

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp502-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Master Core	Slave Core
1	RP46/PWM1H/RB14	S1RP46/S1PWM1H/S1RB14
2	RP47/PWM1L/RB15	S1RP47/S1PWM6H/S1PWM1L/S1RB15
3	MCLR	_
4	AN12/IBIAS3/ RP48 /RC0	S1AN10/S1RP48/S1RC0
5	AN0/CMP1A/RA0	S1RA0
6	AN1/RA1	S1AN15/S1RA1
7	AN2/RA2	S1AN16/S1RA2
8	AN3/IBIAS0/RA3	S1AN0/S1CMP1A/S1PGA1P1/S1RA3
9	AN4/IBIAS1/RA4	S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4
10	AVdd	AVDD
11	AVss	AVss
12	AN13/ISRC0/ RP49 /RC1	S1ANA1/ S1RP49 /S1RC1
13	AN14/ISRC1/ RP50 /RC2	S1ANA0/ S1RP50 /S1RC2
14	VDD	VDD
15	Vss	Vss
16	CMP1B/ RP51 /RC3	S1AN8/S1CMP3B/S1RP51/S1RC3
17	OSCI/CLKI/AN5/RP32/RB0	S1AN5/ S1RP32 /S1RB0
18	OSCO/CLKO/AN6/IBIAS2/RP33/RB1	S1AN4/ S1RP33 /S1RB1
19	DACOUT/AN7/CMP1D/RP34/INT0/RB2	S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/ S1RP34/S1INT0/S1RB2
20	PGD2/AN8/ RP35 /RB3	S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/S1RP35/S1RB3
21	PGC2/ RP36 /RB4	S1PGC2/S1AN9/S1RP36/S1PWM5L/S1RB4
22	Vss	Vss
23	VDD	VDD
24	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
25	PGC3/ RP38 /SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
26	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
27	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8
28	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
29	RP52/RC4	S1RP52/S1PWM2H/S1RC4
30	RP53/RC5	S1RP53/S1PWM2L/S1RC5
31	Vss	Vss
32	Vdd	Vdd
33	TMS/ RP42 /PWM3H/RB10	S1RP42/S1PWM3H/S1RB10
34	TCK/ RP43 /PWM3L/RB11	S1RP43/S1PWM8H/S1PWM3L/S1RB11
35	TDI/ RP44 /PWM2H/RB12	S1RP44/S1PWM7L/S1RB12
36	RP45/PWM2L/RB13	S1RP45/S1PWM7H/S1RB13

TABLE 6: 36-PIN UQFN

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

2.1 Basic Connection Requirements

Getting started with the family devices of the dsPIC33CH128MP508 requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- PGCx/PGDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.4 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

3.1.7 CPU CONTROL/STATUS REGISTERS

REGISTER 3-1: SR: CPU STATUS REGISTER

A. Accumulator A Overflow Status bit

hit 1E

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0
Leaend:		C = Clearable	bit				

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

DIL 15	1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed
bit 13	 SA: Accumulator A Saturation 'Sticky' Status bit⁽³⁾ 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	 SB: Accumulator B Saturation 'Sticky' Status bit⁽³⁾ 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit 1 = Accumulator A or B has overflowed 0 = Neither Accumulator A or B has overflowed
bit 10	 SAB: SA SB Combined Accumulator 'Sticky' Status bit 1 = Accumulator A or B is saturated or has been saturated at some time 0 = Neither Accumulator A or B is saturated
bit 9	DA: DO Loop Active bit 1 = DO loop is in progress 0 = DO loop is not in progress
bit 8	 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when $IPL<3> = 1$.

- 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

dsPIC33CH128MP508 FAMILY

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	CAN	NAE
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
—	—	—	DOOVR	—	—	—	APLL
bit 7							bit 0

REGISTER 3-20: INTCON3: INTERRUPT CONTROL REGISTER 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CAN: CAN Address Error Soft Trap Status bit
	1 = CAN address error soft trap has occurred0 = CAN address error soft trap has not occurred
bit 8	NAE: NVM Address Error Soft Trap Status bit
	1 = NVM address error soft trap has occurred0 = NVM address error soft trap has not occurred
bit 7-5	Unimplemented: Read as '0'
bit 4	DOOVR: DO Stack Overflow Soft Trap Status bit
	 1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred
bit 3-1	Unimplemented: Read as '0'
bit 0	APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit
	1 = APLL lock soft trap has occurred
	0 = APLL lock soft trap has not occurred

		· · · · · · · · · · · · · · · · · · ·
Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
REFCLKO	001110	RPn tied to Reference Clock Output
OCM1	001111	RPn tied to SCCP1 Output
OCM2	010000	RPn tied to SCCP2 Output
OCM3	010001	RPn tied to SCCP3 Output
OCM4	010010	RPn tied to SCCP4 Output
OCM5	010011	RPn tied to SCCP5 Output
OCM6	010100	RPn tied to SCCP6 Output
CAN1	010101	RPn tied to CAN1 Output
CMP1	010111	RPn tied to Comparator 1 Output
PWM4H	100010	RPn tied to PWM4H Output
PWM4L	100011	RPn tied to PWM4L Output
PWMEA	100100	RPn tied to PWM Event A Output
PWMEB	100101	RPn tied to PWM Event B Output
QEICMP	100110	RPn tied to QEI Comparator Output
CLC10UT	101000	RPn tied to CLC1 Output
CLC2OUT	101001	RPn tied to CLC2 Output
OCM7	101010	RPn tied to SCCP7 Output
OCM8	101011	RPn tied to SCCP8 Output
PWMEC	101100	RPn tied to PWM Event C Output
PWMED	101101	RPn tied to PWM Event D Output
PTGTRG24	101110	PTG Trigger Output 24
PTGTRG25	101111	PTG Trigger Output 25
SENT1OUT	110000	RPn tied to SENT1 Output
SENT2OUT	110001	RPn tied to SENT2 Output
CLC3OUT	110010	RPn tied to CLC3 Output
CLC4OUT	110011	RPn tied to CLC4 Output
U1DTR	110100	Data Terminal Ready Output 1
U2DTR	110101	Data Terminal Ready Output 2

TABLE 3-33: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

REGISTER 3-101: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
UPRCNT<15:8>									
bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			UPRO	CNT<7:0>					
bit 7							bit 0		
Legend:	Legend:								
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 UPRCNT<15:0>: DMTCNTH Register Value when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

REGISTER 3-131: C1TXQCONL: CAN TRANSMIT QUEUE CONTROL REGISTER LOW

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_		_	FRESET	TXREQ	UINC
bit 15							bit 8
							,
R-0	U-0	U-0	HS/C-0	U-0	R/W-0	U-0	R/W-0
TXEN	—	—	TXATIE	—	TXQEIE	—	TXQNIE
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	C = Clearab	le bit		
R = Readable	bit	W = Writable bi	it	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '0'	•				
bit 10	FRESET: FIF	O Reset bit					
	1 = FIFO will	I be reset when	bit is set, cle	eared by hard	ware when FIF	O is reset; us	er should poll
	0 = No effect	this dit is clear d	etore taking a	iny action			
hit 9	TXREQ: Mes	sage Send Regi	lest hit				
Sit o	1 = Requests	s sending a mes	sage: the bit	will automatic	ally clear when	all the messad	es aueued in
	the TXQ	are successfully	sent		,		,,
	0 = Clearing	the bit to '0' whil	le set ('1') will	request a me	essage abort		
bit 8	UINC: Increm	ent Head/Tail bi	t				
	When this bit	is set, the FIFO	head will incr	ement by a si	ngle message.		
bit 7	TXEN: TX En	able bit					
bit 6-5	Unimplemen	ted: Read as '0'	1				
bit 4	TXATIE: Tran	ismit Attempts E	xhausted Inte	errupt Enable	bit		
	1 = Enables in	nterrupt					
hit 2		interrupt	,				
DIL 3			untur lunta un untu	Enchla hit			
DIL Z	1 = Interrunt i		ipiy interrupi i O omntv	Enable bit			
	0 = Interrupt i	s disabled for TX	KQ empty				
bit 1	Unimplemen	ted: Read as '0'					
bit 0	TXQNIE: Trai	nsmit Queue No	t Full Interrup	t Enable bit			
	1 = Interrupt i 0 = Interrupt i	s enabled for TX s disabled for TX	(Q not full KQ not full				

REGISTER 3-167: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEI	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at I	POR	'1' = Bit is set		0' = Bit is cleared x = Bit is unknown			

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Input bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 3-168: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			EIEN<20:16>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EIEN<20:16>: Early Interrupt Enable for Corresponding Analog Input bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

dsPIC33CH128MP508 FAMILY

FIGURE 4-13: ADDRESSING FOR TABLE REGISTERS

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0
Legend:							

REGISTER 4-64: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP41R<5:0>: Peripheral Output Function is Assigned to S1RP41 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP40R<5:0>: Peripheral Output Function is Assigned to S1RP40 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-65: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43	RP43	RP43	RP43	RP43	RP43
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to S1RP43 Output Pin bits (see Table 4-31 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to S1RP42 Output Pin bits (see Table 4-31 for peripheral function numbers)

4.8.1 MODULE DESCRIPTION

The Programmable Gain Amplifiers are used to amplify small voltages (i.e., voltages across burden/shunt resistors) to improve the Signal-to-Noise Ratio (SNR) of the measured signal. The PGAx output voltage can be read by any of the four dedicated Sample-and-Hold circuits on the ADC module. The output voltage can also be fed to the comparator module for overcurrent/ voltage protection. Figure 4-24 shows a functional block diagram of the PGAx module. Refer to **Section 3.9 "High-Speed, 12-Bit Analog-to-Digital Converter (Master ADC)"** for more interconnection details.

The gain of the PGAx module is selectable via the GAIN<2:0> bits in the PGAxCON register. There are four gains, ranging from 4x to 48x (with a 1.5 gain multiplier). The SELPI<2:0> and SELNI<2:0> bits in the PGAxCON register select one of the positive/negative inputs to the PGAx module. For single-ended applica-

tions, the SELNI<2:0> bits will select the ground as the negative input source. To provide an independent ground reference, S1PGAxN2 is available as the negative input source to the PGAx module.

Note 1:	Not all PGA positive/negative inputs are					
	available on all devices. Refer to the					
	specific device pinout for available input					
	source pins.					

The output voltage of the PGAx module can be connected to the DACOUT pin by setting the PGAOEN bit in the PGAxCON register. When the PGAOEN bit is enabled, the output voltage of PGA1 is connected to DACOUT. There is only one DACOUT pin.

If all three of the DACx output voltages and PGAx output voltages are connected to the DACOUT pin, the resulting output voltage would be a combination of signals. There is no assigned priority between the PGAx module and the DACx module.

R-0	U-0	R-0	R-0	U-0	U-0	R-0	R-0
MSTRST	—	MSTPWR1	MSTPWR0	—	—	MTSIRQ	STMIACK
bit 15		•	•		•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	MSTRST: Mas	ter Reset Statu	s bit				
	Indicates when	the Master is i	n Reset as the	result of any F	Reset source. G	enerates a Ma	aster Reset
	event interrupt	to the Slave or	the leading ed	dge of being se	t when STMIRC	\$(SI1CON<9) ג	>)=1.
	\perp = Master is in 0 = Master is n	i Resel					
hit 14		ed: Read as '0'					
bit 13-12	MSTPWR<1:0	>: Master I ow-	Power Operati	ng Mode Statu	s hits		
511 10 12	11 = Reserved			ing mode clata	0 510		
	10 = Master is	in Sleep mode					
	01 = Master is	in Idle mode					
	00 = Master is	not in a Low-P	ower mode				
bit 11-10	Unimplemente	ed: Read as '0'					
bit 9	MTSIRQ: Mast	ter interrupt Sla	ve bit				
	1 = Master has	s issued an inte	rrupt request to	o the Slave			
	0 = Master has	not issued a S	lave interrupt i	request			
bit 8	STMIACK: Ma	ster Acknowled	Igment Status	bit			
	1 = If STMIRC	e = 1, Master A	cknowledges S	lave interrupt r	equest, else pro	otocol error	
	0 = If STMIRC) = 0, Master ha	as not yet Ackn	owledged Slav	e interrupt requ	est, else no Sl	ave to Master
h:+ 7 0		equest is pendi	iy				
DIT 7-0	Unimplemente	ed: Read as '0'					

REGISTER 5-10: SI1STAT: MSI1 SLAVE STATUS REGISTER

REGISTER 6-15: PLLDIV: PLL OUTPUT DIVIDER REGISTER (SLAVE)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—		_	_	VCODIV<1:0>		
bit 15		•						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1	
	PC)ST1DIV<2:0>	(1,2)		F	POST2DIV<2:0>	(1,2)	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, re	ead as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-10	Unimplemen	ted: Read as '	0'					
bit 9-8	VCODIV<1:0	>: PLL VCO O	utput Divider S	elect bits				
	11 = F vco							
	10 = Fvco/2							
	01 = Fvco/3							
	00 = Fvco/4							
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	POST1DIV<2	:0>: PLL Outp	ut Divider #1 R	Ratio bits ^(1,2)				
POST1DIV<2:0> can have a valid value, from 1 to 7 (POST1DIVx value should be greater than or equal to the POST2DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.								
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	POST2DIV<2	:0>: PLL Outp	ut Divider #2 R	Ratio bits ^(1,2)				
	POST2DIV<2 to the POST1	:0> can have a DIVx value). T	a valid value, fr he POST1DIV	rom 1 to 7 (P0 /x divider is de	OST2DIVx val esigned to op	ue should be les erate at higher o	ss than or equal clock rates than	

the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
OETRIG	OSCNT2	OSCNT1	OSCNT0	_				
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	POLACE		PSSACE1	PSSACE0	PSSBDF1	PSSBDF0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown	
bit 15	OETRIG: CCI	Px Dead-Time	Select bit					
	1 = For Trigg	ered mode (TR	IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered	
	0 = Normal o	utput pin opera	tion					
bit 14-12	OSCNT<2:0>	: One-Shot Eve	ent Count bits					
	111 = Extend	s one-shot eve	nt by 7 time ba	ise periods (8 ti	ime base perio	ds total)		
	110 = Extend 101 = Extend	s one-shot eve	nt by 6 time ba	ise periods (7 ti ase periods (6 ti	ime base perior	ds total) ds total)		
	100 = Extend	s one-shot eve	nt by 4 time ba	ase periods (5 t	ime base perior	ds total)		
	011 = Extend	s one-shot eve	nt by 3 time ba	ase periods (4 t	ime base period	ds total)		
	010 = Extend	s one-shot eve	nt by 2 time ba	ase periods (3 t	ime base perio	ds total)		
	001 = Extend	s one-snot eve	nt by 1 time ba	ise period (2 tir ent	ne base period	s total)		
bit 11-6	Unimplemen	ted: Read as '()'					
bit 5	POI ACE: CC	Px Output Pine		C and OCxE P	olarity Control h	oit		
bit o	1 = Output pir	n polarity is acti	ve low					
	0 = Output pir	n polarity is acti	ve high					
bit 4	Unimplemen	ted: Read as 'd)'					
bit 3-2	PSSACE<1:0	>: PWMx Outp	ut Pins, OCxA	, OCxC and O	CxE, Shutdown	State Control	bits	
	11 = Pins are	driven active w	hen a shutdov	vn event occurs	5			
	10 = Pins are driven inactive when a shutdown event occurs							
	0x = Pins are	in high-impeda	ince state whe	n a shutdown e	event occurs			
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins, OCMx	B, OCMxD, an	d OCMxF, Shut	tdown State Co	ontrol bits	
	11 = Pins are	driven active w	/hen a shutdov	vn event occurs	S			
	10 = Pins are 0x = Pins are	in a high-impe	dance state wh	own event occl	uis Nevent occurs			
		a mgn mpc		ion a onataowi				

REGISTER 10-5: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

REGISTER 12-7: POSxHLDL: POSITION x COUNTER HOLD REGISTER LOW

-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'						
Legend:									
bit 7							bit 0		
			POSH	LD<7:0>					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 15							bit 8		
	POSHLD<15:8>								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		

bit 15-0 **POSHLD<15:0>:** Position Counter Hold for Reading/Writing Position x Counter Register (POSxCNT) bits

REGISTER 12-8: POSxHLDH: POSITION x COUNTER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	POSHLD<31:24>								
bit 15 bit 8							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			POSHL	_D<23:16>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15-0 **POSHLD<31:16>:** Position Counter Hold for Reading/Writing Position x Counter Register (POSxCNT) bits

REGISTER 15-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables input logic so thresholds are compliant with the SMBus specification 0 = Disables SMBus-specific inputs
bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	 1 = Enables Receive mode for I²C; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 I = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception.

2: Automatically cleared to '0' at the beginning of Slave transmission.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈
	{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)

TABLE 22-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

24.1 DC Characteristics

Characteristic	VDD Range	Temperature Range	Maximum MIPS dsPIC33CH128MP508 Family			
		(11 C)	Master	Slave		
	3.0V to 3.6V	-40°C to +85°C	90	100		
_	3.0V to 3.6V	-40°C to +125°C	90	100		

TABLE 24-1: OPERATING MIPS vs. VOLTAGE

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 80-Pin TQFP 12x12x1 mm	θJA	50.67	—	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	45.7	—	°C/W	1
Package Thermal Resistance, 64-Pin QFN 9x9 mm	θJA	18.7	—	°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7 mm	θJA	62.76	—	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	27.6	—	°C/W	1
Package Thermal Resistance, 36-Pin UQFN 5x5 mm	θJA	29.2	—	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6 mm	θJA	22.41	—	°C/W	1
Package Thermal Resistance, 28-Pin SSOP 5.30 mm	θJA	52.84	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.