

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	•
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp206-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CH128MP508 FAMILY

	dsPIC33CHXXXMP20X FAMILY WITH NO CAN FD
IADLL J.	

Product	Core	Pins	Flash ⁽¹⁾	Data RAM	ADC Modules	ADC Channels	Timers	SCCP	CAN FD	SENT	UART	SPI/I ² S	I ² C	QEI	СГС	РТС	CRC	PWM (High Resolution)	Analog Comparators	PGA	Current Bias Source	REFO
	Master	28	64K	16K	1	12	1	8		2	2	2	2	1	4	1	1	4	1		1	1
	Slave	20	24K	4K	3	11	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
	Master	28	128K	16K	1	12	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	20	24K	4K	3	11	1	4	—	—	1	1	1	1	4			8	3	3		1
	Master	36	64K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	50	24K	4K	3	16	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
dsPIC33CH128MP203	Master	36	128K	16K	1	15	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	00	24K	4K	3	16	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
dsPIC33CH64MP205	Master	48	64K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	10	24K	4K	3	15	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
dsPIC33CH128MP205	Master	48	128K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	-10	24K	4K	3	15	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
	Master	64	64K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	04	24K	4K	3	18	1	4	—	—	1	1	1	1	4	—	—	8	3	3		1
dsPIC33CH128MP206	Master	64	128K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave		24K	4K	3	18	1	4	—	—	1	1	1	1	4			8	3	3		1
dsPIC33CH64MP208	4MP208 Master	80	64K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	00	24K	4K	3	18	1	4	—	—	1	1	1	1	4			8	3	3		1
	Master	80	128K	16K	1	16	1	8	—	2	2	2	2	1	4	1	1	4	1	—	1	1
	Slave	00	24K	4K	3	18	1	4	—	—	1	1	1	1	4	_		8	3	3	_ 7	1

Note 1: For the Slave core, the implemented program memory of 24K is PRAM.

TABLE 8: 64-PIN TQFP/QFN (CONTINUED)

Pin #	Master Core	Slave Core
51	RP53/RC5	S1RP53/S1PWM2L/S1RC5
52	RP58/RC10	S1RP58/S1PWM1H/S1RC10
53	RP59/RC11	S1RP59/S1PWM1L/S1RC11
54	RP68 /RD4	S1RP68/S1PWM3H/S1RD4
55	RP67/RD3	S1RP67/S1PWM3L/S1RD3
56	Vss	Vss
57	Vdd	Vdd
58	RP66/RD2	S1RP66/S1PWM8L/S1RD2
59	RP65 /RD1	S1RP65/S1PWM4H/S1RD1
60	RP64/RD0	S1RP64/S1PWM4L/S1RD0
61	TMS/RP42/PWM3H/RB10	S1RP42/S1RB10
62	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
63	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
64	RP45/PWM2L/RB13	S1RP45 /S1RB13

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

51 Vac Vac 52 RP71/RD7 S1RP71/S1PVM8H/S1RD7 53 RP70/RD6 S1RP70/S1PVM6H/S1RD6 54 RP59/RD5 S1RP69/S1PVM6H/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP36/SCL2/RB6 S1PCG3/S1RP36/S1RD6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MOLR1/S1AN6/S1RP39/S1PVM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1AN7/S1RP40/S1SCL1/S1RB3 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PVM12/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PVM14/L/S1RC10 66 RP59/RC10 S1RP58/S1PVM14/L/S1RC10 67 RP59/RC11 S1RP66/S1PVM34/L/S1RD1 68 RP67/RD3 S1RP65/S1PVM44/L/S1RD1 69 RP57/RD3 S1RP66/S1PVM44/L/S1RD1 70 Vss Vss </th <th>Pin #</th> <th>Master Core</th> <th>Slave Core</th>	Pin #	Master Core	Slave Core
52 RP71/RD7 \$1RP71/S1PWM8H/S1RD7 53 RP20/RD6 \$1RP70/S1PVM6H/S1RD6 54 RP69/RD5 \$1RP60/S1PVM6H/S1RD6 54 RP69/R93/SD42/RB5 \$1P60J/S1RP3/S1RB5 56 PGC3/RP38/SCL2/RB6 \$1PC0J/S1RP38/S1RB6 57 RE10 \$1RE10 58 TD0/AN9/RP39/RB7 \$1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 \$1RE11 \$11RE11 60 PGD1/AN10/RP40/SCL1//S1RB \$1PGC1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 62 ASCL2/RE12 \$1RE12 63 RP52/RC4 \$1RP52/S1PVM2L/S1RC4 64 ASDA2/RE13 \$1RE13 67 RF58/RC10 \$1RP59/S1PVM1/LS1RC1 67 RP59/RC11 \$1RP59/S1PVM1/LS1RC5 68 RP58/RC10 \$1RP59/S1PVM1/LS1RC1 69 RP59/RC11 \$1RP59/S1PVM4L/S1RC1 69 RP66/RD2 \$1RP66/S1PVM48/LS1RD1	51	Vdd	VDD
53 RP70/RD6 S1RP70/S1PWM6H/S1RD6 54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP39/S1RB6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1INCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SLCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RD4 69 RP67/RD3 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 61 RP66/RD0 S1RP66/S1PWM3L/S1RD3 70 Vs5 Vs5 71 VoD VoD	52	RP71 /RD7	S1RP71/S1PWM8H/S1RD7
54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TDD/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PW/M5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE73 66 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 67 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 68 RP68/RD4 S1RP58/S1PW/M1L/S1RC10 69 RP67/RD3 S1RP67/S1PW/M1L/S1RC10 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PW/M8L/S1RD2 <td>53</td> <td>RP70/RD6</td> <td>S1RP70/S1PWM6H/S1RD6</td>	53	RP70/RD6	S1RP70/S1PWM6H/S1RD6
55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1MCLR1/S1AN6/S1RP39/S1RB6 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC4 66 RP56/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RC11 68 RP66/RD4 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD1 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP66/RD2 S1RP66/S1PWM	54	RP69/RD5	S1RP69/S1PWM6L/S1RD5
56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TD0/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA/2RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP53/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP63/RD4 S1RP66/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VbD 72 RP66/RD2 S1RP66/S1PWM4L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3L/RB10 S1RP64/S1PWM4L/S1RD1	55	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP68/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB10 S1RP43/S1RB12 <t< td=""><td>56</td><td>PGC3/RP38/SCL2/RB6</td><td>S1PGC3/S1RP38/S1RB6</td></t<>	56	PGC3/ RP38 /SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE53 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP59/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP66/RD4 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP66/RD2 S1RP66/S1PWM8L/S1RD2 71 VoD VoD 72 RP66/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP66/S1PWM8L/S1RD1 75 TMS/RP42/PVM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PM3L/RB10 S1RP43/S1RB11 77 RE15	57	RE10	S1RE10
59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP58/RC10 S1RP58/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VoD 72 RP66/RD2 S1RP66/S1PVM8L/S1RD2 73 RP66/RD2 S1RP66/S1PVM4L/S1RD1 74 RP64/RD0 S1RP64/S1PVM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78	58	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP59/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP68/RD4 S1RP59/S1PWM3L/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM8L/S1RD2 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP42/S1RB10 75 TMS/RP44/PWM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP45/S1RB12	59	RE11	S1RE11
61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP53/S1PWM2L/S1RC5 67 RP59/RC11 S1RP58/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	60	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/ S1RP40 /S1SCL1/S1RB8
62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	61	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	62	ASCL2/RE12	S1RE12
64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	63	RP52/RC4	S1RP52/S1PWM2H/S1RC4
65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD2 74 RP64/RD0 S1RP66/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	64	ASDA2/RE13	S1RE13
66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	65	RP53/RC5	S1RP53/S1PWM2L/S1RC5
67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	66	RP58/RC10	S1RP58/S1PWM1H/S1RC10
68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	67	RP59/RC11	S1RP59/S1PWM1L/S1RC11
69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vdd Vdd 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	68	RP68/RD4	S1RP68/S1PWM3H/S1RD4
70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	69	RP67/RD3	S1RP67/S1PWM3L/S1RD3
71 VDD VDD 72 RP66/RD2 \$1RP66/S1PWM8L/S1RD2 73 RP65/RD1 \$1RP65/S1PWM4H/S1RD1 74 RP64/RD0 \$1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 \$1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/S1RB11 77 RE14 \$1RP44/PWM2H/RB12 78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RP45/S1RB13	70	Vss	Vss
72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	71	Vdd	Vdd
73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	72	RP66/RD2	S1RP66/S1PWM8L/S1RD2
74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP14/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	73	RP65/RD1	S1RP65/S1PWM4H/S1RD1
75 TMS/RP42/PWM3H/RB10 \$1RP42/\$1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/\$1RB11 77 RE14 \$1RE14 78 TDI/RP44/PWM2H/RB12 \$1RP44/\$1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/\$1RB13	74	RP64/RD0	S1RP64/S1PWM4L/S1RD0
76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	75	TMS/ RP42 /PWM3H/RB10	S1RP42 /S1RB10
77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	76	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/S1RB13	77	RE14	S1RE14
79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	78	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
80 RP45/PWM2L/RB13 S1RP45/S1RB13	79	RE15	S1RE15
	80	RP45/PWM2L/RB13	S1RP45/S1RB13

TABLE 9: 80-PIN TQFP (CONTINUED)

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

3.2 Master Memory Organization

Note: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33CH128MP508 family architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

3.2.1 PROGRAM ADDRESS SPACE

The program address memory space of the dsPIC33CH128MP508 family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 3.2.9 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to permit access to calibration data and Device ID sections of the configuration memory space.

The program memory maps for the Master dsPIC33CHXXXMPX08 device are shown in Figure 3-3 and Figure 3-4.

FIGURE 3-3: PROGRAM MEMORY MAP FOR MASTER dsPIC33CH128MPXXX DEVICES⁽¹⁾

	GOTO Instruction	0x000000		
	Reset Address	0x000002		
()	Interrupt Vector Table	0x000004 0x0001FE		
ory Space	User Program Flash Memory (44K instructions)	0x000200 0x015EFE		
r Men	Device Configuration	0x015F00 0x015FFE		
Use	Unimplemented (Read '0's)	0x016000		
	Reserved	0x7FFFFE 0x800000		
		0x800FFE 0x801000		
	Calibration Data ^(2,3)			
Space	User OTP Memory	0x8016FC 0x801700 0x8017FE		
lemory	Reserved	0x801800 0xE9EEEE		
ation N	Write Latches	0xFA0000 0xFA0002		
Configui	Reserved	0xFA0004		
		0xFEFFFE 0xFF0000		
	DEVID	0xFF0002		
V	Reserved	0xFFFFE		

Note 1: Memory areas are not shown to scale.

- 2: Calibration data area must be maintained during programming.
- **3:** Calibration data area includes UDID locations.

3.2.1.1 Program Memory Organization

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-5).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

3.2.1.2 Interrupt and Trap Vectors

All dsPIC33CH128MP508 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in Section 3.5 "Master Interrupt Controller".

FIGURE 3-5: PROGRAM MEMORY ORGANIZATION

3.2.2 UNIQUE DEVICE IDENTIFIER (UDID)

All dsPIC33CH128MP508 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- · Tracking the device
- · Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801200 and 0x801208 in the device configuration space. Table 3-3 lists the addresses of the identifier words and shows their contents

TABLE 3-3: UDID ADDRESSES

UDID	Address	Description
UDID1	0x801200	UDID Word 1
UDID2	0x801202	UDID Word 2
UDID3	0x801204	UDID Word 3
UDID4	0x801206	UDID Word 4
UDID5	0x801208	UDID Word 5

FIGURE 3-14: ADDRESSING FOR TABLE REGISTERS

REGISTER 3-13: ECCSTATL: ECC SYSTEM STATUS DISPLAY REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			SECO	OUT<7:0>						
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			SE	CIN<7:0						
bit 7							bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared	d	x = Bit is unkn	own			

bit 15-8SECOUT<7:0>: Calculated Single Error Correction Parity Value bitsbit 7-0SECIN<7:0>: Read Single Error Correction Parity Value bitsBits are the actual parity value of a Flash read operation.

REGISTER 3-14: ECCSTATH: ECC SYSTEM STATUS DISPLAY REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
	_	—	_	—	—	DEDOUT	DEDIN
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECSYI	ND<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-10	Unimplemen	ted: Read as '0)'				

bit 9 **DEDOUT:** Calculated Dual Bit Error Detection Parity bit

bit 8 **DEDIN:** Read Dual Bit Error Detection Parity bit

bit 7-0 **SECSYND<7:0>:** Calculated ECC Syndrome Value bits Indicates the bit location that contains the error.

TABLE 3-23: MASTER INTERRUPT VECTOR DETAILS

	Vector	IRQ		In	terrupt Bit Lo	cation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
T1 – Timer1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
CNA – Change Notice Interrupt A	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
CNB – Change Notice Interrupt B	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>
Reserved	13	5	0x00001E	—	-	_
CCP1 – Input Capture/Output Compare 1	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
CCT1 – CCP1 Timer	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
DMA1 – DMA Channel 1	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1RX – SPI1 Receiver	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1TX – SPI1 Transmitter	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ECCSBE – ECC Single Bit Error	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
NVM – NVM Write Complete	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>
INT1 – External Interrupt 1	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
DMA2 – DMA Channel 2	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CNC – Change Notice Interrupt C	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT2 – External Interrupt 2	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
DMA3 – DMA Channel 3	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>
DMA4 – DMA Channel 4	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>
CCP2 – Input Capture/Output Compare 2	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>
CCT2 – CCP2 Timer	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>
CAN1 – CAN1 Combined Error	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
INT3 – External Interrupt 3	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
U2RX – UART2 Receiver	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
U2TX – UART2 Transmitter	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
SPI2RX – SPI2 Receiver	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
SPI2TX – SPI2 Transmitter	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
C1RX – CAN1 RX Data Ready	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
Reserved	40-41	32-33	0x000054-0x000056	—	_	—
DMA5 – DMA Channel 5	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>
CCP3 – Input Capture/Output Compare 3	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>
CCT3 – CCP3 Timer	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>
SI2C2 – I2C2 Slave Event	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
MI2C2 – I2C2 Master Event	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
Reserved	47	39	0x000062	—	—	—
CCP4 – Input Capture/Output Compare 4	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>
CCT4 – CCP4 Timer	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
Reserved	50	42	0x000068	_		
CCP5 – Input Capture/Output Compare 5	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>
CCT5 – CCP5 Timer	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>
DMT – Deadman Timer	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>
CCP6 – Input Capture/Output Compare 6	54	46	0x000070	IFS2<14>	IEC2<14>	IPC11<10:8>
CCT6 – CCP6 Timer	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>

REGISTER 3-28: CNPUX: CHANGE NOTIFICATION PULL-UP ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPL	Jx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNP	Ux<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				x = Bit is unki	nown		

bit 15-0 CNPUx<15:0>: Change Notification Pull-up Enable for PORTx bits

1 = The pull-up for PORTx[n] is enabled – takes precedence over the pull-down selection

0 = The pull-up for PORTx[n] is disabled

REGISTER 3-29: CNPDx: CHANGE NOTIFICATION PULL-DOWN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPDx	<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPD	x<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CNPDx<15:0>: Change Notification Pull-Down Enable for PORTx bits

1 = The pull-down for PORTx[n] is enabled (if the pull-up for PORTx[n] is not enabled)

0 = The pull-down for PORTx[n] is disabled

4.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508S1 family is shown in Figure 4-2. All registers in the programmer's model are memorymapped and can be manipulated directly by instructions. Table 4-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508S1 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 4-3.

TABLE 4-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate 1 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 2 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 3 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 4 Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

Function	RPnR<5:0>	Output Name
Default PORT	000000	S1RPn tied to Default Pin
S1U1TX	000001	S1RPn tied to UART1 Transmit
S1U1RTS	000010	S1RPn tied to UART1 Request-to-Send
S1SDO1	000101	S1RPn tied to SPI1 Data Output
S1SCK1OUT	000110	S1RPn tied to SPI1 Clock Output
S1SS1OUT	000111	S1RPn tied to SPI1 Slave Select
S1REFCLKO	001110	S1RPn tied to Reference Clock Output
S10CM1	001111	S1RPn tied to SCCP1 Output
S10CM2	010000	S1RPn tied to SCCP2 Output
S1OCM3	010001	S1RPn tied to SCCP3 Output
S10CM4	010010	S1RPn tied to SCCP4 Output
S1CMP1	010111	S1RPn tied to Comparator 1 Output
S1CMP2	011000	S1RPn tied to Comparator 2 Output
S1CMP3	011001	S1RPn tied to Comparator 3 Output
S1PWMH4	100010	S1RPn tied to PWM4H Output
S1PWML4	100011	S1RPn tied to PWM4L Output
S1PWMEA	100100	S1RPn tied to PWM Event A Output
S1PWMEB	100101	S1RPn tied to PWM Event B Output
S1QEICMP1	100110	S1RPn tied to QEI Comparator Output
S1CLC1OUT	101000	S1RPn tied to CLC1 Output
S1CLC2OUT	101001	S1RPn tied to CLC2 Output
S1PWMEC	101100	S1RPn tied to PWM Event C Output
S1PWMED	101101	S1RPn tied to PWM Event D Output
MPTGTRG1	101110	Master PTG24 Output
MPTGTRG2	101111	Master PTG25 Output
S1CLC3OUT	110010	S1RPn tied to CLC3 Output

TABLE 4-31: OUTPUT SELECTION FOR REMAPPABLE PINS (S1RPn)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP175R5 ⁽¹⁾	RP175R4 ⁽¹⁾	RP175R3 ⁽¹⁾	RP175R2 ⁽¹⁾	RP175R1 ⁽¹⁾	RP175R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP174R5 ⁽¹⁾	RP174R4 ⁽¹⁾	RP174R3 ⁽¹⁾	RP174R2 ⁽¹⁾	RP174R1 ⁽¹⁾	RP174R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP175R<5:0>: Peripheral Output Function is Assigned to S1RP175 Output Pin bits ⁽¹⁾
	(see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP174R<5:0>:** Peripheral Output Function is Assigned to S1RP174 Output Pin bits⁽¹⁾ (see Table 4-31 for peripheral function numbers)

Note 1: These are virtual output ports.

dsPIC33CH128MP508 FAMILY

FIGURE 10-1: SCCPx CONCEPTUAL BLOCK DIAGRAM

10.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 10-2. There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000).

11.0 HIGH-SPEED ANALOG COMPARATOR WITH SLOPE COMPENSATION DAC

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005280) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.
 - 3: The comparator and DAC are identical for both Master core and Slave core. The module is similar for both Master core and Slave core (where the x represents the number of the specific modules being addressed in Master or Slave).

The high-speed analog comparator module provides a method to monitor voltage, current and other critical signals in a power conversion application that may be too fast for the CPU and ADC to capture. There are a total of four comparator modules, one of which is controlled by the Master core and the remaining three by the Slave core. The analog comparator module can be used to implement Peak Current mode control, Critical Conduction mode (variable frequency) and Hysteretic Control mode. Table 11-1 shows an overview of the comparator/DAC module.

TABLE 11-1: COMPARATOR/DAC MODULE OVERVIEW

	Number of Comparator Modules	ldentical (Modules)
Master Core	1	Yes
Slave Core	3	Yes

11.1 Overview

The high-speed analog comparator module is comprised of a high-speed comparator, Pulse Density Modulation (PDM) DAC and a slope compensation unit. The slope compensation unit provides a userdefined slope which can be used to alter the DAC output. This feature is useful in applications, such as Peak Current mode control, where slope compensation is required to maintain the stability of the power supply. The user simply specifies the direction and rate of change for the slope compensation and the output of the DAC is modified accordingly.

The DAC consists of a PDM unit, followed by a digitally controlled multiphase RC filter. The PDM unit uses a phase accumulator circuit to generate an output stream of pulses. The density of the pulse stream is proportional to the input data value, relative to the maximum value supported by the bit width of the accumulator. The output pulse density is representative of the desired output voltage. The pulse stream is filtered with an RC filter to yield an analog voltage. The output of the DAC is connected to the negative input of the comparator. The positive input of the comparator can be selected using a MUX from either of the input pins or the output of the PGAs. The comparator provides a high-speed operation with a typical delay of 15 ns.

The output of the comparator is processed by the pulse stretcher and the digital filter blocks, which prevent comparator response to unintended fast transients in the inputs. Figure 11-1 shows a block diagram of the high-speed analog comparator module. The DAC module can be operated in one of three modes: Slope Generation mode, Hysteretic mode and Triangle Wave mode. Each of these modes can be used in a variety of power supply applications.

Note:	The DACOUT pin can only be associated
	with a single DAC or PGA output at any
	given time. If more than one DACOEN bit
	is set, or the PGA Output Enable bit
	(PGAOEN) and the DACOEN bit are set,
	the DACOUT pin will be a combination of
	the signals.

Note: DAC input frequency needs to be 500 MHz.

REGISTER 11-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER (CONTINUED)

The selected Slope Stop A signal is logically OR'd with the selected Slope Stop B signal to terminate the slope function.

Slope Stop A Signal Selection	Master	Slave		
1111	1	1		
1110	Slave PWM2 Trigger 2	Master PWM8 Trigger 2		
1101	Slave PWM1 Trigger 2	Master PWM7 Trigger 2		
1000	Master PWM4 Trigger 2	Slave PWM8 Trigger 2		
0111	Master PWM3 Trigger 2	Slave PWM7 Trigger 2		
0110	Master PWM2 Trigger 2	Slave PWM6 Trigger 2		
0101	Master PWM1 Trigger 2	Slave PWM5 Trigger 2		
0100	Master PWM4 Trigger 1	Slave PWM4 Trigger 2		
0011	Master PWM3 Trigger 1	Slave PWM3 Trigger 2		
0010	Master PWM2 Trigger 1	Slave PWM2 Trigger 2		
0001	Master PWM1 Trigger 1	Slave PWM1 Trigger 2		
0000	0	0		

bit 7-4 SLPSTOPB<3:0>: Slope Stop B Signal Select bits

The selected Slope Stop B signal is logically OR'd with the selected Slope Stop A signal to terminate the slope function.

Slope Start B Signal Selection	Master	Slave
1111	1	1
0100	S1CMP3 Out	CMP1 Out
0011	S1CMP2 Out	S1CMP3 Out
0010	S1CMP1 Out	S1CMP2 Out
0001	CMP1 Out	S1CMP1 Out
0000	0	0

bit 3-0

SLPSTRT<3:0>: Slope Start Signal Select bits

Slope Start Signal Selection	Master	Slave		
1111	1	1		
1110	Slave PWM2 Trigger 1	Master PWM2 Trigger 1		
1101	Slave PWM1 Trigger 1	Master PWM1 Trigger 1		
1000	Master PWM4 Trigger 2	Slave PWM8 Trigger 1		
0111	Master PWM3 Trigger 2	Slave PWM7 Trigger 1		
0110	Master PWM2 Trigger 2	Slave PWM6 Trigger 1		
0101	Master PWM1 Trigger 2	Slave PWM5 Trigger 1		
0100	Master PWM4 Trigger 1	Slave PWM4 Trigger 1		
0011	Master PWM3 Trigger 1	Slave PWM3 Trigger 1		
0010	Master PWM2 Trigger 1	Slave PWM2 Trigger 1		
0001	Master PWM1 Trigger 1	Slave PWM1 Trigger 1		
0000	0	0		

© 2017-2018 Microchip Technology Inc.

bit 11-8 SLPSTOPA<3:0>: Slope Stop A Signal Select bits

REGISTER 15-3: I2CxSTAT: I2Cx STATUS REGISTER

HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0	
ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	
bit 15							bit 8	
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF	
bit 7							bit 0	
Legend:		C = Clearable	bit	HSC = Hardware Settable/Clearable bit				
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwa	re Settable bit	
bit 15		cknowledge Sta	itus bit (update	ed in all Master	and Slave mod	les)		
	0 = Acknowle	dge was not re	ed from Slave	lave				
bit 14	TRSTAT: Tran	nsmit Status bit	(when operati	ng as I ² C Mast	er; applicable t	o Master transr	nit operation)	
	1 = Master tra	ansmit is in prog	, gress (8 bits +	ACK)			. ,	
	0 = Master tra	ansmit is not in	progress	0				
bit 13	ACKTIM: Ack	knowledge Time	e Status bit (va	ilid in I ² C Slave	mode only)			
	1 = Indicates 0 = Not an Ac	I ² C bus is in an	Acknowledge	e sequence, set d on 9th rising (on 8th falling e	edge of SCLx c	lock	
bit 12-11		ted: Read as '()'	a on our noing (ioon		
bit 10	BCL: Bus Co	Ilision Detect bi	, t (Master/Slav	e mode: cleare	d when I ² C mo	dule is disabled	1.12CEN = 0	
	1 = A bus coll	lision has been	detected durir	ng a Master or S	Slave transmit	operation	.,	
	0 = No bus co	ollision has bee	n detected	•		•		
bit 9	GCSTAT: Ger	neral Call Statu	s bit (cleared a	after Stop detec	tion)			
	1 = General o 0 = General o	all address was all address was	s received s not received					
bit 8	ADD10: 10-B	ADD10: 10-Bit Address Status bit (cleared after Stop detection)						
	1 = 10-bit add	dress was matc	hed					
	0 = 10-bit add	dress was not m	atched					
bit 7	IWCOL: 12Cx	Write Collision	Detect bit	istor failed been	nuce the 120 mg		ust be sleared	
	in softwa	re	IZCX I KIN I Eg	ister falled beca		idule is busy, ili	ust be cleared	
	0 = No collisi	ion						
bit 6	12COV: 12Cx	Receive Overflo	ow Flag bit					
	1 = A byte wa	as received whi	e the I2CxRC	V register is stil	I holding the pre	evious byte; I20	COV is a "don't	
	0 = No overfl	low	must be clear					
bit 5	D/A: Data/Ad	dress bit (when	operating as	I ² C Slave)				
	1 = Indicates	that the last by	te received wa	is data				
	0 = Indicates	that the last by	e received or	transmitted was	s an address			
bit 4	P: I2Cx Stop	bit						
	Updated when 1 = Indicates 0 = Stop bit w	n Start, Reset c that a Stop bit I /as not detected	r Stop is deteo nas been dete I last	cted; cleared w cted last	hen the I [∠] C mo	dule is disabled	d, I2CEN = 0.	

20.0 CURRENT BIAS GENERATOR (CBG)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (DS70005253) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.

The Current Bias Generator (CBG) consists of two classes of current sources: 10 μ A and 50 μ A sources. The major features of each current source are:

- 10 µA Current Sources:
 - Current sourcing only
 - Up to four independent sources
- 50 µA Current Sources:
 - Selectable current sourcing or sinking
 - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 20-1.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1
_	—	—		—	—	—	DMTDIS
bit 7							bit 0
Legend:		PO = Program Once bit					
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		x = Bit is unknown					
-							

REGISTER 21-13: FDMT CONFIGURATION REGISTER

bit 23-1 Unimplemented: Read as '1'

bit 0 DMTDIS: DMT Disable bit

1 = DMT is disabled

0 = DMT is enabled

21.7 Dual Watchdog Timer (WDT)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Watchdog Timer", (DS70005250) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The WDT is identical for both Master core and Slave core. The x is common for both Master core and Slave core (where the x represents the number of the specific module being addressed). The number of WDT modules available on the Master and Slaves is different and they are located in different SFR locations.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device.

Table 21-6 shows an overview of the WDT module.

TABLE 21-6:DUAL WDT MODULEOVERVIEW

	Number of WDT Modules	ldentical (Modules)		
Master Core	1	Yes		
Slave Core	1	Yes		

The dsPIC33 dual Watchdog Timer (WDT) is described in this section. Refer to Figure 21-2 for a block diagram of the WDT.

The WDT, when enabled, operates from the internal Low-Power RC (LPRC) Oscillator clock source or a selectable clock source in Run mode. The WDT can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. The WDT can be configured in Windowed mode or Non-Windowed mode. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode (Power Save mode). If the WDT expires and issues a device Reset, the WTDO bit of the RCON register (Register 21-37) will be set.

The following are some of the key features of the WDT modules:

- Configuration or Software Controlled
- Separate User-Configurable Time-out Periods for Run and Sleep/Idle
- Can Wake the Device from Sleep or Idle
- · User-Selectable Clock Source in Run mode
- Operates from LPRC in Sleep/Idle mode

Note: While executing a clock switch, the WDT will not be reset. It is recommended to reset the WDT prior to executing a clock switch instruction.

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCLF	RKEY<15:8>			
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCL	RKEY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits

To clear the Watchdog Timer to prevent a time-out, software must write the value, 0x5743, to this location using a single 16-bit write.