

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5.5 INTERRUPT STATUS/CONTROL REGISTERS

REGISTER 3-16: SR: CPU STATUS REGISTER⁽¹⁾

OB SA					
	SB	OAB	SAB	DA	DC
					bit 8
W-0 ⁽³⁾ R/W-0	⁽³⁾ R-0	R/W-0	R/W-0	R/W-0	R/W-0
² L1 ⁽²⁾ IPL0 ⁽²	2) RA	N	OV	Z	С
		ż	·		bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)

- 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

REGISTER 3-17: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 3-27: PIN	AND	ANSE	ELX A	VAIL	ABILI	TY										
Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
						POR	TA									
dsPIC33XXXMP508/208	—	—	—	—	—	—	—	—	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206		_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205		—				—		—			_	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	—			_	—	_		_	_		Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	_	—			—	—	_		_	_		Х	Х	Х	Х	Х
ANSELA		—			—	—	—	_			—	Х	Х	Х	Х	Х
PORTB																
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB		—	—	—	—	Х	Х	Х	_	_	—	Х	Х	Х	Х	Х
	-	-				POR	тс	-	-	-			-	-	-	
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	_	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
ANSELC	—	—	—	—	—	—	—	—	Х			—	Х	Х	Х	Х
	-	-				POR	TD	-	-	-			-	-	-	
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	—	—	Х	—	—	Х	—	Х	—	—	—	—	—	—	Х	—
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP502/202	_	—	—	—	—	—	—	_	—	—	_	—	—	—	—	—
ANSELD		—				Х	—	_				—	—	—	_	
	-				•	POR	TE	-	-				-	-	-	
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	—		_	_	_		—	—	_	_	_	—				—
dsPIC33XXXMP505/205	—	—		—	—	—	—	—	—	—		—	—	—	—	—
dsPIC33XXXMP503/203	_	—	—	—	—	—	—	—	—	—		—	—	—	—	—
dsPIC33XXXMP502/202		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

TABLE 3-27: PIN AND ANSELx AVAILABILITY

TABLE 3-28: 5V INPUT TOLERANT PORTS

PORTA		Ι		_	_	_	_	_	Ι		Ι	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0

Legend: Shaded pins are up to 5.5 VDC input tolerant.

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
REFCLKO	001110	RPn tied to Reference Clock Output
OCM1	001111	RPn tied to SCCP1 Output
OCM2	010000	RPn tied to SCCP2 Output
OCM3	010001	RPn tied to SCCP3 Output
OCM4	010010	RPn tied to SCCP4 Output
OCM5	010011	RPn tied to SCCP5 Output
OCM6	010100	RPn tied to SCCP6 Output
CAN1	010101	RPn tied to CAN1 Output
CMP1	010111	RPn tied to Comparator 1 Output
PWM4H	100010	RPn tied to PWM4H Output
PWM4L	100011	RPn tied to PWM4L Output
PWMEA	100100	RPn tied to PWM Event A Output
PWMEB	100101	RPn tied to PWM Event B Output
QEICMP	100110	RPn tied to QEI Comparator Output
CLC1OUT	101000	RPn tied to CLC1 Output
CLC2OUT	101001	RPn tied to CLC2 Output
OCM7	101010	RPn tied to SCCP7 Output
OCM8	101011	RPn tied to SCCP8 Output
PWMEC	101100	RPn tied to PWM Event C Output
PWMED	101101	RPn tied to PWM Event D Output
PTGTRG24	101110	PTG Trigger Output 24
PTGTRG25	101111	PTG Trigger Output 25
SENT1OUT	110000	RPn tied to SENT1 Output
SENT2OUT	110001	RPn tied to SENT2 Output
CLC3OUT	110010	RPn tied to CLC3 Output
CLC4OUT	110011	RPn tied to CLC4 Output
U1DTR	110100	Data Terminal Ready Output 1
U2DTR	110101	Data Terminal Ready Output 2

TABLE 3-33: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
CON	—	SIDL	BRSDIS	BUSY	WFT1	WFT0	WAKFIL ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL ⁽¹⁾	PXEDIS ⁽¹⁾	ISOCRCEN ⁽¹⁾	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0
bit 7				1			bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	CON: CAN E	nable bit					
	1 = CAN mod	ule is enabled ule is disabled					
bit 14	Unimplemen	ted: Read as '0'					
bit 13	SIDL: CAN S	top in Idle Contro	l bit				
		dule operation in stop module ope		mode			
bit 12		Rate Switching (E	,				
		Switching is disab Switching depend				ssage object	
bit 11		Nodule is Busy bi	t				
		module is active module is inactiv	e				
bit 10-9		electable Wake-ι	ip Filter Time	e bits			
	11 = T11FILTE 10 = T10FILTE 01 = T01FILTE 00 = T00FILTE	R R					
bit 8	WAKFIL: Ena	able CAN Bus Lin	e Wake-up F	ilter bit ⁽¹⁾			
		N bus line filter fo line filter is not us		·up			
bit 7	CLKSEL: Mo	dule Clock Sourc	e Select bit ⁽¹)			
		selected as the selected as the selected as the sol					
bit 6	PXEDIS: Prot	ocol Exception E	vent Detection	on Disabled bit	(1)		
	1 = Protocol E	eserved bit" follo Exception is treat col Exception is d	ed as a form	error		-	
bit 5		Enable ISO CRC				gotato	
	1 = Includes s	stuff bit count in C include stuff bit c	RC field and	l uses non-zer			all zeros
bit 4-0	DNCNT<4:0>	: DeviceNet™ Fi	lter Bit Numb	er bits			
		1 = Invalid select pares up to Data			s of data with E	ID)	
		pares up to Data s not compare da		with EID0			

REGISTER 3-103: C1CONL: CAN CONTROL REGISTER LOW

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	\<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknowr	ı

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

4.2.2 DATA ADDRESS SPACE (SLAVE)

The dsPIC33CH128MP508S1 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CH128MP508S1 family devices implement up to 4 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.2.1 Data Space Width

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2.2 Data Memory Organization and Alignment

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CH128MP508S1 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.2.3 SFR Space

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CH128MP508S1 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

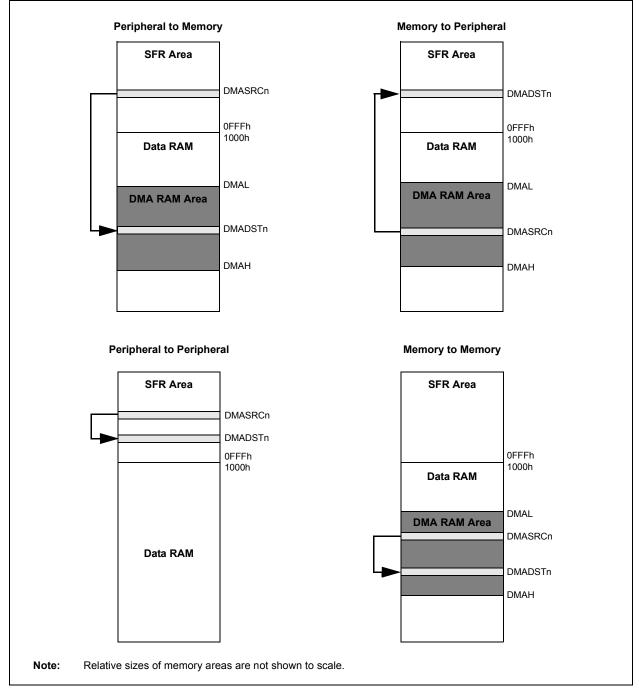
4.2.2.4 Near Data Space

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	S1INT1	RPINR0	INT1R<7:0>
External Interrupt 2	S1INT2	RPINR1	INT2R<7:0>
External Interrupt 3	S1INT3	RPINR1	INT3R<7:0>
Timer1 External Clock	S1T1CK	RPINR2	T1CKR<7:0>
SCCP Timer1	S1TCKI1	RPINR3	TCKI1R<7:0>
SCCP Capture 1	S1ICM1	RPINR3	ICM1R<7:0>
SCCP Timer2	S1TCKI2	RPINR4	TCKI2R<7:0>
SCCP Capture 2	S1ICM2	RPINR4	ICM2R<7:0>
SCCP Timer3	S1TCKI3	RPINR5	TCKI3R<7:0>
SCCP Capture 3	S1ICM3	RPINR5	ICM3R<7:0>
SCCP Timer4	S1TCKI4	RPINR6	TCKI4R<7:0>
SCCP Capture 4	S1ICM4	RPINR6	ICM4R<7:0>
Output Compare Fault A	S10CFA	RPINR11	OCFAR<7:0>
Output Compare Fault B	S10CFB	RPINR11	OCFBR<7:0>
PWM Input 8	S1PCI8	RPINR12	PCI8R<7:0>
PWM Input 9	S1PCI9	RPINR12	PCI9R<7:0>
PWM Input 10	S1PCI10	RPINR13	PCI10R<7:0>
PWM Input 11	S1PCI11	RPINR13	PCI11R<7:0>
QEI Input A	S1QEIA1	RPINR14	QEIA1R<7:0>
QEI Input B	S1QEIB1	RPINR14	QEIB1R<7:0>
QEI Index 1 Input	S1QEINDX1	RPINR15	QEINDX1R<7:0>
QEI Home 1 Input	S1QEIHOM1	RPINR15	QEIHOM1R<7:0>
UART1 Receive	S1U1RX	RPINR18	U1RXR<7:0>
UART1 Data-Set-Ready	S1U1DSR	RPINR18	U1DSRR<7:0>
SPI1 Data Input	S1SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	S1SCK1	RPINR20	SCK1R<7:0>
SPI1 Slave Select	S1SS1	RPINR21	SS1R<7:0>
Reference Clock Input	S1REFOI	RPINR21	REFOIR<7:0>
UART1 Clear-to-Send	S1U1CTS	RPINR23	U1CTSR<7:0>
PWM Input 17	S1PCI17	RPINR37	PCI17R<7:0>
PWM Input 18	S1PCI18	RPINR38	PCI18R<7:0>
PWM Input 12	S1PCI12	RPINR42	PCI12R<7:0>
PWM Input 13	S1PCI13	RPINR42	PCI13R<7:0>
PWM Input 14	S1PCI14	RPINR43	PCI14R<7:0>
PWM Input 15	S1PCI15	RPINR43	PCI15R<7:0>
PWM Input 16	S1PCI16	RPINR44	PCI16R<7:0>
CLC Input A	S1CLCINA	RPINR45	CLCINAR<7:0>
CLC Input B	S1CLCINB	RPINR46	CLCINBR<7:0>
CLC Input C	S1CLCINC	RPINR46	CLCINCR<7:0>
CLC Input D	S1CLCIND	RPINR47	CLCINDR<7:0>
ADC External Trigger Input (ADTRIG31)	S1ADCTRG	RPINR47	ADCTRGR<7:0>

TABLE 4-28: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.


	REGISTER 4-89:	ADCON4L: ADC CONTROL REGISTER 4 LOW
--	----------------	-------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 Reserved: Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

FIGURE 8-2: TYPES OF DMA DATA TRANSFERS

REGISTER 9-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾ (CONTINUED)

bit 2-0 EVTyPGS<2:0>: PWM Event Source Selection bits⁽²⁾

- 111 = PG8 110 = PG7 101 = PG6 100 = PG5 011 = PG4 010 = PG3 001 = PG2 000 = PG1
- **Note 1:** The event signal is stretched using the peripheral clock because different PGs may be operating from different clock sources. The leading edge of the event pulse is produced in the clock domain of the PWM Generator. The trailing edge of the stretched event pulse is produced in the peripheral clock domain.
 - 2: No event will be produced if the selected PWM Generator is not present.
 - 3: This is the PWM Generator output signal prior to output mode logic and any output override logic.
 - 4: This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
 - **5:** 'y' denotes a common instance (A-F).

REGISTER 9-18: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S)

	<u> </u>			, ,	/			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
BPEN	BPSEL2 ⁽¹⁾	BPSEL1 ⁽¹⁾	BPSEL0 ⁽¹⁾	—	ACP2	ACP1	ACP0	
bit 15	·						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SWPCI	SWPCIM1	SWPCIM0	LATMOD	TQPS	TQSS2	TQSS1	TQSS0	
bit 7							bit 0	
-								
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read a	as '0'		
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15 bit 14-12	 1 = PCI function is enabled and local PCI logic is bypassed; PWM Generator will be controlled by PCI function in the PWM Generator selected by the BPSEL<2:0> bits 0 = PCI function is not bypassed 							
bit 11		nted: Read as			I logic when BPE			
bit 10-8	-			tion bits				
	<pre>it 10-8 ACP<2:0>: PCI Acceptance Criteria Selection bits 111 = Reserved 110 = Reserved 101 = Latched any edge 100 = Latched rising edge 011 = Latched 010 = Any edge 001 = Rising edge 001 = Rising edge 000 = Level-sensitive</pre>							
bit 7	SWPCI: Soft	ware PCI Con	trol bit					
					<1:0> control bits <1:0> control bits			
bit 6-5	SWPCIM<1:0>: Software PCI Control Mode bits 11 = Reserved 10 = SWPCI bit is assigned to termination qualifier logic 01 = SWPCI bit is assigned to acceptance qualifier logic 00 = SWPCI bit is assigned to PCI acceptance logic							
bit 4	LATMOD: PO	CI SR Latch M	ode bit					
			inant in Latcheo ant in Latched A					
Note 1:	Selects '0' if se	elected PWM (Generator is not	present.				

Note 1: Selects '0' if selected PWM Generator is not present.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N		
bit 7		00201	CODON	CODET	CODEN	00011	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	e bit					
		rce 4 signal is e							
bit 14		rce 4 signal is o							
DIL 14		e 4 Data Source rce 4 inverted s	-						
		rce 4 inverted s							
bit 13	G4D3T: Gate	4 Data Source	3 True Enable	e bit					
		rce 3 signal is o rce 3 signal is o							
bit 12		4 Data Source							
	1 = Data Sou	rce 3 inverted s rce 3 inverted s	signal is enable	ed for Gate 4					
bit 11		4 Data Source	•						
		rce 2 signal is e rce 2 signal is e							
bit 10	G4D2N: Gate	4 Data Source	e 2 Negated Er	nable bit					
		rce 2 inverted s							
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	e bit					
		rce 1 signal is o rce 1 signal is o							
bit 8		4 Data Source							
	1 = Data Sou	rce 1 inverted s	signal is enable	ed for Gate 4					
bit 7		3 Data Source	•						
		rce 4 signal is e rce 4 signal is e							
bit 6	G3D4N: Gate 3 Data Source 4 Negated Enable bit								
		rce 4 inverted s rce 4 inverted s							
bit 5		3 Data Source	-						
		rce 3 signal is e rce 3 signal is e							
bit 4		3 Data Source							
		rce 3 inverted s	-						

REGISTER 18-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	_	—	—	—	—	—	—
bit 23							bit 16
RP/0-1	U-1	R/PO-1	U-1	U-1	U-1	U-1	U-1
S1NOBTSWP	—	S1ISOLAT	_	—	—	—	—
bit 15							bit 8
r-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
—	_	—	—	_	—	S1ICS1	S1ICS0
bit 7							bit 0
Legend:	Legend: PO = Program Once bit r = Reserved bit						
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 23-16	Unimplemented: Read as '1'
bit 15	S1NOBTSWP: BOOTSWP Instruction Disable bit
	1 = BOOTSWP instruction is disabled 0 = BOOTSWP instruction is enabled
bit 14	Unimplemented: Read as '1'
bit 13	S1ISOLAT: Slave Core Isolation bit
	 1 = The Slave can operate (in Debug mode), even if the SLVEN bit in the MSI is zero 0 = The Slave can only operate if the SLVEN bit in the MSI is set
bit 12-8	Unimplemented: Read as '1'
bit 7	Reserved: Maintain as '1'
bit 6-2	Unimplemented: Read as '1'
bit 1-0	S1ICS<1:0>: ICD Pin Placement Select bits
	11 = Slave ICD pins are S1PGC1/S1PGD1/ <u>S1MCLR1</u> 10 = Slave ICD pins are S1PGC2/S1PGD2/ <u>S1MCLR2</u> 01 = Slave I <u>CD pins ar</u> e S1PGC3/S1PGD3/S1MCLR3 00 = None (S1MCLR1 pin is released and can be used as a regular I/O)

DEVID<7:0>	Device Name	Core					
Devices with CAN FD							
0x40	dsPIC33CH64MP502	Master					
0xC0	dsPIC33CH64MP502S1	Slave					
0x50	dsPIC33CH128MP502	Master					
0xD0	dsPIC33CH128MP502S1	Slave					
0x41	dsPIC33CH64MP503	Master					
0xC1	dsPIC33CH64MP503S1	Slave					
0x51	dsPIC33CH128MP503	Master					
0xD1	dsPIC33CH128MP503S1	Slave					
0x42	dsPIC33CH64MP505	Master					
0xC2	dsPIC33CH64MP505S1	Slave					
0x52	dsPIC33CH128MP505	Master					
0xD2	dsPIC33CH128MP505S1	Slave					
0x43	dsPIC33CH64MP506	Master					
0xC3	dsPIC33CH64MP506S1	Slave					
0x53	dsPIC33CH128MP506	Master					
0xD3	dsPIC33CH128MP506S1	Slave					
0x44	dsPIC33CH64MP508	Master					
0xC4	dsPIC33CH64MP508S1	Slave					
0x54	dsPIC33CH128MP508	Master					
0xD4	dsPIC33CH128MP508S1	Slave					

TABLE 21-5: DEVICE VARIANTS

REGISTER 21-37: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
TRAPR	IOPUWR	_	_	_	_	СМ	VREGS				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR				
bit 7 bit 0											
F											
Legend:											
R = Readab		W = Writable	bit	•	nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
hit 1E		Deast Flag bit									
bit 15		Reset Flag bit onflict Reset hat									
		onflict Reset ha		t							
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized V	V Register Acce	ess Reset Flag	bit					
	-	•	on, an illegal a	address mode c	or Uninitialized	W register used	d as an Address				
		aused a Reset	initialized W/r	egister Reset h	as not occurro	d					
bit 13-10		ited: Read as '		egister Reset fi		u					
bit 9	-	ation Mismatch									
bit 5	•		•	occurred							
	•	 1 = A Configuration Mismatch Reset has occurred 0 = A Configuration Mismatch Reset has not occurred 									
bit 8	VREGS: Volta	age Regulator	Standby Durin	g Sleep bit							
		egulator is activ									
h:+ 7	-			ode during Slee	ер						
bit 7		nal Reset (MCL Clear (pin) Res	,	ed							
		Clear (pin) Res									
bit 6		re RESET (instr									
		instruction has									
		instruction has		cuted							
bit 5	-	ted: Read as '									
bit 4		hdog Timer Tin									
		e-out has occur e-out has not o									
bit 3		e from Sleep Fl									
		as in Sleep mo	-								
	0 = Device wa	as not in Sleep	mode								
bit 2		rom Idle Flag b	it								
		as in Idle mode as not in Idle m	ode								
bit 1		out Reset Flag									
		it Reset has oc									
		it Reset has no									
Noto 1: A	Il of the Reset of	(1							

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

23.12 Third-Party Development Tools

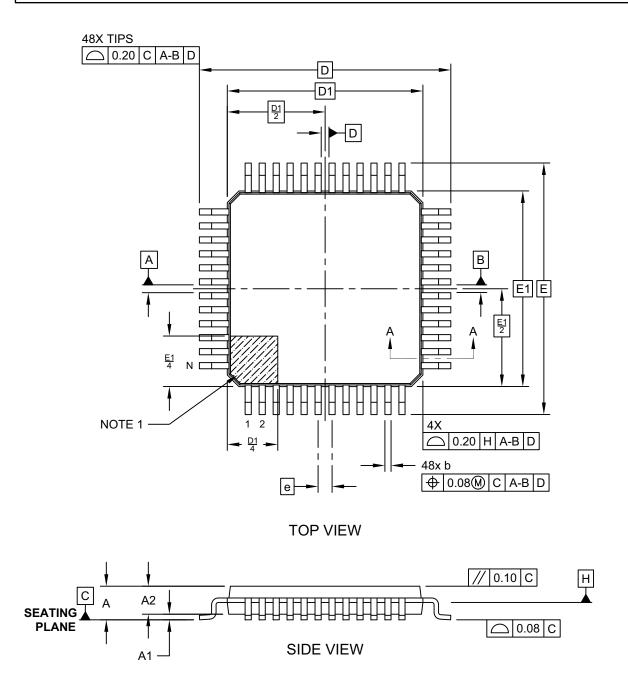
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 24-46: DACx MODULE SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Comments	
DA02	CVRES	Resolution		12		bits		
DA03	INL	Integral Nonlinearity Error	-38	—	0	LSB		
DA04	DNL	Differential Nonlinearity Error	-5	—	5	LSB		
DA05	EOFF	Offset Error	-3.5	_	21.5	LSB	Internal node at comparator input	
DA06	EG	Gain Error	0	—	41	%	Internal node at comparator input	
DA07	TSET	Settling Time	—	750	—	ns	Output with 2% of desired output voltage with a 5-95% or 95-5% step	
DA08	Vout	Voltage Output Range	0.165	_	3.135	V	VDD = 3.3V	

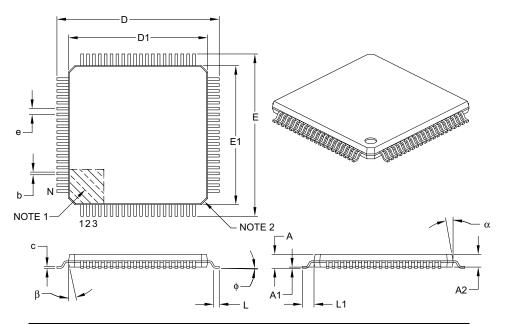
Note 1: Parameters are for design guidance only and are not tested in manufacturing.


TABLE 24-47: DACx OUTPUT (DACOUT PIN) SPECIFICATIONS

Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended											
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments				
DA11	RLOAD	Resistive Output Load Impedance	10K	—		Ohm					
DA11a	CLOAD	Output Load Capacitance	—	—	30	pF	Including output pin capacitance				
DA12	Ιουτ	Output Current Drive Strength	_	3	_	mA	Sink and source				
DA13	INL	Integral Nonlinearity Error	-50	—	0	LSB	Includes INL of DACx module (DA03)				
DA14	DNL	Differential Nonlinearity Error	-5	—	5	LSB	Includes DNL of DACx module (DA04)				
DA30	EOFF	Offset Error	-150	—	0	LSB	Includes offset error of DACx module (DA05)				
DA31	EG	Gain Error	-146	—	0	LSB	Includes gain error of DACx module (DA06)				

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX			
Number of Leads	N	80					
Lead Pitch	е	0.50 BSC					
Overall Height	А	-	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	—	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	ф	0°	3.5°	7°			
Overall Width	E	14.00 BSC					
Overall Length	D	14.00 BSC					
Molded Package Width	E1	12.00 BSC					
Molded Package Length	D1	12.00 BSC					
Lead Thickness	С	0.09	_	0.20			
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B