15>) = 0
- Note: The SLVRST (MSI1STAT<15>) status bit indicates when the Slave is in Reset. The associated interrupt only occurs when the Slave enters the Reset state after having previously not been in Reset. That is, no interrupt can be generated until the Slave is first enabled.

The SLVEN bit may only be modified after satisfying the hardware write interlock. The SLVEN bit is protected from unexpected writes through a software unlocking sequence that is based on the MSI1KEY register. Given the critical nature of the MSI control interface, the MSI macro unlock mechanism is independent from that of the Flash controller for added robustness.

Completing a predefined data write sequence to the MSI1KEY register will open a window. The SLVEN bit should be written on the first instruction that follows the unlock sequence. No other bits within the MSI1CON register are affected by the interlock. The MSI1KEY register is not a physical register. A read of the MSI1KEY register will read all '0's.

When the SLVEN bit lock is enabled (i.e., the bits are locked and cannot be modified), the instruction sequence shown in Example 5-1 must be executed to open the lock. The unlock sequence is a prerequisite to both setting and clearing the target control bit.

Note: It is recommended to enable SRSTIE (MSI1CON<7>) = 1 prior to enabling the SLVEN bit. This will make the design robust and will update the Master with the Reset state of the Slave.

EXAMPLE 5-1: MSI ENABLE OPERATION

//Unloc	ck Key to allow MSI Enable control
MOV.b	#0x55, W0
MOV.b	WREG, MSI1KEY
MOV.b	#0xAA, WO
MOV.b	WREG, MSI1KEY
// Enak	ole MSI
BSET	MSI1CON, SLVEN

EXAMPLE 5-2: MSI ENABLE OPERATION IN C CODE

#include <libpic30.h>
_start_slave();

5.4 Slave Reset Coupling Control

In all operating modes, the user may couple or decouple the Master Run-Time Resets to the Slave Reset by using the Master Slave Reset Enable (S1MSRE) fuse. The Resets are effectively coupled by directing the selected Reset source to the SLVEN bit Reset.

In all operating modes, the user may also choose whether the SLVEN bit is reset or not in the event of a Slave Run-Time Reset by using the Slave Reset Enable (S1SSRE) fuse.

A user may choose to reset SLVEN in the event of a Slave Reset because that event could be an indicator of a problem with Slave execution. The Slave would be placed in Reset and the Master alerted (via the Slave Reset event interrupt, need to make SRSTIE (MSI1CON<7> = 1) to attempt to rectify the problem. The Master must re-enable the Slave by setting the SLVEN bit again.

Alternatively, the user may choose to not halt the Slave in the event of a Slave Reset, and just allow it to restart execution after a Reset and continue operation as soon as possible. The Slave Reset event interrupt would still occur, but could be ignored by the Master. The Primary Oscillator and internal FRC Oscillator sources can optionally use an on-chip PLL to obtain higher operating speeds. There are two independent instantiations of PLL for the Master and Slave clock subsystems. Figure 6-4 illustrates a block diagram of the Master/Slave core PLL module. For PLL operation, the following requirements must be met at all times without exception:

- The PLL Input Frequency (FPLLI) must be in the range of 8 MHz to 64 MHz
- The PFD Input Frequency (FPFD) must be in the range of 8 MHz to (FvCo/16) MHz

The VCO Output Frequency (Fvco) must be in the range of 400 MHz to 1600 MHz

FIGURE 6-4: MASTER/SLAVE CORE PLL AND VCO DETAIL

REGISTER 6-15: PLLDIV: PLL OUTPUT DIVIDER REGISTER (SLAVE)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—	_	—	—	VCODI	V<1:0>	
bit 15		•					bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1	
_	PC)ST1DIV<2:0>	1,2)	—	F	POST2DIV<2:0>	(1,2)	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, r	ead as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkno	own	
bit 15-10	Unimplemen	ted: Read as '	כ'					
bit 9-8	VCODIV<1:0	>: PLL VCO O	utput Divider S	elect bits				
	11 = Fvco							
	10 = Fvco/2							
	01 = FVCO/3							
h:4 7	00 = FVC0/4	ted: Deed ee (<u>.</u>					
DIT 7	Unimplemen	ted: Read as 1	J.	(4.0)				
bit 6-4	POST1DIV<2	:0>: PLL Outp	ut Divider #1 R	atio bits ^(1,2)				
	POST1DIV<2:0> can have a valid value, from 1 to 7 (POST1DIVx value should be greater than or equal to the POST2DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.							
bit 3	Unimplemen	ted: Read as '	כ'					
bit 2-0	POST2DIV<2	:0>: PLL Outp	ut Divider #2 R	atio bits ^(1,2)				
	POST2DIV<2:0> can have a valid value, from 1 to 7 (POST2DIVx value should be less than or equal to the POST1DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than							

the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

REGISTER 6-18: APLLDIV: APLL OUTPUT DIVIDER REGISTER (SLAVE)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AVCOD	IV<1:0>
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
—	APOST1DIV<2:0> ^(1,2)			_	APOST2DIV<2:0> ^(1,2)		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

- bit 9-8 AVCODIV<1:0>: APLL VCO Output Divider Select bits
 - 11 = AFvco 10 = AFvco/2 01 = AFvco/3 00 = AFvco/4

bit 7 Unimplemented: Read as '0'

bit 6-4 APOST1DIV<2:0>: APLL Output Divider #1 Ratio bits^(1,2)

APOST1DIV<2:0> can have a valid value, from 1 to 7 (APOST1DIVx value should be greater than or equal to the APOST2DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

bit 3 Unimplemented: Read as '0'

bit 2-0 APOST2DIV<2:0>: APLL Output Divider #2 Ratio bits^(1,2)

APOST2DIV<2:0> can have a valid value, from 1 to 7 (APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx divider values must not be changed while the PLL is operating.
 - **2:** The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF	(1) CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15	·			· · · · ·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ^{(1,}	²⁾ LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾		—	HALFEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown
bit 15	DBUFWF: DN	A Buffered Da	ita Write Flag I	bit ⁽¹⁾			
	1 = The cont	ent of the DM	A buffer has r	not been written	to the location	n specified in	DMADSTn or
		n in Null Write	mode	haan uwitten t	a the leastion	an active disc	
	U = The cont DMASRO	chi or the Div Chin Null Write	mode	been whiten i	o the location	specified in	DWADSTN OF
bit 14-8	CHSEL<6:0>	: DMA Channe	I Trigger Selec	ction bits			
	See Table 8-2	for a complete	e list.				
bit 7	HIGHIF: DMA	High Address	Limit Interrupt	Flag bit ^(1,2)			
	1 = The DMA	channel has a	ttempted to ac	cess an address	s higher than D	MAH or the up	per limit of the
	data RAM	1 space					
1.1.0	0 = The DMA	channel has n	ot invoked the	high address li	mit interrupt		
DIT 6	LOWIF: DMA	Low Address L		Flag bit(",-)		lower than DM	Al but above
	the SFR i	ange (07FFh)	allempled to a	ccess the DIMA	SFR address	ower than DM	AL, DUI above
	0 = The DMA	channel has n	ot invoked the	low address lin	nit interrupt		
bit 5	DONEIF: DM	A Complete Op	eration Interru	ıpt Flag bit ⁽¹⁾			
	If CHEN = 1:						
	1 = The previo	bus DMA session	on has ended	with completion			
		III DIVIA SESSIOI	Thas not yet t	ompieted			
	1 = The previo	ous DMA sessi	on has ended	with completion			
	0 = The previo	ous DMA sessi	on has ended	without complet	ion		
bit 4	HALFIF: DMA	50% Waterma	ark Level Inter	rupt Flag bit ⁽¹⁾			
	1 = DMACNT	n has reached	the halfway po	pint to 0000h			
1.11.0		n nas not reacr	ied the halfwa	y point			
DIT 3			/errun Flag bit	(·)	the energian	haaad an tha n	rovious triagor
	1 = The DMA 0 = The overn	un condition ha	erea while it is is not occurred	s suii compieting	the operation	based on the pi	revious ingger
bit 2-1	Unimplement	ted: Read as '()'	-			
bit 0	HALFEN: Hal	fwav Completio	on Watermark	bit			
	1 = Interrupts	are invoked wh	nen DMACNTr	n has reached it	s halfway point	t and at comple	etion
	0 = An interru	pt is invoked or	nly at the com	pletion of the tra	nsfer	1	
Note 1	Setting these flag	s in software d	oes not genera	ate an interrunt			
2:	Testing for addres	s limit violation	s (DMASRCn	or DMADSTn is	either greater	than DMAH or	r less than

REGISTER 8-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

DMAL) is NOT done before the actual access.

REGISTER 9-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)

bit 5	CAP: Capture Status bit ⁽¹⁾
	1 = PWM Generator time base value has been captured in PGxCAP0 = No capture has occurred
bit 4	UPDATE: PWM Data Register Update Status/Control bit
	 1 = PWM Data register update is pending – user Data registers are not writable 0 = No PWM Data register update is pending
bit 3	UPDREQ: PWM Data Register Update Request bit
	User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending.
bit 2	STEER: Output Steering Status bit (Push-Pull Output mode only)
	1 = PWM Generator is in 2nd cycle of Push-Pull mode
	0 = PWM Generator is in 1st cycle of Push-Pull mode
bit 1	CAHALF: Half Cycle Status bit (Center-Aligned modes only)
	 1 = PWM Generator is in 2nd half of time base cycle 0 = PWM Generator is in 1st half of time base cycle
bit 0	TRIG: PWM Trigger Status bit
	1 = PWM Generator is triggered and PWM cycle is in progress0 = No PWM cycle is in progress

Note 1: User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

REGISTER 9-17: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

bit 4-0 PSS<4:0>: PCI Source Selection bits For Master: 11111 = Master CLC1 11110 = Slave Comparator 3 output 11101 = Slave Comparator 2 output 11100 = Slave Comparator 1 output 11011 = Master Comparator 1 output 11010 = Slave PWM Event F 11001 = Slave PWM Event E 11000 = Slave PWM Event D 10111 = Slave PWM Event C 10110 = Device pin, PCI<22> 10101 = Device pin, PCI<21> 10100 = Device pin, PCI<20> 10011 = Device pin, PCI<19> 10010 = Master RPn input, Master PCI18R 10001 = Master RPn input, Master PCI17R 10000 = Master RPn input, Master PCI16R 01111 = Master RPn input, Master PCI15R 01110 = Master RPn input, Master PCI14R 01101 = Master RPn input, Master PCI13R 01100 = Master RPn input, Master PCI12R 01011 = Master RPn input, Master PCI11R 01010 = Master RPn input, Master PCI10R 01001 = Master RPn input, Master PCI9R 01000 = Master RPn input, Master PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Internally connected to Combo Trigger B 00010 = Internally connected to Combo Trigger A 00001 = Internally connected to the output of PWMPCI<2:0> MUX 00000 = Tied to '0'

REGISTER 9-25: PGxDCA: PWM GENERATOR x DUTY CYCLE ADJUSTMENT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxD	CA<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 PGxDCA<7:0>: PWM Generator x Duty Cycle Adjustment Value bits

Depending on the state of the selected PCI source, the PGxDCA value will be added to the value in the PGxDC register to create the effective duty cycle. When the PCI source is active, PGxDCA is added. When the PCI source is inactive, no adjustment is made. Duty cycle adjustment is disabled when PGxDCA<7:0> = 0. The PCI source is selected using the DTCMPSEL bit.

REGISTER 9-26: PGxPER: PWM GENERATOR x PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPEI	R<15:8> ⁽¹⁾			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPE	R<7:0> ⁽¹⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PGxPER<15:0>:** PWM Generator x Period Register bits⁽¹⁾

Note 1: Period values less than '0x0010' should not be selected.

FIGURE 14-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

dsPIC33CH128MP508 FAMILY

FIGURE 16-1: SENTX MODULE BLOCK DIAGRAM

FIGURE 16-2: SENTX PROTOCOL DATA FRAMES

Sync F	Period Status	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC	Pause (optional)	\downarrow
56	6 12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-768	I

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS					
Dimensior	n Limits	MIN	NOM	MAX		
Number of Leads	Ν		48			
Lead Pitch	е		0.50 BSC			
Overall Height	А	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ø	0°	3.5°	7°		
Overall Width	E		9.00 BSC			
Overall Length	D		9.00 BSC			
Molded Package Width	E1		7.00 BSC			
Molded Package Length	D1		7.00 BSC			
Lead Thickness	С	0.09 - 0.16				
Lead Width	b	0.17 0.22 0.27				
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.50	0.55	0.60	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3		0.15 REF		
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.50	4.60	4.70	
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.50	4.60	4.70	
Terminal Width	b	0.15	0.20	0.25	
Corner Anchor Pad	b1		0.45 REF		
Corner Anchor Pad, Metal-free Zone	b2	0.23 REF			
Terminal Length	L	0.35 0.40 0.45			
Terminal-to-Exposed-Pad	K		0.30 REF		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2