

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp206-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

51 Vac Vac 52 RP71/RD7 S1RP71/S1PVM8H/S1RD7 53 RP70/RD6 S1RP70/S1PVM6H/S1RD6 54 RP59/RD5 S1RP69/S1PVM6H/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP36/SCL2/RB6 S1PCG3/S1RP36/S1RD6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MOLR1/S1AN6/S1RP39/S1PVM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1AN7/S1RP40/S1SCL1/S1RB3 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PVM12/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PVM14/L/S1RC10 66 RP59/RC10 S1RP58/S1PVM14/L/S1RC10 67 RP59/RC11 S1RP66/S1PVM34/L/S1RD1 68 RP66/RD4 S1RP66/S1PVM34/L/S1RD1 69 RP67/RD3 S1RP66/S1PVM44/L/S1RD1 70 Vss Vss </th <th>Pin #</th> <th>Master Core</th> <th>Slave Core</th>	Pin #	Master Core	Slave Core
52 RP71/RD7 \$1RP71/S1PWM8H/S1RD7 53 RP20/RD6 \$1RP70/S1PVM6H/S1RD6 54 RP69/RD5 \$1RP60/S1PVM6H/S1RD6 54 RP69/R93/SD42/RB5 \$1P60J/S1RP3/S1RB5 56 PGC3/RP38/SCL2/RB6 \$1PC0J/S1RP38/S1RB6 57 RE10 \$1RE10 58 TD0/AN9/RP39/RB7 \$1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 \$1RE11 \$11RE11 60 PGD1/AN10/RP40/SCL1//S1RB \$1PGC1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 62 ASCL2/RE12 \$1RE12 63 RP52/RC4 \$1RP52/S1PVM2L/S1RC4 64 ASDA2/RE13 \$1RE13 67 RF58/RC10 \$1RP59/S1PVM1/LS1RC1 67 RP59/RC11 \$1RP59/S1PVM1/LS1RC5 68 RP58/RC10 \$1RP59/S1PVM1/LS1RC1 69 RP59/RC11 \$1RP59/S1PVM4L/S1RC1 69 RP66/RD2 \$1RP66/S1PVM48/LS1RD1	51	Vdd	VDD
53 RP70/RD6 S1RP70/S1PWM6H/S1RD6 54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP39/S1RB6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1INCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SLCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RD4 69 RP67/RD3 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 61 RP66/RD0 S1RP66/S1PWM3L/S1RD3 70 Vs5 Vs5 71 VoD VoD	52	RP71 /RD7	S1RP71/S1PWM8H/S1RD7
54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TDD/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PW/M5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE73 66 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 67 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 68 RP68/RD4 S1RP58/S1PW/M1L/S1RC10 69 RP67/RD3 S1RP67/S1PW/M1L/S1RC10 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PW/M8L/S1RD2 <td>53</td> <td>RP70/RD6</td> <td>S1RP70/S1PWM6H/S1RD6</td>	53	RP70/RD6	S1RP70/S1PWM6H/S1RD6
55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1MCLR1/S1AN6/S1RP39/S1RB6 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC4 66 RP56/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RC11 68 RP66/RD4 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD1 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP66/RD2 S1RP66/S1PWM	54	RP69/RD5	S1RP69/S1PWM6L/S1RD5
56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TD0/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA/2RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP53/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP63/RD4 S1RP66/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VbD 72 RP66/RD2 S1RP66/S1PWM4L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3L/RB10 S1RP64/S1PWM4L/S1RD1	55	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP68/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB10 S1RP43/S1RB12 <t< td=""><td>56</td><td>PGC3/RP38/SCL2/RB6</td><td>S1PGC3/S1RP38/S1RB6</td></t<>	56	PGC3/ RP38 /SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE53 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP59/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP66/RD4 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP66/RD2 S1RP66/S1PWM8L/S1RD2 71 VoD VoD 72 RP66/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP66/S1PWM8L/S1RD1 75 TMS/RP42/PVM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PM3L/RB10 S1RP43/S1RB11 77 RE15	57	RE10	S1RE10
59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP58/RC10 S1RP58/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VoD 72 RP66/RD2 S1RP66/S1PVM8L/S1RD2 73 RP66/RD2 S1RP66/S1PVM4L/S1RD1 74 RP64/RD0 S1RP64/S1PVM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 77	58	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP59/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP68/RD4 S1RP59/S1PWM3L/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM8L/S1RD2 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP42/S1RB10 75 TMS/RP44/PWM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP45/S1RB12	59	RE11	S1RE11
61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP53/S1PWM2L/S1RC5 67 RP59/RC11 S1RP58/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	60	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/ S1RP40 /S1SCL1/S1RB8
62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	61	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	62	ASCL2/RE12	S1RE12
64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	63	RP52/RC4	S1RP52/S1PWM2H/S1RC4
65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD2 74 RP64/RD0 S1RP66/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	64	ASDA2/RE13	S1RE13
66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	65	RP53/RC5	S1RP53/S1PWM2L/S1RC5
67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	66	RP58/RC10	S1RP58/S1PWM1H/S1RC10
68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	67	RP59/RC11	S1RP59/S1PWM1L/S1RC11
69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vdd Vdd 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	68	RP68/RD4	S1RP68/S1PWM3H/S1RD4
70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	69	RP67/RD3	S1RP67/S1PWM3L/S1RD3
71 VDD VDD 72 RP66/RD2 \$1RP66/S1PWM8L/S1RD2 73 RP65/RD1 \$1RP65/S1PWM4H/S1RD1 74 RP64/RD0 \$1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 \$1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/S1RB11 77 RE14 \$1RP44/PWM2H/RB12 78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RP45/S1RB13	70	Vss	Vss
72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	71	Vdd	Vdd
73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	72	RP66/RD2	S1RP66/S1PWM8L/S1RD2
74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP14/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	73	RP65/RD1	S1RP65/S1PWM4H/S1RD1
75 TMS/RP42/PWM3H/RB10 \$1RP42/\$1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/\$1RB11 77 RE14 \$1RE14 78 TDI/RP44/PWM2H/RB12 \$1RP44/\$1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/\$1RB13	74	RP64/RD0	S1RP64/S1PWM4L/S1RD0
76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	75	TMS/ RP42 /PWM3H/RB10	S1RP42 /S1RB10
77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	76	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/S1RB13	77	RE14	S1RE14
79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	78	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
80 RP45/PWM2L/RB13 S1RP45/S1RB13	79	RE15	S1RE15
	80	RP45/PWM2L/RB13	S1RP45/S1RB13

TABLE 9: 80-PIN TQFP (CONTINUED)

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

3.1.8 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33CH128MP508 family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.1.8.1 Multiplier

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.1.8.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- · 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. There are additional instructions: DIV2 and DIVF2. Divide instructions will complete in six cycles.

3.1.9 DSP ENGINE

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are, ADD, SUB, NEG, MIN and MAX.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (USx)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write-Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

3.2.7 MODULO ADDRESSING

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

3.2.7.1 Start and End Address

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-4).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

3.2.7.2 W Address Register Selection

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3.2.1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

FIGURE 3-10: MODULO ADDRESSING OPERATION EXAMPLE

Byte	1	MOV	#0x1100, W0	
Address		MOV	W0, XMODSRT	;set modulo start address
0x1100		MOV	#0x1163, W0	
0,11100		MOV	W0, MODEND	;set modulo end address
		MOV	#0x8001, W0	
		MOV	W0, MODCON	;enable W1, X AGU for modulo
		MOV	#0x0000, W0	;WO holds buffer fill value
0x1163		MOV	#0x1110, W1	;point W1 to buffer
		DO	AGAIN, #0x31	;fill the 50 buffer locations
	1	MOV	WO, [W1++]	;fill the next location
	Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words	AGAIN:	INC W0, WO	; increment the fill value

REGISTER 3-5: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD)R<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

REGISTER 3-6: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				-			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B							nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

3.4.2 RESET CONTROL REGISTER

REGISTER 3-15: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0							
TRAPR	IOPUWR	—		_	—	СМ	VREGS							
bit 15	÷				·		bit 8							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1							
EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR							
bit 7							bit 0							
Legend:														
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'								
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown							
DIT 15		Reset Flag bit												
	1 = A Trap CC 0 = A Trap CC	onflict Reset ha	s not occurre	d										
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized \	W Register Acc	cess Reset Flac	ı bit								
	1 = An illega	l opcode dete	ction, an illeg	jal address m	ode or Uninitial	ized W registe	er used as an							
	Address	Pointer caused	a Reset											
	0 = An illegal	l opcode or Uni	nitialized W F	Register Reset	has not occurre	;d								
bit 13-10	Unimplemen	Unimplemented: Read as '0'												
DIT 9		ation Mismatch	Hag bit	oourrod										
	0 = A Configu	ration Mismato	h Reset has i	not occurred										
bit 8	VREGS: Volta	age Regulator S	Standby Durin	ng Sleep bit										
	1 = Voltage r	egulator is activ	ve during Slee	ер										
	0 = Voltage r	egulator goes i	nto Standby n	node during SI	еер									
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit											
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	set has occurr	ed curred										
bit 6	SWR: Softwa	re RESET (Inst	ruction) Flag I	oit										
	1 = A reset	instruction has	been execute	ed										
	0 = A reset	instruction has	not been exe	cuted										
bit 5	Unimplemen	ted: Read as ')'											
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag bi	t										
	1 = WDT time	e-out has occur	red											
hit 2			Currea											
DIL 3		e-up from Slee	n mode											
	0 = Device ha	as not been in Siee	Bleep mode											
bit 2	IDLE: Wake-u	up from Idle Fla	g bit											
	1 = Device ha	as been in Idle i	mode											
	0 = Device ha	as not been in l	dle mode											
bit 1	BOR: Brown-	out Reset Flag	bit											
	1 = A Brown - 0	out Reset has o	occurred											
		out Neset 1103 1												
Note 1:	All of the Reset sta	atus bits can be	set or cleared	d in software. S	Setting one of th	ese bits in soft	ware does not							

cause a device Reset.

Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
	PORTA															
dsPIC33XXXMP508/208	_	_				_		_	_		_	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	_	—				—			—	_		Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	_	_			_	_		_	_	_		Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
ANSELA	—			_	—			—			_	Х	Х	Х	Х	Х
PORTB																
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB	_			_		Х	Х	Х				Х	Х	Х	Х	Х
						POR	ГС									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	-	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203		_				_	_		_	_	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202		_				_	_		_	_		—		_	—	—
ANSELC	-	—		_		—	_		Х	_		—	Х	Х	Х	Х
						POR	ΓD									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	—	—	Х		_	Х	—	Х	—	—	_	—	—	—	Х	—
dsPIC33XXXMP503/203	—	—	_		_	—	_		—	—	_	—	—	—	—	—
dsPIC33XXXMP502/202	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—
ANSELD	—	—	—		—	Х	—	—	—	_	—	—	—	—	—	—
	-		-	-		POR	ΓE			-		-	-			
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	—
dsPIC33XXXMP505/205	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP503/203	—	_	—	_	_	_	—	—	_	—	—	—	—	_	—	_
dsPIC33XXXMP502/202	—	—		—	—	—		—	—			—	—	—	—	—

TABLE 3-27: PIN AND ANSELx AVAILABILITY

TABLE 3-28: 5V INPUT TOLERANT PORTS

PORTA	_	_	_	_		_	_		_	_	_	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0

Legend: Shaded pins are up to 5.5 VDC input tolerant.

3.6.15 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 24-18 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, $TRISx = 0 \ge 0$, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN14/ISRC1/RP50/RC2; this indicates that AN14 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 24.0 "Electrical Characteristics" of this data sheet. For example:

Voн = 2.4v @ Ioн = -8 mA and Vod = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 25.0 "DC and AC Device Characteristics Graphs" for additional information.

Legend:							
bit 7							bit 0
SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
R/W-0							
bit 15							bit 8
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
R/W-0							

REGISTER 3-57: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 3-30.

 bit 7-0
 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-58: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CAN1RXR7 | CAN1RXR6 | CAN1RXR5 | CAN1RXR4 | CAN1RXR3 | CAN1RXR2 | CAN1RXR1 | CAN1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CAN1RXR<7:0>: Assign CAN1 Input (CAN1RX) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-122: C1TXIFH: CAN TRANSMIT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkr	nown

bit 15-0 TFIF<31:16>: Unimplemented

Note 1: C1TXIFH: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).

REGISTER 3-123: C1TXIFL: CAN TRANSMIT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF	<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable b	able bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x =		x = Bit is unkr	nown	

bit 15-8 **TFIF<15:8>:** Unimplemented

bit 7-0 **TFIF<7:0>:** Transmit FIFO/TXQ Interrupt Pending bits⁽²⁾

1 = One or more enabled transmit FIFO/TXQ interrupts are pending

0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: C1TXIFL: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).
 2: TFIF0 is for the transmit queue.

TABLE 3-44: PTG STEP COMMAND FORMAT AND DESCRIPTION

Step Command Byte								
STEPx<7:0>								
CMD<3:0>	OPTION<3:0>							
bit 7 b	it 4 bit 3 bit 0							

bit 7-4	Step Command	CMD<3:0>	Command Description			
	PTGCTRL	0000	Execute the control command as described by the OPTION<3:0> bits.			
	PTGADD	0001	Add contents of the PTGADJ register to the target register as described by the OPTION<3:0> bits.			
	PTGCOPY		Copy contents of the PTGHOLD register to the target register as described by the OPTION<3:0> bits.			
	PTGSTRB	001x	Copy the values contained in the bits, CMD<0>:OPTION<3:0> to the strot output bits <4:0>.			
	PTGWHI	0100	Wait for a low-to-high edge input from a selected PTG trigger input as described by the OPTION<3:0> bits.			
	PTGWLO	0101	Wait for a high-to-low edge input from a selected PTG trigger input as described by the OPTION<3:0> bits.			
		0110	Reserved; do not use. ⁽¹⁾			
	PTGIRQ	0111	Generate individual interrupt request as described by the OPTION<3:0> bits.			
	PTGTRIG	100x	Generate individual trigger output as described by the bits, CMD<0>:OPTION<3:0>.			
	PTGJMP	101x	Copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.			
	PTGJMPC0	110x	PTGC0 = PTGC0LIM: Increment the PTGQPTR register.			
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.			
	PTGJMPC1	111x	PTGC1 = PTGC1LIM: Increment the PTGQPTR register.			
			PTGC1 \neq PTGC1LIM: Increment Counter 1 (PTGC1) and copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.			

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

7.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

7.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

- Note 1: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).
 - 2: The PMD bits are different for the Master core and Slave core. The Master has its own PMD bits which can be disabled/ enabled independently of the Slave peripherals. The Slave has its own PMD bits which can be disabled/enabled independently of the Master peripherals. The register names are the same for the Master and the Slave, but the PMD registers have different addresses in the Master and Slave SFR.

7.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Master PMD F	Registers	Slave PMD Registers		
SFR Addresses Register		SFR Addresses	Register	
FA0h	PMDCONL	FA0h	PMDCONL	
FA4h	PMD1	FA4h	PMD1	
FA6h	PMD2	FA6h	PMD2	
FA8h	PMD3	FA8h	_	
FAAh	PMD4	FAAh	PMD4	
FACh	_	FACh	_	
FAEh	PMD6	FAEh	PMD6	
FB0h	PMD7	FB0h	PMD7	
FB2h	PMD8	FB2h	PMD8	

TABLE 7-1: MASTER AND SLAVE PMD REGISTERS

REGISTER 8-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7	•						bit 0

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12	Reserved: Maintain as '0'
bit 11	Unimplemented: Read as '0'
bit 10	NULLW: Null Write Mode bit
	 1 = A dummy write is initiated to DMASRCn for every write to DMADSTn 0 = No dummy write is initiated
bit 9	RELOAD: Address and Count Reload bit ⁽¹⁾
	 1 = DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the start of the next operation 0 = DMASRCn, DMADSTn and DMACNTn are not reloaded on the start of the next operation⁽²⁾
bit 8	CHREO: DMA Channel Software Request hit ⁽³⁾
bit o	 1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer 0 = No DMA request is pending
bit 7-6	SAMODE<1:0>: Source Address Mode Selection bits
	 11 = DMASRCn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMASRCn is decremented based on the SIZE bit after a transfer completion 01 = DMASRCn is incremented based on the SIZE bit after a transfer completion 00 = DMASRCn remains unchanged after a transfer completion
bit 5-4	DAMODE<1:0>: Destination Address Mode Selection bits
	 11 = DMADSTn is used in Peripheral Indirect Addressing and remains unchanged 10 = DMADSTn is decremented based on the SIZE bit after a transfer completion 01 = DMADSTn is incremented based on the SIZE bit after a transfer completion 00 = DMADSTn remains unchanged after a transfer completion
bit 3-2	TRMODE<1:0>: Transfer Mode Selection bits
	 11 = Repeated Continuous 10 = Continuous 01 = Repeated One-Shot 00 = One-Shot
bit 1	SIZE: Data Size Selection bit
	1 = Byte (8-bit) 0 = Word (16-bit)
bit 0	CHEN: DMA Channel Enable bit
	 1 = The corresponding channel is enabled 0 = The corresponding channel is disabled
Note 1: Or	hy the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn values.

DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
 The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

ASDG <x> Bit</x>	Auto-Shutdown/Gating Source									
	SCCP1	SCCP2	SCCP3	SCCP4	SCCP5	SCCP6	SCCP7	SCCP8		
0	Master Comparator 1 Output									
1	Slave Comparator 1 Output									
2	Slave Comparator 2 Output									
3	Slave Comparator 3 Output									
4	Master ICM1 ⁽¹⁾	Master ICM2 ⁽¹⁾	Master ICM3 ⁽¹⁾	Master ICM4 ⁽¹⁾	Master ICM5 ⁽¹⁾	Master ICM6 ⁽¹⁾	Master ICM7 ⁽¹⁾	Master ICM8 ⁽¹⁾		
5	Master CLC1 ⁽¹⁾									
6	Master OCFA ⁽¹⁾									
7	Master OCFB ⁽¹⁾									

TABLE 10-8: AUTO-SHUTDOWN AND GATING SOURCES (MASTER)

Note 1: Selected by Peripheral Pin Select (PPS).

TABLE 10-9: AUTO-SHUTDOWN AND GATING SOURCES (SLAVE)

ASDG <x></x>	Auto-Shutdown/Gating Source							
Bit	SCCP1	SCCP2	SCCP3	SCCP4				
0	Master Comparator 1 Output							
1	Slave Comparator 1 Output							
2	Slave Comparator 2 Output							
3	Slave Comparator 3 Output							
4	Slave ICM1 ⁽¹⁾ Slave ICM2 ⁽¹⁾ Slave ICM3 ⁽¹⁾ Slave ICM4 ⁽¹⁾							
5	Slave CLC1 ⁽¹⁾							
6	Slave OCFA ⁽¹⁾							
7	Slave OCFB ⁽¹⁾							

Note 1: Selected by Peripheral Pin Select (PPS).

REGISTER 14-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit 1 = SPIxTXB is empty 0 = SPIxTXB is not empty Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB. Enhanced Buffer Mode: Indicates TXELM<5:0> = 000000. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM<5:0> = 111111. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM<5:0> = 111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 21-31: FS1ALTREG CONFIGURATION REGISTER (SLAVE) (CONTINUED)

- bit 2-0 S1CTXT1<2:0>: Alternate Working Register Set #1 Interrupt Priority Level Selection bits
 - 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 = Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1

21.3 User OTP Memory

The dsPIC33CH128MP508 family devices contain 64 One-Time-Programmable (OTP) double words, located at addresses, 801700h through 8017FEh. Each 48-bit OTP double word can only be written one time. The OTP Words can be used for storing checksums, code revisions, manufacturing dates, manufacturing lot numbers or any other application-specific information.

The OTP area is not cleared by any erase command. This memory can be written only once.

21.4 On-Chip Voltage Regulators

All of the dsPIC33CH128MP508 family devices have a capacitorless, internal voltage regulator to supply power to the core at 1.2V (typical). A pair of voltage regulators, VREG1 and VREG2 together, provide power for the core. The PLL is powered using a separate regulator, VREGPLL, as shown in Figure 21-1.

© 2017-2018 Microchip Technology Inc.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD Acc		Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None
8	BOOTSWP	BOOTSWP		Swap the Active and Inactive Program Flash Space	1	2	None

TABLE 22-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

DC CHARACTERISTICS Master (Sleep) + Slave (Idle)			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Тур.	Max.	Units Conditions			itions			
Idle Current (IIDLE) ⁽¹⁾									
DC40b	6.0	7.8	mA	-40°C		10 MIPS (N = 1, N2 = 5,			
	6.2	11.4	mA	+25°C	2 21/	N3 = 2, M = 50,			
	6.4	17.5	mA	+85°C	3.3V	Fvco = 400 MHz,			
	10.4	24.4	mA	+125°C		FPLLO = 40 MHz)			
DC41b	6.6	8.4	mA	-40°C		20 MIPS (N = 1 N2 = 5			
	6.8	12.0	mA	+25°C	2.21/	N3 = 1, M = 50, Fvco = 400 MHz, FPLLO = 80 MHz)			
	7.0	18.1	mA	+85°C	3.3V				
	11.0	25.0	mA	+125°C					
DC42b	8.3	10.1	mA	-40°C	3.3V	40 MIPS (N = 1 N2 = 3			
	8.5	13.8	mA	+25°C		N3 = 1, M = 60, Fvco = 480 MHz,			
	8.7	19.9	mA	+85°C					
	12.6	26.7	mA	+125°C		FPLLO = 160 MHZ)			
DC43b	10.6	12.6	mA	-40°C		70 MIPS (N = 1, N2 = 2,			
	10.8	16.3	mA	+25°C	2 2)/	N3 = 1, M = 70,			
	10.9	22.3	mA	+85°C	5.50	Fvco = 560 MHz,			
	14.9	29.0	mA	+125°C		FPLLO = 280 MHZ)			
DC44b	12.6	14.7	mA	-40°C	2.2)/	90 MIPS (N = 1, N2 = 2,			
	12.7	18.4	mA	+25°C		N3 = 1, M = 90, Fvco = 720 MHz,			
	12.9	23.6	mA	+85°C	5.50				
	16.8	30.9	mA	+125°C		FPLLO = 360 MHZ)			
DC45b	11.7	13.8	mA	-40°C		100 MIPS (N = 1, N2 = 1,			
	11.9	17.6	mA	+25°C	3 3\/	N3 = 1, M = 50,			
	12.1	24.4	mA	+85°C	0.00	Fvco = 400 MHz,			
	16.0	30.1	mA	+125°C		FPLLO = 400 MHz)			

TABLE 24-10: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (MASTER SLEEP/SLAVE IDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

- FIN = 8 MHz, FPFD = 8 MHz
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- · No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N	64			
Pitch	е		0.50 BSC		
Overall Height	A	0.80 0.90 1.00			
Standoff	A1	0.00 0.02 0.05			
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	5.30 5.40 5.50			
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	5.30 5.40 5.50			
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

NOTES: