

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2000	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	·
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" and Section 4.2 "Slave Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33CH128MP508 Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33CH128MP508 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-2 shows a general block diagram of the cores and peripheral modules of the Master and Slave. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

The Master core and Slave core can operate independently, and can be programmed and debugged separately during the application development. Both processor (Master and Slave) subsystems have their own interrupt controllers, clock generators, ICD, port logic, I/O MUXes and PPS. The device is equivalent to having two complete dsPIC[®] DSCs on a single die.

The Master core will execute the code from Program Flash Memory (PFM) and the Slave core will operate from Program RAM Memory (PRAM). Once the code development is complete, the Master Flash will be programmed with the Master code, as well as the Slave code. After a Power-on Reset (POR), the Slave code from Master Flash will be loaded to the PRAM (program memory of the Slave) and the Slave can execute the code independently of the Master. The Master and Slave can communicate with each other using the Master Slave Interface (MSI) peripheral, and can exchange data between them.

Figure 1-1 shows the block diagram of the device operation during a POR and the process of transferring the Slave code from the Master to Slave PRAM.

The I/O ports are shared between the Master and Slave. Table 1 shows the number of peripherals and the shared peripherals that the Master and Slave own. There are Configuration bits in the Flash memory that specify the ownership (Master or Slave) of each device pin.

The default (erased) state of the Flash assigns all of the device pins to the Master.

The two cores (Master and Slave) can both be connected to debug tools, which support independent and simultaneous debugging. When the Slave core or <u>Master core</u> is debugged (non-Dual Debug mode), the S1MCLRx is not used. MCLR is used for programming and <u>debugging</u> both the Master core and the Slave core. S1MCLRx is only used when debugging both the cores at the same time.

In normal operation, the "owner" of a device pin is responsible for full control of that pin; this includes both the digital and analog functionality.

The pin owner's GPIO registers control all aspects of the I/O pad, including the ANSELx, CNPUx, CNPDx, ODCx registers and slew rate control.

Note: Both the Master and Slave cores can monitor a pin as an input, regardless of pin ownership. Pin ownership is valid only for the output functionality of the port.

3.3.5 NVM CONTROL REGISTERS

REGISTER 3-4: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0 ⁽	¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/C-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	_	RPDF	URERR
bit 15						·	bit 8
				R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
U-0	U-0	U-0	U-0	R/W-0(1) NVMOP3 ^(3,4)	R/W-0(*) NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	R/W-0(*) NVMOP0 ^(3,4)
	_	—	_	NVMOP3(3,1)	NVMOP2(0, 1)	NVMOP10, V	
bit 7							bit 0
Legend:		C = Clearab	le bit	SO = Settable	Only bit		
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unkr	nown
		· · · · · · (1)					
bit 15	WR: Write Co						
				or erase operati tion is complete		on is self-timed	and the bit is
				lete and inactive			
bit 14	WREN: Write	•	·				
	1 = Enables	Flash program	n/erase opera	tions			
			/erase operati				
bit 13	WRERR: Wri	te Sequence	Error Flag bit ⁽¹	1)			
				nce attempt, or te	ermination has c	occurred (bit is se	et automatically
		et attempt of the second se		pleted normally	1		
bit 12			le Control bit ⁽²		,		
		-		andby mode dur	ina Idle mode		
			r is active duri		3		
bit 11-10	Unimplemer	ted: Read as	· '0'				
bit 9	RPDF: Row I	Programming	Data Format b	bit			
				compressed forr incompressed f			
bit 8	URERR: Row	v Programmir	ig Data Underr	run Error bit			
	1 = Indicates 0 = No data	• •		n has been tern	ninated		
bit 7-4	Unimplemer	ted: Read as	· '0'				
Note 1:	These bits can on	lv be reset or	a POR				
2:	If this bit is set, th	-		avings (lidle), a	nd upon exiting	Idle mode, the	re is a delav
	(TVREG) before FI				spen enting		

- 3: All other combinations of NVMOP<3:0> are unimplemented.
- 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

3.3.6 ECC CONTROL REGISTERS

REGISTER 3-9: ECCCONL: ECC FAULT INJECTION CONFIGURATION REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	_	—	—	—	FLTINMJ
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

.

bit 0 FLTINJ: Fault Injection Sequence Enable bit

- 1 = Enabled
- 0 = Disabled

REGISTER 3-10: ECCCONH: ECC FAULT INJECTION CONFIGURATION REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLT2PTR<7:0>											
bit 15							bit 8				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	FLT1PTR<7:0>											
bit 7							bit 0					

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 FLT2PTR<7:0>: ECC Fault Injection Bit Pointer 2
1111111-00111000 = No Fault injection occurs
00110111 = Fault injection (bit inversion) occurs on bit 55 of ECC bit order
00000001 = Fault injection (bit inversion) occurs on bit 1 of ECC bit order
00000000 = Fault injection (bit inversion) occurs on bit 0 of ECC bit order
bit 7-0 FLT1PTR<7:0>: ECC Fault Injection Bit Pointer 1
1111111-00111000 = No Fault injection occurs
00110111 = Fault injection occurs on bit 55 of ECC bit order
00000001 = Fault injection occurs on bit 55 of ECC bit order
00000001 = Fault injection occurs on bit 1 of ECC bit order
00000001 = Fault injection occurs on bit 1 of ECC bit order
00000001 = Fault injection occurs on bit 1 of ECC bit order

3.5.3 INTERRUPT RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.5.3.1 Key Resources

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

3.5.4 INTERRUPT CONTROL AND STATUS REGISTERS

The dsPIC33CH128MP508 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

3.5.4.1 INTCON1 through INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

3.5.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

3.5.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

3.5.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

3.5.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 3-23. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

3.5.4.6 Status/Control Registers

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 3-18 through Register 3-22 in the following pages.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—			
bit 7							bit 0			
Legend:	1.11		1.11			(0)				
R = Readable		W = Writable		•	ented bit, read					
-n = Value at F	VOR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown			
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit							
2.1.10		nesting is disa								
	•	nesting is ena								
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	-lag bit						
			overflow of Ac							
h# 40	-		-	of Accumulator A	A					
bit 13			Overflow Trap I	•						
			overflow of Ac	f Accumulator B	3					
bit 12	-		-	Overflow Trap F						
			•	erflow of Accum	•					
				c overflow of Ac						
bit 11			-	Overflow Trap F	-					
				erflow of Accum						
bit 10	-			c overflow of Ac	cumulator B					
bit 10		erflow of Accur	erflow Trap En							
	1 = Trap over 0 = Trap is d									
bit 9	OVBTE: Acc	cumulator B O	verflow Trap En	able bit						
	1 = Trap overflow of Accumulator B									
	0 = Trap is d									
bit 8			flow Trap Enal							
			low of Accumu	lator A or B is ei	nabled					
bit 7	0 = Trap is d		lator Error Stat	us hit						
				alid accumulator	shift					
			•	invalid accumul						
		-	-							

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7				•			bit 0
Logond							

REGISTER 3-49: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legena:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	PCI11R<7:0>: Assign PWM Input 11 (PCI11) to the Corresponding RPn Pin bits
	See Table 3-30.
bit 7-0	PCI10R<7:0>: Assign PWM Input 10 (PCI10) to the Corresponding RPn Pin bits
	See Table 3-30.

REGISTER 3-50: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (QEIB1) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (QEIA1) to the Corresponding RPn Pin bits See Table 3-30.

3.8 Controller Area Network (CAN FD) Module (Master Only)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CAN Flexible Data-Rate (FD) Protocol Module" (DS70005340 in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Only the Master core has a CAN FD module.

Table 3-42 shows an overview of the CAN FD module.

	TABLE 3-42 :	CAN FD MODULE OVERVIEW
--	---------------------	------------------------

	Number of CAN Modules	ldentical (Modules)
Master Core	1	NA
Slave Core	None	NA

3.8.1 FEATURES

The CAN FD module has the following features:

General

- Nominal (Arbitration) Bit Rate up to 1 Mbps
- Data Bit Rate up to 8 Mbps
- CAN FD Controller modes:
 - Mixed CAN 2.0B and CAN FD mode
 - CAN 2.0B mode
- Conforms to ISO11898-1:2015

Message FIFOs

- Seven FIFOs, Configurable as Transmit or Receive FIFOs
- One Transmit Queue (TXQ)
- Transmit Event FIFO (TEF) with 32-Bit Timestamp

Message Transmission

- Message Transmission Prioritization:
 - Based on priority bit field, and/or
 - Message with lowest ID gets transmitted first using the TXQ
- Programmable Automatic Retransmission Attempts: Unlimited, Three Attempts or Disabled

Message Reception

- 16 Flexible Filter and Mask Objects.
- · Each Object can be Configured to Filter either:
 - Standard ID + first 18 data bits or
- Extended ID
- 32-Bit Timestamp.
- The CAN FD Bit Stream Processor (BSP) Implements the Medium Access Control of the CAN FD Protocol Described in ISO11898-1:2015. It serializes and deserializes the bit stream, encodes and decodes the CAN FD frames, manages the medium access, Acknowledges frames, and detects and signals errors.
- The TX Handler Prioritizes the Messages that are Requested for Transmission by the Transmit FIFOs. It uses the RAM interface to fetch the transmit data from RAM and provides it to the BSP for transmission.
- The BSP provides Received Messages to the RX Handler. The RX handler uses acceptance filters to filter out messages that shall be stored in the Receive FIFOs. It uses the RAM interface to store received data into RAM.
- Each FIFO can be Configured either as a Transmit or Receive FIFO. The FIFO control keeps track of the FIFO head and tail, and calculates the user address. In a TX FIFO, the user address points to the address in RAM where the data for the next transmit message shall be stored. In an RX FIFO, the user address points to the address in RAM where the data of the next receive message shall be read. The user notifies the FIFO that a message was written to or read from RAM by incrementing the head/tail of the FIFO.
- The Transmit Queue (TXQ) is a Special Transmit FIFO that Transmits the Messages based on the ID of the Messages Stored in the Queue.
- The Transmit Event FIFO (TEF) Stores the Message IDs of the Transmitted Messages.
- A Free-Running Time Base Counter is used to Timestamp Received Messages. Messages in the TEF can also be timestamped.
- The CAN FD Controller module Generates Interrupts when New Messages are Received or when Messages were Transmitted Successfully.

Figure 3-23 shows the CAN FD system block diagram.

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	\<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'			ad as '0'	
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			ı	

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-141: C1TEFUAH: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA<	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA⋖	<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			own	

bit 15-0 **TEFUA<31:16>:** Transmit Event FIFO User Address bits

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-142: C1TEFUAL: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER LOW⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **TEFUA<15:0>:** Transmit Event FIFO User Address bits A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	EXIDE	SID11	EID17	EID16	EID15	EID14	EID13	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EID12	EID11	EID10	EID9	EID8	EID7	EID6	EID5	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15	bit 15 Unimplemented: Read as '0'							
bit 14	EXIDE: Extended Identifier Enable bit							
	<u>If MIDE = 1:</u>							
				l Identifier addre				
	0 = Matches only messages with Standard Identifier addresses							

REGISTER 3-153: C1FLTOBJxH: CAN FILTER OBJECT REGISTER x HIGH (x = 0 TO 15)

bit 13	SID11: Standard Identifier Filter bit

bit 12-0	EID<17:5>: Extended Identifier Filter bits
	In DeviceNet [™] mode, these are the filter bits for the first two data bytes.

REGISTER 3-154: C1FLTOBJxL: CAN FILTER OBJECT REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EID4	EID3	EID2	EID1	EID0	SID10	SID9	SID8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-11 EID<4:0>: Extended Identifier Filter bits

In DeviceNet[™] mode, these are the filter bits for the first two data bytes.

bit 10-0 SID<10:0>: Standard Identifier Filter bits

bit 3-0	Step Command	OPTION<3:0>	Command Description
	PTGWHI(1)	0000	PTGI0 (see Table 3-46 for input assignments).
	or _{PTGWLO} (1)	•	•
	P.I.GMTO(.,	•	•
		•	•
		1111	PTGI15 (see Table 3-46 for input assignments).
	PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.
		•	•
		•	•
		•	•
		0111	Generate PTG Interrupt 7.
		1000	Reserved; do not use.
		•	•
		•	•
		•	•
		1111	Reserved; do not use.
	PTGTRIG	0000	PTGO0 (see Table 3-47 for output assignments).
		0001	PTGO1 (see Table 3-47 for output assignments).
		•	•
		•	•
		•	•
		1110	PTGO30 (see Table 3-47 for output assignments).
		1111	PTGO31 (see Table 3-47 for output assignments).

TABLE 3-45: PTG COMMAND OPTIONS

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

4.2.8 INTERFACING PROGRAM AND DATA MEMORY SPACES

The dsPIC33CH128MP508S1 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33CH128MP508S1 family devices provides two methods by which Program Space can be accessed during operation:

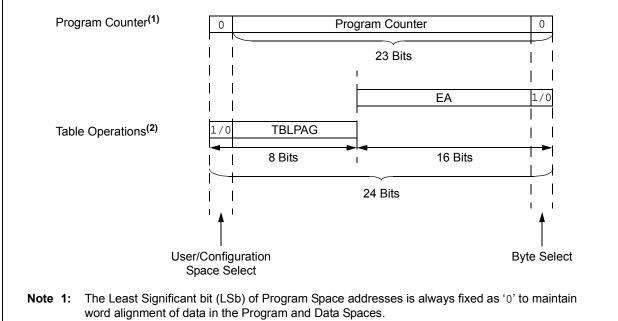

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. However, this method only provides visibility to the lower 16 bits in each location addressed.

TABLE 4-19: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Access Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0	PC<22:1> 0				
(Code Execution)			0xxx xxxx x	xxxx xxxx	xxxx xxx0		
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>		
(Byte/Word Read/Write)		0	xxx xxxx	xxx	x xxxx xxxx x	xxxx xxxx	

FIGURE 4-11: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

REGISTER 4-28: CNPUX: CHANGE NOTIFICATION PULL-UP ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPU	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPL	Jx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, reac	1 as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0

0 **CNPUx<15:0>:** Change Notification Pull-up Enable for PORTx bits

1 = The pull-up for PORTx[n] is enabled – takes precedence over pull-down selection

0 = The pull-up for PORTx[n] is disabled

REGISTER 4-29: CNPDx: CHANGE NOTIFICATION PULL-DOWN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPE)x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNP	Ox<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 CNPDx<15:0>: Change Notification Pull-Down Enable for PORTx bits

1 = The pull-down for PORTx[n] is enabled (if the pull-up for PORTx[n] is not enabled)

0 = The pull-down for PORTx[n] is disabled

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0
Lagandi							

REGISTER 4-45: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8PCI11R<7:0>: Assign PWM Input 11 (S1PCI11) to the Corresponding S1RPn Pin bits
See Table 4-27.bit 7-0PCI10R<7:0>: Assign PWM Input 10 (S1PCI10) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-46: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (S1QEIB1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (S1QEIA1) to the Corresponding S1RPn Pin bits See Table 4-27.

8.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

8.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

8.3 Peripheral Module Disable

The channels of the DMA Controller can be individually powered down using the Peripheral Module Disable (PMD) registers.

8.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 8-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 8-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 8-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For dsPIC33CH128MP508 devices, there are a total of 34 registers.

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 18-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	-	DS4<2:0>	-	_		DS3<2:0>	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_		DS2<2:0>		—		DS1<2:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable t	pit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	nted: Read as '0					
bit 14-12		Data Selection M	-	Selection bits (N	laster)		
		r SCCP3 auxilia r SCCP1 auxilia					
	101 = CLCIN		iy out				
	100 = Reser		(4)				
		r SPI1 Input (SE Comparator 2 o					
		r CLC2 output	ul				
		r PWM event					
	DS4<2:0>: [Data Selection M	UX 4 Signal S	Selection bits (S	lave)		
		SCCP3 auxiliary					
	110 = Slave 101 = Slave	SCCP1 auxiliary	/ out				
	100 = Reser						
		SPI1 Input (SDI					
		Comparator 2 of	ut				
	001 = Slave 000 = Slave						
bit 11		nted: Read as '0)'				
bit 10-8	-	Data Selection M		Selection bits (N	laster)		
		r SCCP4 Compa	-		,		
		r SCCP3 Compa	are Event Flag	g (CCP3IF)			
	101 = CLC4	out er UART1 RX out	nut correspor	nding to CLCx n	nodule		
		er SPI1 Output (S					
		Comparator 1 o	utput	U			
		r CLC1 output r CLCINC I/O pi	~				
				Coloction bits (S			
		Data Selection M SCCP4 Compar	-		lave)		
		SCCP3 Compar	•	· /			
	101 = Slave	CLC4 out		. ,			
		UART1 RX outp SPI1 Output (SI					
		Comparator 1 or			mouule		
	001 = Slave	CLC1 output	-				
	000 = Slave	CLCINC I/O pin					

Note 1: Valid only for the SPI with PPS selection.

TABLE 21-2: MASTER CONFIGURATION REGISTERS MAP

											1	1		1	1	1	
Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	—	AIVTDIS	_	_	_	CSS2	CSS1	CSS0	CWRP	GSS1	GSS0	GWRP		BSEN	BSS1	BSS0	BWRP
FBSLIM	_	— — — BSLIM<12:0>															
FSIGN	_	_۲ (2)	_	_	_	_	-		_	_	_	_	_	_	_	_	_
FOSCSEL	—		_	-	-		—	_		IESO	—	—		_	FNOSC2	FNOSC1	FNOSC0
FOSC	—		_	-	XTBST	XTCFG1	XTCFG0	_	r(1)	FCKSM1	FCKSM0	—		_	OSCIOFNC	POSCMD1	POSCMD0
FWDT	—	FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0	WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
FPOR	—		_	-	-		—	_			—	r(1)	r(1)	_	—	—	—
FICD	—		_	-	-		—	_		r(1)	—	JTAGEN		_	—	ICS1	ICS0
FDMTIVTL	—		DMTIVT<15:0>														
FDMTIVTH	—		DMTIVT<31:16>														
FDMTCNTL	—	DMTCNT<15:0>															
FDMTCNTH	—	DMTCNT<31:16>															
FDMT	—		_	-	-		—	_			—	—		_	—	—	DMTDIS
FDEVOPT	—		_	SPI2PIN	-		SMBEN	r(1)	r(1)	r(1)	—	—	ALTI2C2	ALTI2C1	r(1)	—	—
FALTREG	—		- CTXT4<2:0> - CTXT3<2:0> - CTXT2<2:0> - CTXT1<2:0>														
FMBXM	—		MBXM<15:0>														
FMBXHS1	—	MBXHSD3	MBXHSD2	MBXHSD1	MBXHSD0	MBXHSC3	MBXHSC2	MBXHSC1	MBXHSC0	MBXHSB3	MBXHSB2	MBXHSB1	MBXHSB0	MBXHSA3	MBXHSA2	MBXHSA1	MBXHSA0
FMBXHS2	—	MBXHSH3	MBXHSH2	MBXHSH1	MBXHSH0	MBXHSG3	MBXHSG2	MBXHSG1	MBXHSG0	MBXHSF3	MBXHSF2	MBXHSF1	MBXHSF0	MBXHSE3	MBXHSE2	MBXHSE1	MBXHSE0
FMBXHSEN	—	HS <h:a>EN</h:a>															
FCFGPRA0	—		_	-	-		—	_			—	—			CPRA<4:0>		
FCFGPRB0	—	CPRB<15:0>															
FCFGPRC0	—	CPRC<15:0>															
FCFGPRD0	—		CPRD<15:0>														
FCFGPRE0	—	CPRE<15:0>															

Legend: — = unimplemented bit, read as '1'; r = reserved bit.

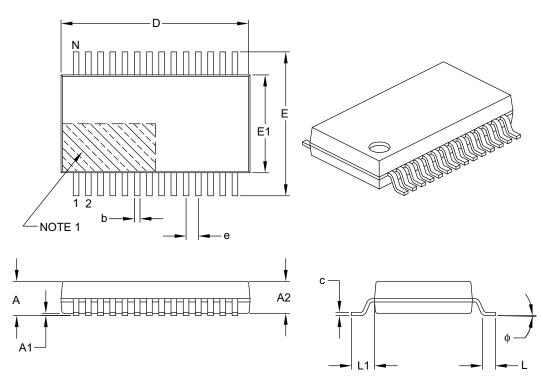
Note 1: Bit is reserved, maintain as '1'.

2: Bit is reserved, maintain as '0'.

TABLE 24-4: OPERATING VOLTAGE SPECIFICATIONS

Operating Conditions:3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Operati	ng Voltag	e							
DC10	Vdd	Supply Voltage	3.0		3.6	V			
DC12	Vdr	RAM Retention Voltage ⁽²⁾	1.8	_		V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_		V/ms	0V-3V in 3 ms		
BO10	VBOR	BOR Event on VDD Transition High-to-Low ⁽³⁾	2.68	2.84	2.99	V			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance.


2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

3: Parameters are characterized but not tested.

25.2 Package Details

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	MILLIMETERS						
Dimer	MIN	NOM	MAX				
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B