

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit Dual-Core                                                                 |
| Speed                      | 180MHz, 200MHz                                                                   |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT               |
| Number of I/O              | 69                                                                               |
| Program Memory Size        | 152KB (152K x 8)                                                                 |
| Program Memory Type        | FLASH, PRAM                                                                      |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 20K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 34x12b; D/A 4x12b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 80-TQFP                                                                          |
| Supplier Device Package    | 80-TQFP (12x12)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp208-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Pin Diagrams (Continued)**



#### TABLE 5: 28-PIN UQFN

| Pin # | Master Core                    | Slave Core                                                              |
|-------|--------------------------------|-------------------------------------------------------------------------|
| 1     | RP46/PWM1H/RB14                | S1RP46/S1PWM1H/S1RB14                                                   |
| 2     | RP47/PWM1L/RB15                | S1RP47/S1PWM6H/S1PWM1L/S1RB15                                           |
| 3     | MCLR                           | _                                                                       |
| 4     | AN0/CMP1A/RA0                  | S1RA0                                                                   |
| 5     | AN1/RA1                        | S1AN15/S1RA1                                                            |
| 6     | AN2/RA2                        | S1AN16/S1RA2                                                            |
| 7     | AN3/IBIAS0/RA3                 | S1AN0/S1CMP1A/S1PGA1P1/S1RA3                                            |
| 8     | AN4/IBIAS1/RA4                 | S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4                           |
| 9     | AVDD                           | AVDD                                                                    |
| 10    | AVss                           | AVss                                                                    |
| 11    | VDD                            | VDD                                                                     |
| 12    | Vss                            | Vss                                                                     |
| 13    | OSCI/CLKI/AN5/RP32/RB0         | S1AN5/ <b>S1RP32</b> /S1RB0                                             |
| 14    | OSCO/CLKO/AN6/IBIAS2/RP33/RB1  | S1AN4/ <b>S1RP33</b> /S1RB1                                             |
| 15    | DACOUT/AN7/CMP1D/RP34/INT0/RB2 | S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/S1RP34/S1INT0/S1RB2 |
| 16    | PGD2/AN8/RP35/RB3              | S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/S1RP35/S1RB3                             |
| 17    | PGC2/ <b>RP36</b> /RB4         | S1PGC2/S1AN9/S1RP36/S1PWM5L/S1RB4                                       |
| 18    | PGD3/RP37/SDA2/RB5             | S1PGD3/ <b>S1RP37</b> /S1RB5                                            |
| 19    | PGC3/RP38/SCL2/RB6             | S1PGC3/ <b>S1RP38</b> /S1RB6                                            |
| 20    | TDO/AN9/ <b>RP39</b> /RB7      | S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7                                      |
| 21    | PGD1/AN10/RP40/SCL1/RB8        | S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8                                        |
| 22    | PGC1/AN11/RP41/SDA1/RB9        | S1PGC1/S1RP41/S1SDA1/S1RB9                                              |
| 23    | Vss                            | Vss                                                                     |
| 24    | VDD                            | VDD                                                                     |
| 25    | TMS/RP42/PWM3H/RB10            | S1RP42/S1PWM3H/S1RB10                                                   |
| 26    | TCK/RP43/PWM3L/RB11            | S1RP43/S1PWM8H/S1PWM3L/S1RB11                                           |
| 27    | TDI/ <b>RP44</b> /PWM2H/RB12   | S1RP44/S1PWM2H/S1RB12                                                   |
| 28    | RP45/PWM2L/RB13                | S1RP45/S1PWM7H/S1PWM2L/S1RB13                                           |

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

# dsPIC33CH128MP508 FAMILY

![](_page_2_Figure_1.jpeg)

### REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

| bit 2   | SFA: Stack Frame Active Status bit                                                                                                                                                        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG</li> <li>0 = Stack frame is not active; W14 and W15 address the base Data Space</li> </ul> |
| bit 1   | RND: Rounding Mode Select bit                                                                                                                                                             |
|         | <ul> <li>1 = Biased (conventional) rounding is enabled</li> <li>0 = Unbiased (convergent) rounding is enabled</li> </ul>                                                                  |
| bit 0   | IF: Integer or Fractional Multiplier Mode Select bit                                                                                                                                      |
|         | <ul> <li>1 = Integer mode is enabled for DSP multiply</li> <li>0 = Fractional mode is enabled for DSP multiply</li> </ul>                                                                 |
| Note 1: | This bit is always read as '0'.                                                                                                                                                           |

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

## REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | R-0    | R-0    | R-0    |
|--------|-----|-----|-----|-----|--------|--------|--------|
| —      | —   | —   | —   | —   | CCTXI2 | CCTXI1 | CCTXI0 |
| bit 15 |     |     |     |     |        |        | bit 8  |

| U-0   | U-0 | U-0 | U-0 | U-0 | R-0    | R-0    | R-0    |
|-------|-----|-----|-----|-----|--------|--------|--------|
| —     | —   | —   | —   | _   | MCTXI2 | MCTXI1 | MCTXI0 |
| bit 7 |     |     |     |     |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-11 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                             |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 10-8  | CCTXI<2:0>: Current (W Register) Context Identifier bits                                                                                                                                                                                                                                                                                                                               |
|           | 111 = Reserved                                                                                                                                                                                                                                                                                                                                                                         |
|           | •                                                                                                                                                                                                                                                                                                                                                                                      |
|           | •                                                                                                                                                                                                                                                                                                                                                                                      |
|           | •<br>100 = Alternate Working Register Set 4 is currently in use<br>011 = Alternate Working Register Set 3 is currently in use<br>010 = Alternate Working Register Set 2 is currently in use<br>001 = Alternate Working Register Set 1 is currently in use<br>000 = Default register set is currently in use                                                                            |
| bit 7-3   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                             |
| bit 2-0   | MCTXI<2:0>: Manual (W Register) Context Identifier bits                                                                                                                                                                                                                                                                                                                                |
|           | 111 = Reserved                                                                                                                                                                                                                                                                                                                                                                         |
|           | •                                                                                                                                                                                                                                                                                                                                                                                      |
|           | •                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 100 = Alternate Working Register Set 4 was most recently manually selected<br>011 = Alternate Working Register Set 3 was most recently manually selected<br>010 = Alternate Working Register Set 2 was most recently manually selected<br>001 = Alternate Working Register Set 1 was most recently manually selected<br>000 = Default register set was most recently manually selected |
|           |                                                                                                                                                                                                                                                                                                                                                                                        |

#### 3.2.9.1 Data Access from Program Memory Using Table Instructions

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)
  - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 3.3 "Master Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

![](_page_4_Figure_13.jpeg)

# FIGURE 3-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

# REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

| bit 6 | DIV0ERR: Divide-by-Zero Error Status bit               |
|-------|--------------------------------------------------------|
|       | 1 = Math error trap was caused by a divide-by-zero     |
|       | 0 = Math error trap was not caused by a divide-by-zero |
| bit 5 | DMACERR: DMA Controller Trap Status bit                |
|       | 1 = DMAC error trap has occurred                       |
|       | 0 = DMAC error trap has not occurred                   |
| bit 4 | MATHERR: Math Error Status bit                         |
|       | 1 = Math error trap has occurred                       |
|       | 0 = Math error trap has not occurred                   |
| bit 3 | ADDRERR: Address Error Trap Status bit                 |
|       | 1 = Address error trap has occurred                    |
|       | 0 = Address error trap has not occurred                |
| bit 2 | STKERR: Stack Error Trap Status bit                    |
|       | 1 = Stack error trap has occurred                      |
|       | 0 = Stack error trap has not occurred                  |
| bit 1 | OSCFAIL: Oscillator Failure Trap Status bit            |
|       | 1 = Oscillator failure trap has occurred               |
|       | 0 = Oscillator failure trap has not occurred           |
| bit 0 | Unimplemented: Read as '0'                             |

| U-0                | U-0 | U-0              | U-0 | U-0                                | U-0 | U-0                | U-0   |
|--------------------|-----|------------------|-----|------------------------------------|-----|--------------------|-------|
| —                  | —   | —                | _   | —                                  | —   | —                  | _     |
| bit 15             | -   |                  |     |                                    |     |                    | bit 8 |
|                    |     |                  |     |                                    |     |                    |       |
| U-0                | U-0 | U-0              | U-0 | U-0                                | U-0 | R/W-0              | R/W-0 |
| —                  | —   | —                | —   | —                                  | —   | ECCDBE             | SGHT  |
| bit 7              |     |                  |     |                                    |     |                    | bit 0 |
|                    |     |                  |     |                                    |     |                    |       |
| Legend:            |     |                  |     |                                    |     |                    |       |
| R = Readable bit W |     | W = Writable bit |     | U = Unimplemented bit, read as '0' |     | as '0'             |       |
| -n = Value at POR  |     | '1' = Bit is set |     | '0' = Bit is cleared               |     | x = Bit is unknown |       |

### REGISTER 3-21: INTCON4: INTERRUPT CONTROL REGISTER 4

bit 15-2 Unimplemented: Read as '0'

bit 1 ECCDBE: ECC Double-Bit Error Trap bit 1 = ECC double-bit error trap has occurred 0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

## 3.6.11 VIRTUAL CONNECTIONS

The dsPIC33CH128MP508 devices support six Master virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

#### 3.6.12 SLAVE PPS INPUTS TO MASTER CORE PPS

The dsPIC33CH128MP508 Slave core subsystem PPS has connections to the Master core subsystem virtual PPS (RPV5-RPV0) output blocks. These inputs are mapped as S1RP175, S1RP174, S1RP173, S1RP172, S1RP171 and S1RP170.

The RPn inputs, RP1-RP13, are connected to internal signals from both the Master and Slave core subsystems. Additionally, the Master core virtual output PPS blocks (RPV5-RPV0) are connected to the Slave core PPS circuitry. There are virtual pins in PPS to share between Master and Slave:

- RP181 is for Master input (RPV5)
- RP180 is for Master input (RPV4)
- RP179 is for Master input (RPV3)
- RP178 is for Master input (RPV2)
- RP177 is for Master input (RPV1)
- RP176 is for Master input (RPV0)
- RP175 is for Slave input (S1RPV5)
- RP174 is for Slave input (S1RPV4)
- RP173 is for Slave input (S1RPV3)
- RP172 is for Slave input (S1RPV2)
- RP171 is for Slave input (S1RPV1)
- RP170 is for Slave input (S1RPV0)

The idea of the RPVn (Remappable Pin Virtual) is to interconnect between the Master and Slave without an I/O pin. For example, the Master UART receiver can be connected to the Slave UART transmit using RPVn and data communication can happen from Slave to Master without using any physical pin.

# TABLE 3-38: PORTE REGISTER SUMMARY

| ANSLE     -     -     -     -     -     -       TRISE     TRISE     TRISE     TRISE     -     -     -       PORTE     RE<15:0>     LATE     LATE<15:0>     -     -       LATE     ODCE     ODCE<     ODCE     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TRISE         TRISE<15:0>           PORTE         RE<15:0>           LATE         LATE           ODCE         ODCE<<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PORTE         RE<15:0>           LATE         LATE<15:0>           ODCE         ODCE<<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| LATE         LATE<15:0>           ODCE         ODCE<15:0>           CNIPUE         CNIPUE<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| ODCE         ODCE<15:0>           CNDUE         CNDUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| CNPOE CNPOE CNPOE SUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CNPDE CNPDE<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CNCONE         ON         -         -         CNSTYLE         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         < |  |
| CNEN0E CNEN0E<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CNSTATE CNSTATE<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CNEN1E CNEN1E<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CNFE CNFE<15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

dsPIC33CH128MP508 FAMILY

| -n = Value at POR |     | '1' = Bit is set |        | '0' = Bit is cle           | ared   | x = Bit is unkr | nown   |
|-------------------|-----|------------------|--------|----------------------------|--------|-----------------|--------|
| R = Readable bit  |     | W = Writable bit |        | U = Unimplemented bit, rea |        | ad as '0'       |        |
| Legend:           |     |                  |        |                            |        |                 |        |
|                   |     |                  |        |                            |        |                 |        |
| bit 7             |     |                  | •      |                            |        | •               | bit 0  |
| —                 | —   | RP40R5           | RP40R4 | RP40R3                     | RP40R2 | RP40R1          | RP40R0 |
| U-0               | U-0 | R/W-0            | R/W-0  | R/W-0                      | R/W-0  | R/W-0           | R/W-0  |
|                   |     |                  |        |                            |        |                 |        |
| bit 15            |     |                  |        | •                          |        | •               | bit 8  |
| —                 | —   | RP41R5           | RP41R4 | RP41R3                     | RP41R2 | RP41R1          | RP41R0 |
| U-0               | U-0 | R/W-0            | R/W-0  | R/W-0                      | R/W-0  | R/W-0           | R/W-0  |

#### REGISTER 3-72: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

| bit 15-14 | Unimplemented: Read as '0'                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13-8  | <b>RP41R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 3-33 for peripheral function numbers) |
| bit 7-6   | Unimplemented: Read as '0'                                                                                                               |
| hit E O   | <b>PD40P&lt;5:0</b> , Deripheral Output Eurotian in Assigned to PD40 Output Bin hits                                                     |

bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 3-33 for peripheral function numbers)

#### REGISTER 3-73: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

| U-0                                                                        | U-0 | R/W-0  | R/W-0  | R/W-0                              | R/W-0  | R/W-0  | R/W-0  |  |
|----------------------------------------------------------------------------|-----|--------|--------|------------------------------------|--------|--------|--------|--|
| —                                                                          | —   | RP43R5 | RP43R4 | RP43R3                             | RP43R2 | RP43R1 | RP43R0 |  |
| bit 15                                                                     |     | •      |        | ·                                  |        |        | bit 8  |  |
|                                                                            |     |        |        |                                    |        |        |        |  |
| U-0                                                                        | U-0 | R/W-0  | R/W-0  | R/W-0                              | R/W-0  | R/W-0  | R/W-0  |  |
| —                                                                          | —   | RP42R5 | RP42R4 | RP42R3                             | RP42R2 | RP42R1 | RP42R0 |  |
| bit 7                                                                      |     |        |        | ·                                  |        |        | bit 0  |  |
|                                                                            |     |        |        |                                    |        |        |        |  |
| Legend:                                                                    |     |        |        |                                    |        |        |        |  |
| R = Readable bit W = Writable bit                                          |     |        | bit    | U = Unimplemented bit, read as '0' |        |        |        |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |     |        |        |                                    |        | nown   |        |  |
| L                                                                          |     |        |        |                                    |        |        |        |  |

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 3-33 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 3-33 for peripheral function numbers)

# **REGISTER 3-110:** C1TBCH: CAN TIME BASE COUNTER REGISTER HIGH<sup>(1,2)</sup>

| R/W-0                                                         | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0          | R/W-0     | R/W-0 |
|---------------------------------------------------------------|-------|------------------|-------|--------------|----------------|-----------|-------|
|                                                               |       |                  | TBC<  | 31:24>       |                |           |       |
| bit 15                                                        |       |                  |       |              |                |           | bit 8 |
|                                                               |       |                  |       |              |                |           |       |
| R/W-0                                                         | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0          | R/W-0     | R/W-0 |
|                                                               |       |                  | TBC<  | 23:16>       |                |           |       |
| bit 7                                                         |       |                  |       |              |                |           | bit 0 |
|                                                               |       |                  |       |              |                |           |       |
| Legend:                                                       |       |                  |       |              |                |           |       |
| R = Readable                                                  | bit   | W = Writable bit |       | U = Unimpler | mented bit, re | ad as '0' |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = I |       | x = Bit is unk   | nown  |              |                |           |       |

bit 15-0 **TBC<31:16>** CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

**Note 1:** The Time Base Counter (TBC) will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

## **REGISTER 3-111: C1TBCL: CAN TIME BASE COUNTER REGISTER LOW**<sup>(1,2)</sup>

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|-----------------|-------|------------------|-------|------------------|-----------------|-----------------|-------|
|                 |       |                  | TBC   | <15:8>           |                 |                 |       |
| bit 15          |       |                  |       |                  |                 |                 | bit 8 |
|                 |       |                  |       |                  |                 |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|                 |       |                  | TBC   | <7:0>            |                 |                 |       |
| bit 7           |       |                  |       |                  |                 |                 | bit 0 |
|                 |       |                  |       |                  |                 |                 |       |
| Legend:         |       |                  |       |                  |                 |                 |       |
| R = Readable    | bit   | W = Writable bit |       | U = Unimpler     | nented bit, rea | ad as 'O'       |       |
| -n = Value at F | POR   | '1' = Bit is set |       | '0' = Bit is cle | ared            | x = Bit is unkr | nown  |

bit 15-0 TBC<15:0> CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

**Note 1:** The TBC will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

| U-0           | U-0                                                                                                                                                                                            | U-0                                                                                                                                                                                                                                                                       | R-0                                                                                                                                                                                                    | R-0                                                                                                                                                                  | R-0                                                                                                         | R-0                                                   | R-0                     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|
|               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      | FILHIT<4:0>                                                                                                 | >                                                     |                         |
| bit 15        |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       | bit 8                   |
|               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
| U-0           | R-1                                                                                                                                                                                            | R-0                                                                                                                                                                                                                                                                       | R-0                                                                                                                                                                                                    | R-0                                                                                                                                                                  | R-0                                                                                                         | R-0                                                   | R-0                     |
| —             |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        | ICODE<6:0>                                                                                                                                                           |                                                                                                             |                                                       |                         |
| bit 7         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       | bit 0                   |
| Logondy       |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
| R = Readable  | e hit                                                                                                                                                                                          | W = Writable bit                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        | II = I Inimpler                                                                                                                                                      | nented hit res                                                                                              | ad as 'N'                                             |                         |
| -n = Value at |                                                                                                                                                                                                | '1' = Bit is set                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        | 0' = Bit is cle                                                                                                                                                      | ared                                                                                                        | x = Bit is unkr                                       | nown                    |
|               | TOR                                                                                                                                                                                            |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |                                                                                                                                                                      | uicu                                                                                                        |                                                       | lowin                   |
| bit 15-13     | Unimplement                                                                                                                                                                                    | ted: Read as '0'                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
| bit 12-8      | FILHIT<4:0>:                                                                                                                                                                                   | Filter Hit Numbe                                                                                                                                                                                                                                                          | er bits                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
|               | 01111 = Filte<br>01110 = Filte                                                                                                                                                                 | r 15<br>r 14                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
|               | 00001 = Filte                                                                                                                                                                                  | r 1<br>r 0                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
| bit 7         | Unimplement                                                                                                                                                                                    | ted: Read as '0'                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
| bit 6-0       | ICODE<6:0>:                                                                                                                                                                                    | Interrupt Flag C                                                                                                                                                                                                                                                          | ode bits                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                             |                                                       |                         |
|               | 1001011-11<br>1001001 = T<br>1001000 = Ir<br>1000111 = C<br>1000110 = C<br>1000101 = R<br>1000100 = A<br>1000010 = R<br>1000010 = W<br>1000001 = E<br>1000000 = N<br>0001000-01<br>0000111 = F | 11111 = Reserv<br>ransmit attempt<br>ransmit event FI<br>walid message of<br>AN module mod<br>AN timer overflo<br>X/TX MAB over<br>aved to memory;<br>ddress error inter<br>vake-up interrupt<br>rror interrupt (CE<br>o interrupt<br>11111 = Reserv<br>IFO 7 interrupt ( | ed<br>interrupt (an<br>FO interrupt<br>occurred (IVI<br>e change oc<br>w (TBCIF/IE<br>flow/underflo<br>TX: Can't fo<br>rrupt (illegal<br>erflow interru<br>(WAKIF/W/<br>ERRIF/IE)<br>ed<br>IFIF7 or RF | y bit in C1TXAT<br>(any bit in C1T<br>MIF/IE)<br>courred (MODIF<br>)<br>bw (RX: Messa<br>eed TX MAB fas<br>FIFO address<br>upt (any bit in C<br>AKIE)<br>IF7 is set) | TIF is set)<br>EFSTA is set)<br>(IE)<br>ge received b<br>st enough to tr<br>presented to s<br>1RXOVIF is se | efore previous r<br>ansmit consiste<br>system)<br>et) | message was<br>nt data) |
|               | 0000001 = F<br>0000000 = F                                                                                                                                                                     | IFO 1 interrupt (<br>IFO 0 interrupt (                                                                                                                                                                                                                                    | TFIF1 or RF<br>TFIF0 is set                                                                                                                                                                            | IF1 is set)<br>)                                                                                                                                                     |                                                                                                             |                                                       |                         |

## REGISTER 3-115: C1VECL: CAN INTERRUPT CODE REGISTER LOW

#### **REGISTER 3-135:** C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7)

| U-0                 | U-0                                                          | U-0                  | R-0                                | R-0                    | R-0                    | R-0                    | R-0                    |
|---------------------|--------------------------------------------------------------|----------------------|------------------------------------|------------------------|------------------------|------------------------|------------------------|
| —                   | _                                                            |                      | FIFOCI4 <sup>(1)</sup>             | FIFOCI3 <sup>(1)</sup> | FIFOCI2 <sup>(1)</sup> | FIFOCI1 <sup>(1)</sup> | FIFOCI0 <sup>(1)</sup> |
| bit 15              |                                                              |                      |                                    |                        |                        |                        | bit 8                  |
|                     |                                                              |                      |                                    |                        |                        |                        |                        |
| R-0                 | R-0                                                          | R-0                  | HS/C-0                             | HS/C-0                 | R-0                    | R-0                    | R-0                    |
| TXABT <sup>(3</sup> | <sup>i)</sup> TXLARB <sup>(2)</sup>                          | TXERR <sup>(2)</sup> | TXATIF                             | RXOVIF                 | TFERFFIF               | TFHRFHIF               | TFNRFNIF               |
| bit 7               |                                                              |                      |                                    |                        |                        |                        | bit 0                  |
|                     |                                                              |                      |                                    |                        |                        |                        |                        |
| Legend:             |                                                              | HS = Hardware        | e Settable bit                     | C = Clearable          | e bit                  |                        |                        |
| R = Readal          | ble bit                                                      | W = Writable b       | it                                 | U = Unimpler           | mented bit, read       | d as '0'               |                        |
| -n = Value a        | at POR                                                       | '1' = Bit is set     |                                    | '0' = Bit is cle       | eared                  | x = Bit is unkr        | nown                   |
|                     |                                                              |                      |                                    |                        |                        |                        |                        |
| bit 15-13           | Unimplemen                                                   | ted: Read as '0      | ,                                  |                        |                        |                        |                        |
| bit 12-8            | FIFOCI<4:0>                                                  | : FIFO Message       | e Index bits <sup>(1)</sup>        |                        |                        |                        |                        |
|                     | $\frac{\text{TXEN} = 1 \text{ (FI)}}{\text{A read of this}}$ | FO configured a      | is a transmit b                    | uffer):                | that the FIFO          | uill pout attains      | t to transmit          |
|                     |                                                              | FO configured a      | un an index to                     | ule message            | a mat the FIFO         | will next attemp       | i lo transmit.         |
|                     | A read of this                                               | s register will re   | turn an index                      | to the messa           | age that the FIF       | O will use to          | save the next          |
|                     | message.                                                     |                      |                                    |                        | .ge                    |                        |                        |
| bit 7               | TXABT: Mess                                                  | sage Aborted St      | atus bit <sup>(3)</sup>            |                        |                        |                        |                        |
|                     | 1 = Message                                                  | was aborted          |                                    |                        |                        |                        |                        |
|                     | 0 = Message                                                  | completed succ       | essfully                           | (2)                    |                        |                        |                        |
| bit 6               | TXLARB: Me                                                   | ssage Lost Arbi      | tration Status                     | bit <sup>(2)</sup>     |                        |                        |                        |
|                     | 1 = Message                                                  | did not lose arb     | while being se<br>itration while b | nt<br>Deina sent       |                        |                        |                        |
| bit 5               | TXFRR: Error                                                 | r Detected Durin     | na Transmissio                     | on hit <sup>(2)</sup>  |                        |                        |                        |
| 5110                | 1 = A bus error                                              | or occurred whil     | e the message                      | e was being se         | ent                    |                        |                        |
|                     | 0 = A bus erro                                               | or did not occur     | while the mes                      | sage was beir          | ng sent                |                        |                        |
| bit 4               | TXATIF: Tran                                                 | ismit Attempts E     | xhausted Inte                      | rrupt Pending          | bit                    |                        |                        |
|                     | <u>TXEN = 1 (FI</u>                                          | FO configured a      | is a transmit b                    | uffer):                |                        |                        |                        |
|                     | 1 = Interrupt i                                              | s pending            |                                    |                        |                        |                        |                        |
|                     | 0 = Interrupt I                                              | FO configured a      | as a receive hi                    | (ffer):                |                        |                        |                        |
|                     | Unused, read                                                 | as '0'.              |                                    | <u></u>                |                        |                        |                        |
| bit 3               | RXOVIF: Rec                                                  | eive FIFO Over       | flow Interrupt                     | Flag bit               |                        |                        |                        |
|                     | <u>TXEN = 1 (FI</u>                                          | FO configured a      | <u>is a transmit b</u>             | uffer):                |                        |                        |                        |
|                     | Unused, read                                                 | <b>as</b> '0'.       |                                    |                        |                        |                        |                        |
|                     | $\frac{\text{TXEN} = 0 \text{ (FI)}}{1 - 0 \text{ (FI)}}$    | FO configured a      | as a receive bu                    | uffer):                |                        |                        |                        |
|                     | $\perp = OVERTIOW$<br>0 = No overflo                         | event nas occur      | curred                             |                        |                        |                        |                        |
|                     |                                                              |                      | Juliou                             |                        |                        |                        |                        |
| Note 1:             | FIFOCI < 4:0 > gives                                         | s a zero-indexed     | d value to the                     | message in th          | e FIFO. If the F       | IFO is four me         | ssages deep            |
| 2:                  | These bits are unc                                           | lated when a m       |                                    | etes (or aborts        | s) or when the F       | IFO is reset           |                        |
|                     |                                                              |                      |                                    |                        | ,                      |                        |                        |

**3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

# REGISTER 4-18: INTCON1: SLAVE INTERRUPT CONTROL REGISTER 1 (CONTINUED)

| bit 2 | STKERR: Stack Error Trap Status bit          |
|-------|----------------------------------------------|
|       | 1 = Stack error trap has occurred            |
|       | 0 = Stack error trap has not occurred        |
| bit 1 | OSCFAIL: Oscillator Failure Trap Status bit  |
|       | 1 = Oscillator failure trap has occurred     |
|       | 0 = Oscillator failure trap has not occurred |
| 1.1.0 | Hudina da un ta da Da a di a a (o)           |

bit 0 Unimplemented: Read as '0'

| HSC/R-0         | HSC/R-0                                                                                                       | U-0                              | r-0             | r-0               | r-0             | R/W-0           | R/W-0    |  |
|-----------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-------------------|-----------------|-----------------|----------|--|
| REFRDY          | REFERR                                                                                                        | —                                | r               | r                 | r               | SHRSAMC9        | SHRSAMC8 |  |
| bit 15          |                                                                                                               | ·                                |                 | ·                 |                 | •               | bit 8    |  |
|                 |                                                                                                               |                                  |                 |                   |                 |                 |          |  |
| R/W-0           | R/W-0                                                                                                         | R/W-0                            | R/W-0           | R/W-0             | R/W-0           | R/W-0           | R/W-0    |  |
| SHRSAMC7        | SHRSAMC6                                                                                                      | SHRSAMC5                         | SHRSAMC4        | SHRSAMC3          | SHRSAMC2        | SHRSAMC1        | SHRSAMC0 |  |
| bit 7           |                                                                                                               |                                  |                 |                   |                 |                 | bit 0    |  |
|                 |                                                                                                               |                                  |                 |                   |                 |                 |          |  |
| Legend:         |                                                                                                               | r = Reserved                     | bit             | U = Unimplem      | ented bit, read | as '0'          |          |  |
| R = Readable    | bit                                                                                                           | W = Writable I                   | oit             | HSC = Hardw       | are Settable/Cl | earable bit     |          |  |
| -n = Value at I | POR                                                                                                           | '1' = Bit is set                 |                 | '0' = Bit is clea | ared            | x = Bit is unkn | own      |  |
|                 |                                                                                                               |                                  |                 |                   |                 |                 |          |  |
| bit 15          | REFRDY: Bar                                                                                                   | nd Gap and Re                    | ference Voltage | e Ready Flag b    | bit             |                 |          |  |
|                 | 1 = Band gap                                                                                                  | is ready                         |                 |                   |                 |                 |          |  |
| L: + 4 4        | 0 = Band gap                                                                                                  | is not ready                     |                 | Farra a Flana hit |                 |                 |          |  |
| DIT 14          | REFERR: Bar                                                                                                   | nd Gap or Refe                   | rence voltage   | Error Flag bit    |                 |                 |          |  |
|                 | 1 = Band gap<br>0 = No band g                                                                                 | was removed a<br>jap error was d | etected         | noquie was ena    | abied (ADON =   | · 1)            |          |  |
| bit 13          | Unimplement                                                                                                   | ted: Read as 'd                  | )'              |                   |                 |                 |          |  |
| bit 12-10       | Reserved: Ma                                                                                                  | aintain as '0'                   |                 |                   |                 |                 |          |  |
| bit 9-0         | SHRSAMC<9                                                                                                     | :0>: Shared Al                   | DC Core Samp    | le Time Selecti   | on bits         |                 |          |  |
|                 | These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. |                                  |                 |                   |                 |                 |          |  |
|                 | 1111111111                                                                                                    | = 1025 TADCOF                    | RE              |                   |                 |                 |          |  |
|                 |                                                                                                               | = 3 TADCORE                      |                 |                   |                 |                 |          |  |
|                 | 0000000000                                                                                                    | = 2 TADCORE                      |                 |                   |                 |                 |          |  |
|                 |                                                                                                               |                                  |                 |                   |                 |                 |          |  |

## REGISTER 4-86: ADCON2H: ADC CONTROL REGISTER 2 HIGH

## REGISTER 4-113: PGAxCAL: PGAx CALIBRATION REGISTER

| U-0             | U-0   | U-0              | U-0   | U-0              | U-0             | U-0             | U-0   |
|-----------------|-------|------------------|-------|------------------|-----------------|-----------------|-------|
| —               | _     | —                | —     | —                | —               | _               | —     |
| bit 15          |       |                  |       |                  |                 |                 | bit 8 |
|                 |       |                  |       |                  |                 |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|                 |       |                  | PGAC  | AL<7:0>          |                 |                 |       |
| bit 7           |       |                  |       |                  |                 |                 | bit 0 |
|                 |       |                  |       |                  |                 |                 |       |
| Legend:         |       |                  |       |                  |                 |                 |       |
| R = Readable    | bit   | W = Writable     | bit   | U = Unimple      | mented bit, rea | d as '0'        |       |
| -n = Value at P | POR   | '1' = Bit is set |       | '0' = Bit is cle | eared           | x = Bit is unki | nown  |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **PGACAL<7:0>:** PGAx Offset Calibration bits

The calibration values for PGA1, PGA2 and PGA3 must be copied from Flash addresses, 0xF8001C, 0xF8001CE and 0xF800120, respectively, into these bits before the module is enabled. Refer to the calibration data address table (Table 21-4) in **Section 21.0** "**Special Features**" for more information.

## REGISTER 9-18: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S)

| R/W-0               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W-0                                                                             | R/W-0                                                  | U-0                                                | R/W-0                                                    | R/W-0                   | R/W-0 |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------------|-------|--|--|--|
| BPEN                | BPSEL2 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BPSEL1 <sup>(1)</sup>                                                             | BPSEL0 <sup>(1)</sup>                                  | _                                                  | ACP2                                                     | ACP1                    | ACP0  |  |  |  |
| bit 15              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                                        |                                                    |                                                          |                         | bit 8 |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                                        |                                                    |                                                          |                         |       |  |  |  |
| R/W-0               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W-0                                                                             | R/W-0                                                  | R/W-0                                              | R/W-0                                                    | R/W-0                   | R/W-0 |  |  |  |
| SWPCI               | SWPCIM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWPCIM0                                                                           | LATMOD                                                 | TQPS                                               | TQSS2                                                    | TQSS1                   | TQSS0 |  |  |  |
| bit 7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                                        |                                                    |                                                          |                         | bit 0 |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                                        |                                                    |                                                          |                         |       |  |  |  |
| Legend:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                                        |                                                    |                                                          |                         |       |  |  |  |
| R = Reada           | ble bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W = Writable                                                                      | bit                                                    | U = Unimplem                                       | nented bit, read a                                       | as '0'                  |       |  |  |  |
| -n = Value          | at POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '1' = Bit is set                                                                  |                                                        | '0' = Bit is clea                                  | ared                                                     | x = Bit is unkn         | own   |  |  |  |
| bit 15<br>bit 14-12 | <ul> <li>bit 15 BPEN: PCI Bypass Enable bit         <ol> <li>PCI function is enabled and local PCI logic is bypassed; PWM Generator will be controlled by PCI function in the PWM Generator selected by the BPSEL&lt;2:0&gt; bits                 0 = PCI function is not bypassed</li> </ol> </li> <li>bit 14-12 BPSEL&lt;2:0&gt;: PCI Bypass Source Selection bits<sup>(1)</sup> <ol> <li>PCI control is sourced from PWM Generator 8 PCI logic when BPEN = 1</li> <li>PCI control is sourced from PWM Generator 6 PCI logic when BPEN = 1</li> <li>PCI control is sourced from PWM Generator 6 PCI logic when BPEN = 1</li> <li>PCI control is sourced from PWM Generator 5 PCI logic when BPEN = 1</li> </ol> </li> </ul> |                                                                                   |                                                        |                                                    |                                                          |                         |       |  |  |  |
| bit 11              | 010 = PCI co<br>001 = PCI co<br>000 = PCI co<br>Unimplement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ontrol is source<br>ontrol is source<br>ontrol is source<br>nted: Read as         | ed from PWM G<br>ed from PWM G<br>ed from PWM G<br>'0' | Generator 3 PC<br>Generator 2 PC<br>Generator 1 PC | l logic when BPE<br>l logic when BPE<br>l logic when BPE | N = 1<br>N = 1<br>N = 1 |       |  |  |  |
| bit 10-8            | ACP<2:0>: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCI Acceptanc                                                                     | e Criteria Selec                                       | tion bits                                          |                                                          |                         |       |  |  |  |
|                     | 111 = Reser<br>110 = Reser<br>101 = Latche<br>100 = Latche<br>011 = Latche<br>010 = Any e<br>001 = Rising<br>000 = Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rved<br>rved<br>ed any edge<br>ed rising edge<br>ed<br>dge<br>g edge<br>sensitive |                                                        |                                                    |                                                          |                         |       |  |  |  |
| bit 7               | SWPCI: Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ware PCI Con                                                                      | trol bit                                               |                                                    |                                                          |                         |       |  |  |  |
|                     | 1 = Drives a<br>0 = Drives a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 '1' to PCI logi<br>1 '0' to PCI logi                                            | c assigned to b<br>c assigned to b                     | y the SWPCIM<br>y the SWPCIM                       | <1:0> control bits<br><1:0> control bits                 | S<br>S                  |       |  |  |  |
| bit 6-5             | <ul> <li>SWPCIM&lt;1:0&gt;: Software PCI Control Mode bits</li> <li>11 = Reserved</li> <li>10 = SWPCI bit is assigned to termination qualifier logic</li> <li>01 = SWPCI bit is assigned to acceptance qualifier logic</li> <li>00 = SWPCI bit is assigned to PCI acceptance logic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                                        |                                                    |                                                          |                         |       |  |  |  |
| DIL 4               | 1 = SR latch<br>0 = SR latch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is Reset-dom                                                                      | inant in Latched<br>ant in Latched A                   | d Acceptance n<br>Acceptance mod                   | nodes<br>des                                             |                         |       |  |  |  |
| Note 1              | Colocto (o) if or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lastad D\A/NA (                                                                   | Concreter is not                                       | nrocont                                            |                                                          |                         |       |  |  |  |

**Note 1:** Selects '0' if selected PWM Generator is not present.

NOTES:

# REGISTER 18-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

| bit 3 | <b>G1D2T:</b> Gate 1 Data Source 2 True Enable bit<br>1 = Data Source 2 signal is enabled for Gate 1<br>0 = Data Source 2 signal is disabled for Gate 1 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 2 | G1D2N: Gate 1 Data Source 2 Negated Enable bit                                                                                                          |
|       | 1 = Data Source 2 inverted signal is enabled for Gate 1<br>0 = Data Source 2 inverted signal is disabled for Gate 1                                     |
| bit 1 | G1D1T: Gate 1 Data Source 1 True Enable bit                                                                                                             |
|       | <ul><li>1 = Data Source 1 signal is enabled for Gate 1</li><li>0 = Data Source 1 signal is disabled for Gate 1</li></ul>                                |
| bit 0 | G1D1N: Gate 1 Data Source 1 Negated Enable bit                                                                                                          |
|       | <ul> <li>1 = Data Source 1 inverted signal is enabled for Gate 1</li> <li>0 = Data Source 1 inverted signal is disabled for Gate 1</li> </ul>           |

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![](_page_19_Figure_3.jpeg)

|                                    | MILLIMETERS |          |          |      |
|------------------------------------|-------------|----------|----------|------|
| Dimension                          | Limits      | MIN      | NOM      | MAX  |
| Number of Terminals                | N           |          | 48       |      |
| Pitch                              | е           |          | 0.40 BSC |      |
| Overall Height                     | Α           | 0.50     | 0.55     | 0.60 |
| Standoff                           | A1          | 0.00     | 0.02     | 0.05 |
| Terminal Thickness                 | A3          | 0.15 REF |          |      |
| Overall Length                     | D 6.00 BSC  |          |          |      |
| Exposed Pad Length                 | D2          | 4.50     | 4.60     | 4.70 |
| Overall Width                      | E           |          | 6.00 BSC |      |
| Exposed Pad Width                  | E2          | 4.50     | 4.60     | 4.70 |
| Terminal Width                     | b           | 0.15     | 0.20     | 0.25 |
| Corner Anchor Pad                  | b1          |          | 0.45 REF |      |
| Corner Anchor Pad, Metal-free Zone | b2          |          | 0.23 REF |      |
| Terminal Length                    | L           | 0.35     | 0.40     | 0.45 |
| Terminal-to-Exposed-Pad            | K           |          | 0.30 REF |      |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

# APPENDIX A: REVISION HISTORY

# Revision A (August 2017)

This is the initial version of the document.

# Revision B (June 2018)

This revision incorporates the following updates:

Registers:

- Updates Register 3-10, Register 3-13, Register 3-14, Register 3-15, Register 3-102, Register 3-103, Register 3-116, Register 3-117, Register 3-126, Register 3-127, Register 3-129, Register 3-132, Register 3-134, Register 3-135, Register 3-137, Register 3-138, Register 3-162, Register 3-196, Register 4-10, Register 4-11, Register 4-12, Register 4-13, Register 4-14, Register 4-15, Register 4-83 Register 4-86, Register 4-88, Register 10-1, Register 10-5, Register 11-1, Register 11-5, Register 15-3, Register 12-4, Register 12-15, Register 12-16, Register 12-23, Register 12-24, Register 18-3, Register 21-5, Register 21-14, Register 21-26, Register 21-33, Register 21-34, Register 21-35 and Register 21-37.
- Deletes ADCSSL: ADC CVD Scan Select Register Low, FOSCSEL: Oscillator Source Selection Register, FOSC: Oscillator Configuration Register, FS10SCSEL: Slave Oscillator Source Selection Register and FS10SC: Slave Oscillator Configuration Register.
- Tables:
  - Updates Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 1-1, Table 3-4-Table 3-18 (adds additional information to the legend), Table 3-27, Table 3-35, Table 3-36, Table 3-37, Table 3-45, Table 4-3-Table 4-15 (adds additional information to the legend), Table 4-24, Table 4-33 through Table 4-37, Table 15-1, Table 21-2, Table 21-5, Table 22-2, Table 24-3, Table 24-5, Table 24-6, Table 24-7, Table 24-8, Table 24-9, Table 24-10, Table 24-11, Table 24-12, Table 24-13, Table 24-15, Table 24-16 Table 24-14, Table 24-17, Table 24-22, Table 24-29, Table 24-34-Table 24-40. Table 24-41. Table 24-44, Table 24-45 and Table 24-48.
  - Adds Table 24-13 through Table 24-17.
- Figures:
  - Updates Figure 3-24, Figure 3-26, Figure 4-7, Figure 4-20, Figure 14-5, Figure 14-6, Figure 14-7, Figure 14-8, Figure 20-1, Figure 21-2 and Figure .

Sections:

- Adds "Referenced Sources" section to front matter.

- · Miscellaneous:
  - Adds headings to all SFR and Register tables.
  - Adds Error Correcting Code (ECC) information.
  - Adds the 48-Lead UQFN package to the document.
  - Removes External Count with External Gate information.