

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp205t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Advanced Analog Features

- · Four ADC Modules:
 - One module for Master core
 - Three modules for Slave core
 - 12-bit, 3.5 Msps ADC
- Up to 18 conversion channels
- Four DAC/Analog Comparator Modules:
 - One module for Master core
 - Three modules for Slave core
 - 12-bit DACs with hardware slope compensation
 - 15 ns analog comparators
- Three PGA Modules:
 - Three modules for Slave core
 - Can be read by Master ADC
 - Option to interface with Master ADC
- Shared DAC/Analog Output:
 - DAC/analog comparator outputs
 - PGA outputs

Communication Interfaces

- Three UART Modules:
 - Two modules for Master core
 - One module for Slave core
 - Support for DMX, LIN/J2602 protocols and $\ensuremath{\text{IrDA}}^{\ensuremath{\mathbb{R}}}$
- Three 4-Wire SPI/I²S Modules:
 - Two modules for Master core
 - One module for Slave core
- CAN Flexible Data-Rate (FD) Module for the Master Core
- Three I²C Modules:
 - Two modules for Master
 - One module for Slave
 - Support for SMBus

Other Features

- · PPS to Allow Function Remap
- Programmable Cyclic Redundancy Check (CRC) for the Master
- Two SENT Modules for the Master

Direct Memory Access (DMA)

- Eight DMA Channels:
 - Six DMA channels available for the Master core
 - Two DMA channels available for the Slave core

Debugger Development Support

- In-Circuit and In-Application Programming
- Simultaneous Debugging Support for Master and Slave Cores
- Master Only Debug and Slave Only Debug Support
- Master with Three Complex, Five Simple Breakpoints and Slave with One Complex, Two Simple Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace Buffer and Run-Time Watch

Safety Features

- DMT (Deadman Timer)
- ECC (Error Correcting Code)
- WDT (Watchdog Timer)
- CodeGuard[™] Security
- CRC (Cyclic Redundancy Check)
- Two-Speed Start-up
- Fail-Safe Clock Monitoring
- Backup FRC (BFRC)
- · Capless Internal Voltage Regulator
- · Virtual Pins for Redundancy and Monitoring

3.2 Master Memory Organization

Note: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33CH128MP508 family architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

3.2.1 PROGRAM ADDRESS SPACE

The program address memory space of the dsPIC33CH128MP508 family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 3.2.9 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to permit access to calibration data and Device ID sections of the configuration memory space.

The program memory maps for the Master dsPIC33CHXXXMPX08 device are shown in Figure 3-3 and Figure 3-4.

FIGURE 3-3: PROGRAM MEMORY MAP FOR MASTER dsPIC33CH128MPXXX DEVICES⁽¹⁾

≜	GOTO Instruction	0x000000
	Reset Address	0x000002
Ð	Interrupt Vector Table	0x000004 0x0001FE
Jser Memory Space	User Program Flash Memory (44K instructions)	0x000200 0x015EFE
r Mem	Device Configuration	0x015F00 0x015FFE
Use	Unimplemented (Read '0's)	0x016000
Ť	Reserved	0x800000 0x800FFE
	Calibration Data ^(2,3)	0x801000
pace	User OTP Memory	0x8016FC 0x801700
Comiguration Memory Space	Reserved	0x8017FE 0x801800
	Write Latches	0xF9FFFE 0xFA0000
ligurat		0xFA0002 0xFA0004
Con	Reserved	
	DEVID	0xFEFFFE 0xFF0000
		0xFF0002 0xFF0004
↓	Reserved	0xFFFFFE

Note 1: Memory areas are not shown to scale.

- 2: Calibration data area must be maintained during programming.
- **3:** Calibration data area includes UDID locations.

3.2.6 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 3-20 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

3.2.6.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

3.2.6.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 3-20: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 3-23: MASTER INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector IRQ		Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI Position Counter Compare	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
U1E – UART1 Error	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
U2E – UART2 Error	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
CRC – CRC Generator	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
C1TX – CAN1 TX Data Request	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
Reserved	61-68	53-68	0x00007E-0x00008C	—	_	_
ICD – In-Circuit Debugger	69	61	0x00008E	IFS3<13>	IEC3<13>	IPC15<6:4>
JTAG – JTAG Programming	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
PTGSTEP – PTG Step	71	63	0x000092	IFS3<15>	IEC3<15>	IPC15<14:12>
I2C1BC – I2C1 Bus Collision	72	64	0x000094	IFS4<0>	IEC4<0>	IPC16<2:0>
I2C2BC – I2C2 Bus Collision	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
Reserved	74	66	0x000098	—	_	_
PWM1 – PWM Generator 1	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
PWM2 – PWM Generator 2	76	68	0x00009C	IFS4<4>	IEC4<4>	IPC17<2:0>
PWM3 – PWM Generator 3	77	69	0x00009E	IFS4<5>	IEC4<5>	IPC17<6:4>
PWM4 – PWM Generator 4	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-82	71-74	0x0000A2	—	_	_
CND – Change Notice D	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
CNE – Change Notice E	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>
CMP1 – Comparator 1	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-88	78-80	0x0000B0-0x0000B4	_	_	—
PTGWDT – PTG Watchdog Timer Time-out	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
PTG0 – PTG Trigger 0	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
PTG1 – PTG Trigger 1	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
PTG2 – PTG Trigger 2	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>
PTG3 – PTG Trigger 3	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>
SENT1 – SENT1 TX/RX	94	86	0x0000C0	IFS5<6>	IEC5<6>	IPC21<10:8>
SENT1E – SENT1 Error	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
SENT2 – SENT2 TX/RX	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
SENT2E – SENT2 Error	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>
ADC – ADC Global Interrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
ADCAN0 – ADC AN0 Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
ADCAN1 – ADC AN1 Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
ADCAN2 – ADC AN2 Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
ADCAN3 – ADC AN3 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
ADCAN4 – ADC AN4 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
ADCAN5 – ADC AN5 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
ADCAN6 – ADC AN6 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
ADCAN7 – ADC AN7 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
ADCAN8 – ADC AN8 Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
ADCAN9 – ADC AN9 Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
ADCAN10 – ADC AN10 Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>
ADCAN11 – ADC AN11 Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>
ADCAN12 – ADC AN12 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
ADCAN13 – ADC AN13 Interrupt	112	100	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
ADCAN14 – ADC AN14 Interrupt	112	104	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
ADCAN15 – ADC AN15 Interrupt	110	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1			
CON	—	SIDL	BRSDIS	BUSY	WFT1	WFT0	WAKFIL ⁽¹⁾			
bit 15							bit 8			
R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CLKSEL ⁽¹⁾	PXEDIS ⁽¹⁾	ISOCRCEN ⁽¹⁾	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0			
bit 7				1			bit 0			
Legend:										
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15	CON: CAN E	nable bit								
	1 = CAN mod	ule is enabled ule is disabled								
bit 14	Unimplemen	ted: Read as '0'								
bit 13	SIDL: CAN S	top in Idle Contro	l bit							
		dule operation in stop module ope		mode						
bit 12		Rate Switching (E	,							
		Switching is disab Switching depend				ssage object				
bit 11		Nodule is Busy bi	t							
		module is active module is inactiv	e							
bit 10-9		electable Wake-ι	ip Filter Time	e bits						
	11 = T11FILTE 10 = T10FILTE 01 = T01FILTE 00 = T00FILTE	R								
bit 8	WAKFIL: Ena	able CAN Bus Lin	e Wake-up F	ilter bit ⁽¹⁾						
		N bus line filter fo line filter is not us		·up						
bit 7	CLKSEL: Mo	dule Clock Sourc	e Select bit ⁽¹)						
		selected as the selected as the selected as the sol								
bit 6	PXEDIS: Protocol Exception Event Detection Disabled bit ⁽¹⁾									
	1 = Protocol E	eserved bit" follo Exception is treat col Exception is d	ed as a form	error						
bit 5		Enable ISO CRC				gotato				
	1 = Includes s	stuff bit count in C include stuff bit c	RC field and	l uses non-zer			all zeros			
bit 4-0	DNCNT<4:0>	: DeviceNet™ Fi	lter Bit Numb	er bits						
		1 = Invalid select pares up to Data			s of data with E	ID)				
		pares up to Data s not compare da		with EID0						

REGISTER 3-103: C1CONL: CAN CONTROL REGISTER LOW

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-120: C1RXOVIFH: CAN RECEIVE OVERFLOW INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOVIF	<31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOVIF	<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplemen	ted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknowr	1

bit 15-0 RFOVIF<31:16>: Unimplemented

Note 1: C1RXOVIFH: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

REGISTER 3-121: C1RXOVIFL: CAN RECEIVE OVERFLOW INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOV	′IF<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0
		I	RFOVIF<7:1	>			—
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	nented bit, re	ad as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-8 **RFOVIF<15:8>:** Unimplemented

bit 7-1 **RFOVIF<7:1>:** Receive FIFO Overflow Interrupt Pending bits

1 = Interrupt is pending

0 = Interrupt is not pending

bit 0 Unimplemented: Read as '0'

Note 1: C1RXOVIFL: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

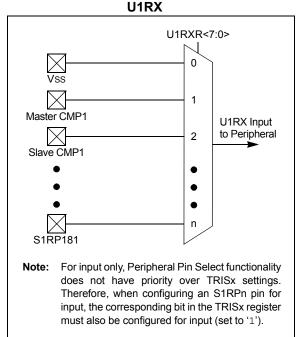
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	\<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknowr	ı

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).


Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

4.6.5.4 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 4-36 through Register 4-59). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the S1RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 4-27 for a list of available inputs.

For example, Figure 4-18 illustrates remappable pin selection for the U1RX input.

FIGURE 4-18: REMAPPABLE INPUT FOR

4.7.3 ADC CONTROL/STATUS REGISTERS

REGISTER 4-83: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	r-0	U-0	U-0	U-0
ADON ⁽¹⁾	—	ADSIDL	—	r	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 11 bit 10-0	Reserved: Maintain as '0' Unimplemented: Read as '0'
bit 12	Unimplemented: Read as '0'
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 13	ADSIDL: ADC Stop in Idle Mode bit
bit 14	Unimplemented: Read as '0'
bit 15	ADON: ADC Enable bit ⁽¹⁾ 1 = ADC module is enabled 0 = ADC module is off

Note 1: Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

x = Bit is unknown

'1' = Bit is set

HS/R/W-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/W-0
CSHRRDY	_	—	—	—	—	CSHREN	CSHRRUN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 7							bit 0
Legend: HS = Hardware Settable bit			e Settable bit	r = Reserved	bit		
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			

'0' = Bit is cleared

bit 15	CSHRRDY: Shared ADC Core Calibration Status Flag bit
	1 = Shared ADC core calibration is finished
	0 = Shared ADC core calibration is in progress
bit 14-11	Unimplemented: Read as '0'
bit 10	Reserved: Maintain as '0'
bit 9	CSHREN: Shared ADC Core Calibration Enable bit
	1 = Shared ADC core calibration bits (CSHRRDY and CSHRRUN) can be accessed by software
	0 = Shared ADC core calibration bits are disabled
bit 8	CSHRRUN: Shared ADC Core Calibration Start bit
	1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared
	automatically by hardware
	0 = Software can start the next calibration cycle
bit 7-0	Unimplemented: Read as '0'

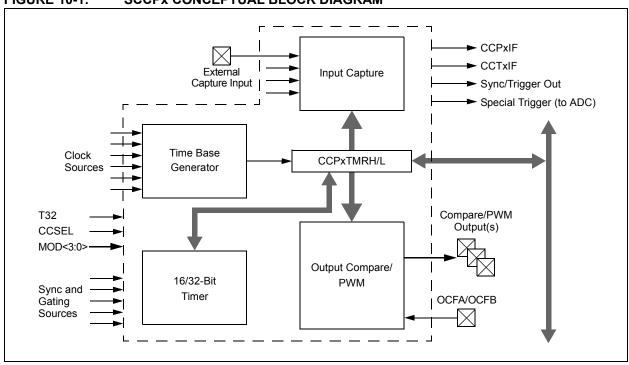
-n = Value at POR

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15		•					bit 8
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—		—
bit 7							bit 0
Legend:							

REGISTER 7-5: PMD4: MASTER PERIPHERAL MODULE DISABLE 4 CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'


bit 3 **REFOMD:** Reference Clock Module Disable bit

1 = Reference clock module is disabled

0 = Reference clock module is enabled

bit 2-0 Unimplemented: Read as '0'

dsPIC33CH128MP508 FAMILY

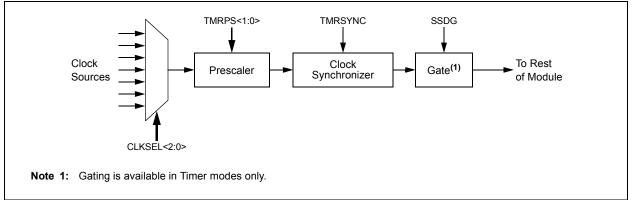
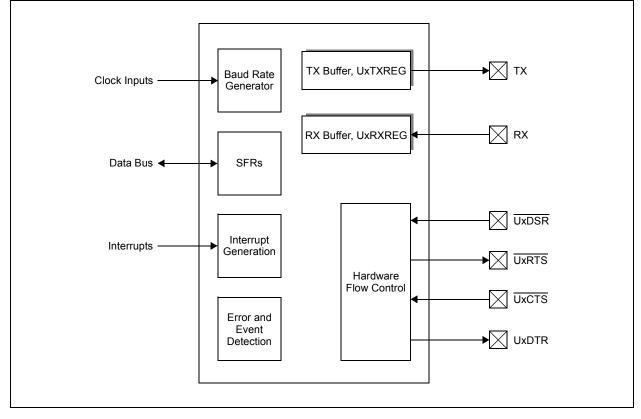


FIGURE 10-1: SCCPx CONCEPTUAL BLOCK DIAGRAM

10.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 10-2. There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000).


R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
OETRIG	OSCNT2	OSCNT1	OSCNT0	—	—	—			
bit 15							bit		
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	POLACE	—	PSSACE1	PSSACE0	PSSBDF1	PSSBDF0		
bit 7							bit		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown		
bit 15	OETRIG: CCI	Px Dead-Time	Select bit						
	1 = For Trigg	ered mode (TR	IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered		
	0 = Normal o	utput pin opera	tion						
bit 14-12	OSCNT<2:0>: One-Shot Event Count bits								
	111 = Extends one-shot event by 7 time base periods (8 time base periods total)								
	110 = Extends one-shot event by 6 time base periods (7 time base periods total)								
	101 = Extends one-shot event by 5 time base periods (6 time base periods total)								
	100 = Extends one-shot event by 4 time base periods (5 time base periods total) 011 = Extends one-shot event by 3 time base periods (4 time base periods total)								
	010 = Extends one-shot event by 2 time base periods (3 time base periods total)								
			•	ase period (2 tin	ne base period	s total)			
		ot extend one-		ent					
bit 11-6	•	ted: Read as '							
bit 5		•		C and OCxE, Po	olarity Control I	bit			
		n polarity is acti n polarity is acti							
	Unimplemen	ted: Read as '0)'						
bit 4	PSSACE<1:0>: PWMx Output Pins, OCxA, OCxC and OCxE, Shutdown State Control bits								
bit 4 bit 3-2	PSSACE<1:0	>: PWMx Outp	ut Pins, OCXA	, OCXC and OC	JXE, SHULUOWH	State Control	bits		
				wn event occurs			bits		
	11 = Pins are 10 = Pins are	driven active v driven inactive	vhen a shutdov when a shutd	wn event occurs own event occu	S Irs		bits		
bit 3-2	11 = Pins are 10 = Pins are 0x = Pins are	driven active v driven inactive in high-impeda	when a shutdow when a shutd ance state whe	wn event occurs own event occu n a shutdown e	s irs event occurs				
bit 3-2	11 = Pins are 10 = Pins are 0x = Pins are PSSBDF<1:0	driven active v driven inactive in high-impeda >: PWMx Outp	when a shutdow when a shutd ance state whe ut Pins, OCM>	wn event occurs own event occu n a shutdown e kB, OCMxD, and	s irs event occurs d OCMxF, Shu				
	11 = Pins are 10 = Pins are 0x = Pins are PSSBDF<1:0 11 = Pins are	driven active v driven inactive in high-impeda >: PWMx Outp driven active v	when a shutdow when a shutd ance state whe ut Pins, OCM> when a shutdow	wn event occurs own event occu n a shutdown e	s irs event occurs d OCMxF, Shu s				

REGISTER 10-5: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

13.1 Architectural Overview

The UART transfers bytes of data, to and from device pins, using First-In First-Out (FIFO) buffers up to eight bytes deep. The status of the buffers and data is made available to user software through Special Function Registers (SFRs). The UART implements multiple interrupt channels for handling transmit, receive and error events. A simplified block diagram of the UART is shown in Figure 13-1.

REGISTER 18-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit 1 = Data Source 2 signal is enabled for Gate 1 0 = Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	1 = Data Source 1 signal is enabled for Gate 10 = Data Source 1 signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1

REGISTER 21-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend: PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware
	0 = WDT controller via the ON bit (WDTCONL<15>)
bit 14-10	SWDTPS<4:0>: Sleep Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Select bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period
	01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
2	1 = Watchdog Timer is in Non-Window mode
	0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL<1:0>: Watchdog Timer Clock Select bits
	11 = LPRC clock
	10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep;
	otherwise, uses INTOSC/LPRC
	00 = Reserved
bit 4-0	RWDTPS<4:0>: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2 ^ 30 = 1,073,741,824
	11110 = Divide by 2 ^ 29 = 526,870,912
	00001 = Divide by 2 ^ 2, 4
	00000 = Divide by 2 ^ 1, 2

REGISTER 21-18:	FMBXHS2	CONFIGURATION	REGISTER
-----------------	---------	---------------	----------

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23 bit 16							

| R/PO-1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MBXHSH3 | MBXHSH2 | MBXHSH1 | MBXHSH0 | MBXHSG3 | MBXHSG2 | MBXHSG1 | MBXHSG0 |
| bit 15 | | | | | | | bit 8 |

| R/PO-1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MBXHSF3 | MBXHSF2 | MBXHSF1 | MBXHSF0 | MBXHSE3 | MBXHSE2 | MBXHSE1 | MBXHSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16	Unimplemented: Read as '1'
bit 15-12	MBXHSH<3:0>: Mailbox Handshake Protocol Block H Register Assignment bits
	1111 = MSIxMBXD15 is assigned to Mailbox Handshake Protocol Block H
	•••
	0001 = MSIxMBXD1 is assigned to Mailbox Handshake Protocol Block H
	0000 = MSIxMBXD0 is assigned to Mailbox Handshake Protocol Block H
bit 11-8	MBXHSG<3:0>: Mailbox Handshake Protocol Block G Register Assignment bits
	1111 = MSIxMBXD15 is assigned to Mailbox Handshake Protocol Block G
	0001 = MSIxMBXD1 is assigned to Mailbox Handshake Protocol Block G
	0000 = MSIxMBXD0 is assigned to Mailbox Handshake Protocol Block G
bit 7-4	MBXHSF<3:0>: Mailbox Handshake Protocol Block F Register Assignment bits
	1111 = MSIxMBXD15 is assigned to Mailbox Handshake Protocol Block F
	•••
	0001 = MSIxMBXD1 is assigned to Mailbox Handshake Protocol Block F
	0000 = MSIxMBXD0 is assigned to Mailbox Handshake Protocol Block F
bit 3-0	MBXHSE<3:0>: Mailbox Handshake Protocol Block E Register Assignment bits
	1111 = MSIxMBXD15 is assigned to Mailbox Handshake Protocol Block E
	0001 = MSIxMBXD1 is assigned to Mailbox Handshake Protocol Block E
	0000 = MSIxMBXD0 is assigned to Mailbox Handshake Protocol Block E

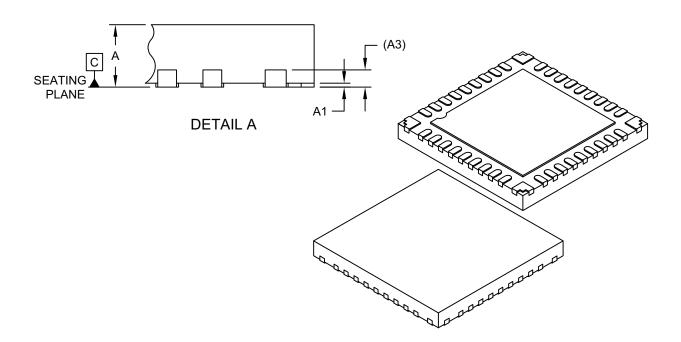
TABLE 24-4: OPERATING VOLTAGE SPECIFICATIONS

-	-	tions: 3.0V to 3.6V (unless other ature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ind $-40^{\circ}C \le TA \le +125^{\circ}C$ for E	ustrial	ted) ⁽¹⁾			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage	3.0	_	3.6	V	
DC12	Vdr	RAM Retention Voltage ⁽²⁾	1.8	_		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	_	V/ms	0V-3V in 3 ms
BO10	VBOR	BOR Event on VDD Transition High-to-Low ⁽³⁾	2.68	2.84	2.99	V	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance.

2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

3: Parameters are characterized but not tested.


		(Idle) + (Sleep)	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units Conditions					
Idle Current (IIDLE) ⁽¹⁾								
DC40a	6.6	8.4	mA	-40°C		10 MIPS (N = 1, N2 = 5,		
	6.7	11.9	mA	+25°C	3.3V	N3 = 2, M = 50,		
	6.9	17.9	mA	+85°C	5.5V	Fvco = 400 MHz,		
	10.9	24.9	mA	+125°C		FPLLO = 40 MHz)		
DC41a	7.3	9.2	mA	-40°C		20 MIPS (N = 1, N2 = 5,		
	7.5	12.7	mA	+25°C	3.3V	N3 = 1, M = 50,		
	7.7	18.7	mA	+85°C	5.5 V	Fvco = 400 MHz,		
	11.7	25.7	mA	+125°C		FPLLO = 80 MHz)		
DC42a	9.2	11.1	mA	-40°C		40 MIPS (N = 1, N2 = 3,		
	9.4	14.8	mA	+25°C	3.3V	N3 = 1, M = 60,		
	9.5	20.7	mA	+85°C	5.5 V	Fvco = 480 MHz,		
	13.5	27.5	mA	+125°C		FPLLO = 160 MHz)		
DC43a	11.8	13.9	mA	-40°C		70 MIPS (N = 1, N2 = 2,		
	12.0	17.6	mA	+25°C	3.3V	N3 = 1, M = 70,		
	12.1	23.5	mA	+85°C	5.5V	Fvco = 560 MHz,		
	16.1	30.1	mA	+125°C		FPLLO = 280 MHz)		
DC44a	14.1	16.3	mA	-40°C		90 MIPS (N = 1, N2 = 2,		
	14.2	20	mA	+25°C	3.3V	N3 = 1, M = 90,		
	14.3	25.9	mA	+85°C	5.5 V	Fvco = 720 MHz,		
	18.2	32.3	mA	+125°C		FPLLO = 360 MHz)		

Note 1: Base Idle current (IIDLE) is measured as follows:

- FIN = 8 MHz, FPFD = 8 MHz
- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Terminals	Ν	36				
Pitch	е		0.40 BSC			
Overall Height	Α	0.50	0.55	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.152 REF				
Overall Length	D	5.00 BSC				
Exposed Pad Length	D2	3.60	3.70	3.80		
Overall Width	E	5.00 BSC				
Exposed Pad Width	E2	3.60	3.70	3.80		
Terminal Width	b	0.15	0.20	0.25		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K		0.25 REF			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-436A-M5 Sheet 2 of 2