

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp206-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.9 INTERFACING PROGRAM AND DATA MEMORY SPACES

The dsPIC33CH128MP508 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33CH128MP508 family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 3-22: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		PC<22:1>					
(Code Execution)			0xxx xxxx x	xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		12	xxx xxxx	xxxx xxxx xxxx xxxx					

FIGURE 3-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- word alignment of data in the Program and Data Spaces.2: Table operations are not required to be word-aligned. Table Read operations are permitted in the
 - Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

3.4.2 RESET CONTROL REGISTER

REGISTER 3-15: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—		_	—	СМ	VREGS
bit 15	÷				·		bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
DIT 15		Reset Flag bit					
	1 = A Trap CC 0 = A Trap CC	onflict Reset ha	s not occurre	d			
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized \	W Register Acc	cess Reset Flac	ı bit	
	1 = An illega	l opcode dete	ction, an illeg	jal address m	ode or Uninitial	ized W registe	er used as an
	Address	Pointer caused	a Reset				
	0 = An illegal	l opcode or Uni	nitialized W F	Register Reset	has not occurre	;d	
bit 13-10	Unimplemen	ted: Read as ')'				
DIT 9		ation Mismatch	Hag bit	oourrod			
	0 = A Configu	ration Mismato	h Reset has i	not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durin	ng Sleep bit			
	1 = Voltage r	egulator is activ	ve during Slee	ер			
	0 = Voltage r	egulator goes i	nto Standby n	node during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	set has occurr	ed curred			
bit 6	SWR: Softwa	re RESET (Inst	ruction) Flag I	oit			
	1 = A reset	instruction has	been execute	ed			
	0 = A reset	instruction has	not been exe	cuted			
bit 5	Unimplemen	ted: Read as ')'				
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag bi	t			
	1 = WDT time	e-out has occur	red				
hit 2			Currea				
DIL 3		e-up from Slee	n mode				
	0 = Device ha	as not been in S	Bleep mode				
bit 2	IDLE: Wake-u	up from Idle Fla	g bit				
	1 = Device ha	as been in Idle i	mode				
	0 = Device ha	as not been in l	dle mode				
bit 1	BOR: Brown-	out Reset Flag	bit				
	1 = A Brown - 0	out Reset has o	occurred				
		out Nooct 1103 1					
Note 1:	All of the Reset sta	atus bits can be	set or cleared	d in software. S	Setting one of th	ese bits in soft	ware does not

cause a device Reset.

TABLE 3-26: MASTER INTERRUPT PRIORITY REGISTERS (CONTINUED)

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC35	886h	_	-	_	—	_	-	_	—	_	S1SRSTIP2	S1SRSTIP1	S1SRSTIP0	—	MSIFLTIP2	MSIFLTIP1	MSIFLTIP0
IPC36	888h	—	_	-	—	—	S1BRKIP2	S1BRKIP1	S1BRKIP0		-		—	_	—		_
IPC37	88Ah	—	_	-	—	—	CCT7IP2	CCT7IP1	CCT7IP0		CCP7IP2	CCP7IP1	CCP7IP0	_	—		
IPC38	88Ch	—	_	_	_	—	_	_	_	_	CCT8IP2	CCT8IP1	CCT8IP0	_	CCP8IP2	CCP8IP1	CCP8IP0
IPC39	88Eh	—	_	_	_	—	_	_	_	_	S1CLKFIP2	S1CLKFIP1	S1CLKFIP0	_	_	_	_
IPC40	890h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC41	892h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC42	894h	—	PEVTCIP2	PEVTCIP1	PEVTCIP0	—	PEVTBIP2	PEVTBIP1	PEVTBIP0		PEVTAIP2	PEVTAIP1	PEVTAIP0	_	ADFIFOIP2	ADFIFOIP1	ADFIFOIP0
IPC43	896h	—	CLC3PIP2	CLC3PIP1	CLC3PIP0	—	PEVTFIP2	PEVTFIP1	PEVTFIP0	_	PEVTEIP2	PEVTEIP1	PEVTEIP0	_	PEVTDIP2	PEVTDIP1	PEVTDIP0
IPC44	898h	—	CLC3NIP2	CLC3NIP1	CLC3NIP0	—	CLC2NIP2	CLC2NIP1	CLC2NIP0	_	CLC1NIP2	CLC1NIP1	CLC1NIP0	_	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	89Ah	—	_	_	_	—	_	_	_	_	_	_	_	_	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC46	89Ch	—	_	—	—	_	—	—	—	_	—	—	—	_	—	—	—
IPC47	89Eh	—	_	—	—	_	U2EVTIP2	U2EVTIP1	U2EVTIP0	_	U1EVTIP2	U1EVTIP1	U1EVTIP0	_	—	—	—

Legend: — = Unimplemented.

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 6	DIV0ERR: Divide-by-Zero Error Status bit
	1 = Math error trap was caused by a divide-by-zero
	0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMA Controller Trap Status bit
	1 = DMAC error trap has occurred
	0 = DMAC error trap has not occurred
bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

RPINRx<15:8> or RPINRx<7:0 >	Function	Available on Ports
0	Vss	Internal
1	Master Comparator 1	Internal
2	Slave Comparator 1	Internal
3	Slave Comparator 2	Internal
4	Slave Comparator 3	Internal
5	Slave REFCLKO	Internal
6	Master PTG Trigger 26	Internal
7	Master PTG Trigger 27	Internal
8	Slave PWM Event Output C	Internal
9	Slave PWM Event Output D	Internal
10	Slave PWM Event Output E	Internal
11	Master PWM Event Output C	Internal
12	Master PWM Event Output D	Internal
13	Master PWM Event Output E	Internal
14-31	RP14-RP31	Reserved
32	RP32	Port Pin RB0
33	RP33	Port Pin RB1
34	RP34	Port Pin RB2
35	RP35	Port Pin RB3
36	RP36	Port Pin RB4
37	RP37	Port Pin RB5
38	RP38	Port Pin RB6
39	RP39	Port Pin RB7
40	RP40	Port Pin RB8
41	RP41	Port Pin RB9
42	RP42	Port Pin RB10
43	RP43	Port Pin RB11
44	RP44	Port Pin RB12
45	RP45	Port Pin RB13
46	RP46	Port Pin RB14
47	RP47	Port Pin RB15
48	RP48	Port Pin RC0
49	RP49	Port Pin RC1
50	RP50	Port Pin RC2
51	RP51	Port Pin RC3
52	RP52	Port Pin RC4
53	RP53	Port Pin RC5
54	RP54	Port Pin RC6
55	RP55	Port Pin RC7
56	RP56	Port Pin RC8
57	RP57	Port Pin RC9
58	RP58	Port Pin RC10
59	RP59	Port Pin RC11

TABLE 3-30: MASTER REMAPPABLE PIN INPUTS

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Logond:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

4.3.2 RTSP OPERATION

RTSP allows the user application to program one double instruction word, or one row, at a time.

The double instruction word write blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of one double instruction word and 64 double instruction words, respectively.

Note: Because the PRAM is volatile, RTSP writes that change the Slave PRAM user code will be lost when the device is powered down. For persistent changes to Slave PRAM user code, the Slave image in the Master Flash should be updated. The basic sequence for RTSP programming is to first load two 24-bit instructions into the NVM write latches found in configuration memory space. Refer to Figure 4-3 for write latch addresses. Then, the WR bit in the NVMCON register is set to initiate the write process. The processor stalls (waits) until the programming operation is finished. The WR bit is automatically cleared when the operation is finished. All program operations may optionally use the NVM interrupt to signal the successful completion of the operation.

Double instruction word writes are performed by manually loading both write latches, using TBLWTL and TBLWTH instructions, and then initiating the NVM write while the NVMOP<3:0> bits (NVMCON<3:0>) are set to '0x1'. The program space destination address is defined by the NVMADR/U registers.

EXAMPLE 4-1: PRAM WRITE/READ

```
//Sample code for PRAM write
// Writing 0 \mathrm{x} 777777 to location 0 \mathrm{x} 3000
   NVMCON = 0 \times 4001;
   TBLPAG = 0xFA;
                                         // write latch upper address
   NVMADR = 0 \times 3000;
                                         // set target write address of general segment
   NVMADRU = 0 \times 0000;
    __builtin_tblwtl(0, 0x7777);
                                        // load write latches
   __builtin_tblwth (0,0x77);
   __builtin_tblwtl(2, 0x7777);
                                         // load write latches
   __builtin_tblwth (2,0x77);
    asm volatile ("disi #5");
    ___builtin_write_NVM();
    while(_WR == 1 ) ;
// Sample code for reading address location 0x3000
//readDataL /readDataLH need to be defined as variables.
    TBLPAG = 0 \times 0000;
    readDataL = __builtin_tblrdl(0x3000);
    readDataH = __builtin_tblrdh(0x0000);
```

TABLE 4-37: PORTE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSLE	_	_	_		_			—		ANSELE6	_				_	
TRISE	TRISE<15:0>															
PORTE	RE<15:0>															
LATE	LATE<15:0>															
ODCE	ODCE<15:0>															
CNPUE								CNPUE<1	5:0>							
CNPDE								CNPDE<1	5:0>							
CNCONE	ON	_	_	_	CNSTYLE	_	_	_	_	_	-	_	_	_	_	_
CNEN0E								CNEN0E<1	5:0>							
CNSTATE								CNSTATE<	15:0>							
CNEN1E								CNEN1E<1	5:0>							
CNFE								CNFE<15	:0>							

REGISTER 6-6:	ACLKCON1: AUXILIARY CLOCK CONTROL REGISTER (I	MASTER)
---------------	---	---------

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
APLLEN ⁽¹⁾	APLLCK	—	—	—	—	—	FRCSEL				
bit 15							bit 8				
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1				
	<u> </u>		_	APLLPRE3	APLLPRE2	APLLPRE1	APLLPRE0				
bit 7							bit 0				
Legend:	gend: r = Reserved bit										
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	Bit is unknown				
bit 15	 APLLEN: Auxiliary PLL Enable/Bypass select bit⁽¹⁾ 1 = AFPLLO is connected to the APLL post-divider output (bypass disabled) 0 = AFPLLO is connected to the APLL input clock (bypass enabled) 										
bit 14	 APPLEO is connected to the APPL input clock (bypass enabled) APLLCK: APLL Phase-Locked State Status bit 1 = Auxiliary PLL is in lock 0 = Auxiliary PLL is not in lock 										
bit 13-9	Unimplement	ed: Read as '0	,								
bit 8	FRCSEL: FRC 1 = FRC is the 0 = Primary C	C Clock Source e clock source Oscillator is the	Select bit for APLL clock source fo	or APLL							
bit 7-6	Unimplement	ed: Read as '0	,								
bit 5-4	Reserved: Ma	aintain as '0'									
bit 3-0	APLLPRE<3: 1111 = Reser	0>: Auxiliary Pl ved	L Phase Dete	ctor Input Divic	ler bits						
	1001 = Reser 1000 = Input of 0111 = Input of 0110 = Input of 0101 = Input of 0100 = Input of 0011 = Input of 0010 = Input of 0001 = Input of 0000 = Reser	ved divided by 8 divided by 7 divided by 6 divided by 5 divided by 4 divided by 3 divided by 2 divided by 1 (po ved	ower-on defaul	t selection)							

Note 1: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

TABLE 7-2: MASTER PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCONL	—	—	—	—	PMDLOCK		—	—		—	—	—	—	—	—	_
PMD1	_	_	—	_	T1MD	QEIMD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADC1MD
PMD2	—	_	_	_	_		_	_	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD3	—	—	—	—	—	-	—	—	CRCMD	—	—	—	—	—	I2C2MD	_
PMD4	_	_	—	_	—	_	—	—	_	_	—	_	REFOMD	_	_	_
PMD6	_	_	DMA5MD	DMA4MD	DMA3MD	DMA2MD	DMA1MD	DMA0MD		_	_	_	_	_	_	_
PMD7	_	_	—	_	—	_	—	CMP1MD	_	_	—	—	PTGMD	_	_	_
PMD8	_	_	—	SENT2MD	SENT1MD	_	—	—	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	_

TABLE 7-3: SLAVE PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCON	_	_	_	—	PMDLOCK	—	—	_	_	—	—	—	—	—	—	—
PMD1	_	_	_	—	T1MD	QEIMD	PWMMD	_	I2C1MD	—	U1MD	_	SPI1MD	_		ADC1MD
PMD2	_	_	-	_	_	_	_	_	_	_	_	_	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD4	_	_	_	_	—	—	—	_	_	_	_	—	REFOMD	_	_	—
PMD6	_	_	_	_	—	—	DMA1MD	DMA0MD	_	_	_	—	_	_	_	—
PMD7	_	_	-	_	_	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_
PMD8	_	PGA3MD	_	_	_	PGA2MD	_	_	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD		_

REGISTER 9-2: FSCL: FREQUENCY SCALE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSCL	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSC	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **FSCL<15:0>:** Frequency Scale Register bits The value in this register is added to the frequency scaling accumulator at each pwm_clk. When the accumulated value exceeds the value of FSMINPER, a clock pulse is produced.

REGISTER 9-3: FSMINPER: FREQUENCY SCALING MINIMUM PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINP	ER<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINF	PER<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplem	ented bit, read	d as '0'	
-n = Value at POF	۲	'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unkn	iown

bit 15-0 **FSMINPER<15:0>:** Frequency Scaling Minimum Period Register bits This register holds the minimum clock period (maximum clock frequency) that can be produced by the frequency scaling circuit.

R/W-0	V-0 U-0 R/W-0 R/W		R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		
RXWIE	N —	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾	
bit 15		·		·	·		bit 8	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TXWIEI	N —	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	RXWIEN	: Receive Waterma	rk Interrupt Ena	able bit				
	1 = Trigg	ers receive buffer e	lement waterma	ark interrupt wh	nen RXMSK<5:	$0> \leq RXELM <$	5:0>	
	0 = Disat	oles receive buffer e	lement waterm	ark interrupt				
bit 14	Unimple	mented: Read as '0)'					
bit 13-8	RXMSK<	5:0>: RX Buffer Ma	ask bits ^(1,2,3,4)					
	RX mask	bits; used in conjur	nction with the I	RXWIEN bit.				
bit 7	TXWIEN	: Transmit Waterma	rk Interrupt Ena	able bit				
	 1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0> 0 = Disables transmit buffer element watermark interrupt 							
bit 6	Unimple	mented: Read as 'o)'					
bit 5-0	TXMSK<	5:0>: TX Buffer Ma	sk bits ^(1,2,3,4)					
	TX mask	bits; used in conjur	nction with the T	TXWIEN bit.				
Note 1:	Note 1: Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in this case.							

REGISTER 14-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

- **2:** RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

REGISTER 21-25:	FS10SCSEL	CONFIGURATION	REGISTER (SLAVE)	
-----------------	-----------	---------------	-------------------------	--

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	-	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	-	—	—	—	—
bit 15						•	bit 8
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1
S1IESO	—	—	_	_	S1FNOSC2	S1FNOSC1	S1FNOSC0
bit 7							bit 0
Legend:		PO = Program	n Once bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 23-8	Unimplemen	ted: Read as '1	_ ,				

- bit 7 S1IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6-3 **Unimplemented:** Read as '1'
- bit 2-0 S1FNOSC<2:0>: Oscillator Selection bits
 - 111 = Fast RC Oscillator (FRC) divided by N
 - 110 = Backup FRC (BFRC)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Reserved
 - 011 = Primary Oscillator with PLL Module (MSPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (MS, HS, EC)
 - 001 = Fast RC Oscillator (FRC) with PLL Module (FRCPLL)
 - 000 = Fast RC Oscillator (FRC)

АС СН/	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
OS10	Fin	External CLKI Frequency (External Clocks allowed only in EC and ECPLL modes)	DC	_	64	MHz	EC			
		Oscillator Crystal Frequency	3.5		10	MHz	XT			
			10		32	MHz	HS			
OS20	Tosc	Tosc = 1/Fosc	15.6		DC	ns				
OS25	TCY	Instruction Cycle Time ⁽²⁾	10		DC	ns				
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.4	_	ns				
OS41	TckF	CLKO Fall Time ^(3,4)	_	6.4	—	ns				
OS42	Gм	External Oscillator Transconductance ⁽³⁾	2.7	-	4	mA/V	XTCFG<1:0> = 00, XTBST = 0			
			4	—	7	mA/V	XTCFG<1:0> = 00, XTBST = 1			
			4.5	—	7	mA/V	XTCFG<1:0> = 01, XTBST = 0			
			6	—	11.9	mA/V	XTCFG<1:0> = 01, XTBST = 1			
			5.9	—	9.7	mA/V	XTCFG<1:0> = 10, XTBST = 0			
			6.9	—	15.9	mA/V	XTCFG<1:0> = 10, XTBST = 1			
			6.7	—	12	mA/V	XTCFG<1:0> = 11, XTBST = 0			
			7.5	_	19	mA/V	XTCFG<1:0> = 11, XTBST = 1			

TABLE 24-26: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an External Clock applied to the OSCI pin. When an External Clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin.
- 4: This parameter is characterized but not tested in manufacturing.

TABLE 24-32: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

АС СН	ARACTERI	STICS	Standa (unless Operati	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SY00	Τρυ	Power-up Period		200	—	μs				
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc	—		Tosc = OSCI period			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	1.5	—	μs				
SY20	TMCLR	MCLR Pulse Width (low)	2	—	—	μs				
SY30	TBOR	BOR Pulse Width (low)	1	—	_	μs				
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C			
SY36	Tvreg	Voltage Regulator Standby-to-Active mode Transition Time	_	_	40	μs	Clock fail to BFRC switch			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	—	—	15	μs	From POR event			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	_		50	μs	From Reset event			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

АС СНА	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	n g Condi e stated) iture -40 -40	tions: 3.0)°C ≤ Ta ≤)°C ≤ Ta ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy (BRG + 1)	—	μs	
			400 kHz mode	Tcy (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy (BRG + 1)	—	μs	
			400 kHz mode	Tcy (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	Tcy (BRG + 1) —		μs	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 x (VDD/5.5V)	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	120	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	120	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
	Setup Tim		400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	50		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy (BRG + 1)	_	μs	Only relevant for
		Setup Time	400 kHz mode	Tcy (BRG + 1)	_	μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy (BRG + 1)	—	μs	After this period, the
		Hold Time	400 kHz mode	Tcy (BRG + 1)	_	μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy (BRG + 1)	_	μs	
		Setup Time	400 kHz mode	Tcy (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	TCY (BRG + 1)		μs	
		Hold Time	400 kHz mode	Tcy (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	TCY (BRG + 1)		μs	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3450	ns	
		from Clock	400 kHz mode	_	900	ns	
			1 MHz mode ⁽²⁾		450	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start
IM50	Св	Bus Capacitive L	oading	—	400	pF	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	(Note 3)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

25.0 PACKAGING INFORMATION

25.1 Package Marking Information

28-Lead SSOP (5.30 mm)

Example

28-Lead UQFN (6x6 mm)

Example

36-Lead UQFN (5x5 mm)

Example

Legend	: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the ever be carried characters	t the full Microchip part number cannot be marked on one line, it will over to the next line, thus limiting the number of available for customer-specific information.

dsPIC33CH128MP508 FAMILY

Doze Mode	
DSP Engine	45, 271
dsPIC33CH128MP508S1 Family Interrupt	
Vector Table	
Dual Watchdog Timer (Dual WDT)	704
Control Registers	706
Overview	

Е

ECCADDRL (ECC Fault Inject Address	
Compare High)	87
ECCADDRL (ECC Fault Inject Address	
Compare Low)	87
ECCSTATH (ECC System Status Display High)	88
ECCSTATL (ECC System Status Display Low)	88
Electrical Characteristics	727
AC	742
ADC Specifications	762
Constant-Current Source Specifications	765
DACx Output (DACOUT Pin) Specifications	764
DACx Specifications	764
High-Speed Analog Comparator Specifications	763
I/O Pin Input Injection Current Specifications	740
I/O Pin Input Specifications	739
I/O Pin Output Specifications	740
Operating Voltage Specifications	729
Program Memory	741
Equations	
Frame Time Calculations	635
I ² C Baud Rate Reload Calculation	625
Master/Slave Core AFPLLO Calculation	438
Master/Slave Core AFvco Calculation	438
Master/Slave Core FPLLO Calculation	435
Master/Slave Core Fvco Calculation	435
Relationship Between Device and	
SPIx Clock Speed	622
SYNCMIN and SYNCMAX Calculations	636
Tick Period Calculation	635
Errata	19
Error Correcting Code (ECC)	80
Control Registers	86
Fault Injection	81
F	

F

Flexible Configuration66	57
--------------------------	----

G

Getting Started Guidelines	. 29
Connection Requirements	. 29
Decoupling Capacitors	. 29
External Oscillator Pins	. 31
ICSP Pins	. 31
Master Clear (MCLR) Pin	. 30
Oscillator Value Conditions on Start-up	. 32
Targeted Applications	32
Unused I/Os	. 32

Н

501
553

High-Speed, 12-Bit Analog-to-Digital Converter	
(Master ADC)	221
Control/Status Registers	225
Features Overview	221
Resources	224
High-Speed, 12-Bit Analog-to-Digital Converter	
(Slave ADC)	383
Control/Status Registers	387
Features Overview	383
Resources	386
HSPWM	
Architecture	502
Control Registers	503
Overview	501

I

l ² C		
Clock Rates		625
Communicating as Master in Single		
Master Environment		623
Control/Status Registers		627
Reserved Addresses		626
Setting Baud Rate as Bus Master		625
Slave Address Masking		625
In-Circuit Debugger		710
MPLAB ICD 3		725
PICkit 3 Programmer		725
In-Circuit Emulation		667
In-Circuit Serial Programming (ICSP)	. 667,	710
Input Change Notification (ICN)	. 123,	341
Instruction Addressing Modes	70,	290
File Register Instructions	70,	290
Fundamental Modes Supported	70,	290
MAC Instructions	71,	291
MCU Instructions	70,	290
Move and Accumulator Instructions	71,	291
Other Instructions	71,	291
Instruction Set Summary		713
Overview		716
Symbols Used in Opcode Descriptions		714
Instruction-Based Power-Saving Modes		471
Idle		472
Sleep		472
Inter-Integrated Circuit. See I ² C.		
Internet Address		802
Interrupts Coincident with Power Save Instructions .		472
1		

J

JTAG	Boundary Sca	n Interface	667
JTAG	Interface		710

Μ

Master CPU	35
Addressing Modes	36
Control/Status Registers	41
Data Space Addressing	36
Instruction Set	35
Registers	35
Resources	40
Master Flash Program Memory	77
Control Registers	81
Operations	77
RTSP Operation	79