

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp502-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	Master Core	Slave Core	Shared
Core Frequency	90 MIPS @ 180 MHz	100 MIPS @ 200 MHz	_
Program Memory	64K-128 Kbytes	24 Kbytes (PRAM) ⁽²⁾	_
Internal Data RAM	16 Kbytes	4 Kbytes	_
16-Bit Timer	1	1	_
DMA	6	2	_
SCCP (Capture/Compare/Timer)	8	4	_
UART	2	1	_
SPI/I ² S	2	1	_
I ² C	2	1	_
CAN FD	1	_	_
SENT	2	_	_
CRC	1	_	_
QEI	1	1	_
PTG	1	_	_
CLC	4	4	_
16-Bit High-Speed PWM	4	8	_
ADC 12-Bit	1	3	_
Digital Comparator	4	4	_
12-Bit DAC/Analog CMP Module	1	3	_
Watchdog Timer	1	1	_
Deadman Timer	1	—	_
Input/Output	69	69	69
Simple Breakpoints	5	2	_
PGAs ⁽¹⁾	—	3	3
DAC Output Buffer	—		1
Oscillator	1	1	1

TABLE 1: MASTER AND SLAVE CORE FEATURES

Note 1: Slave owns the peripheral/feature, but it is shared with the Master.

2: Dual Partition feature is available on Slave PRAM.

3.2.7.3 Modulo Addressing Applicability

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

The modulo corrected Effective Address
is written back to the register only when
Pre-Modify or Post-Modify Addressing
mode is used to compute the Effective
Address. When an address offset (such as
[W7 + W2]) is used, Modulo Addressing
correction is performed, but the contents of
the register remain unchanged.

3.2.8 BIT-REVERSED ADDRESSING

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

3.2.8.1 Bit-Reversed Addressing Implementation

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

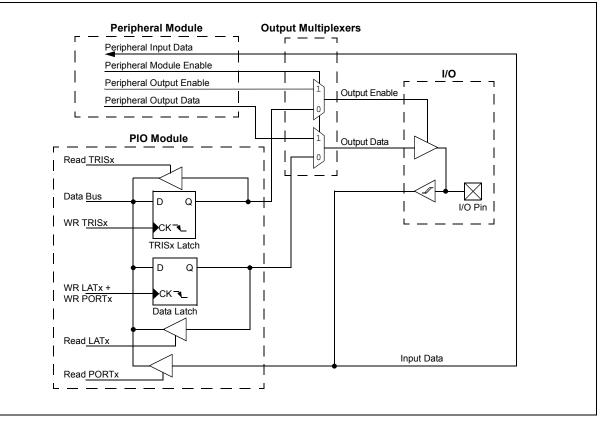
XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.


TABLE 3-23: MASTER INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	or IRQ #	IVT Address	Interrupt Bit Location		
Interrupt Source	#			Flag	Enable	Priority
QEI1 – QEI Position Counter Compare	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
U1E – UART1 Error	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
U2E – UART2 Error	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
CRC – CRC Generator	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
C1TX – CAN1 TX Data Request	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
Reserved	61-68	53-68	0x00007E-0x00008C	—	_	_
ICD – In-Circuit Debugger	69	61	0x00008E	IFS3<13>	IEC3<13>	IPC15<6:4>
JTAG – JTAG Programming	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
PTGSTEP – PTG Step	71	63	0x000092	IFS3<15>	IEC3<15>	IPC15<14:12>
I2C1BC – I2C1 Bus Collision	72	64	0x000094	IFS4<0>	IEC4<0>	IPC16<2:0>
I2C2BC – I2C2 Bus Collision	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
Reserved	74	66	0x000098	—	_	_
PWM1 – PWM Generator 1	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
PWM2 – PWM Generator 2	76	68	0x00009C	IFS4<4>	IEC4<4>	IPC17<2:0>
PWM3 – PWM Generator 3	77	69	0x00009E	IFS4<5>	IEC4<5>	IPC17<6:4>
PWM4 – PWM Generator 4	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-82	71-74	0x0000A2	—	_	_
CND – Change Notice D	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
CNE – Change Notice E	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>
CMP1 – Comparator 1	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-88	78-80	0x0000B0-0x0000B4	_	_	—
PTGWDT – PTG Watchdog Timer Time-out	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
PTG0 – PTG Trigger 0	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
PTG1 – PTG Trigger 1	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
PTG2 – PTG Trigger 2	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>
PTG3 – PTG Trigger 3	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>
SENT1 – SENT1 TX/RX	94	86	0x0000C0	IFS5<6>	IEC5<6>	IPC21<10:8>
SENT1E – SENT1 Error	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
SENT2 – SENT2 TX/RX	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
SENT2E – SENT2 Error	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>
ADC – ADC Global Interrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
ADCAN0 – ADC AN0 Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
ADCAN1 – ADC AN1 Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
ADCAN2 – ADC AN2 Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
ADCAN3 – ADC AN3 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
ADCAN4 – ADC AN4 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
ADCAN5 – ADC AN5 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
ADCAN6 – ADC AN6 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
ADCAN7 – ADC AN7 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
ADCAN8 – ADC AN8 Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
ADCAN9 – ADC AN9 Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
ADCAN10 – ADC AN10 Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>
ADCAN11 – ADC AN11 Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>
ADCAN12 – ADC AN12 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
ADCAN13 – ADC AN13 Interrupt	112	100	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
ADCAN14 – ADC AN14 Interrupt	112	104	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
ADCAN15 – ADC AN15 Interrupt	110	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 6	DIV0ERR: Divide-by-Zero Error Status bit
	1 = Math error trap was caused by a divide-by-zero
	0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMA Controller Trap Status bit
	1 = DMAC error trap has occurred
	0 = DMAC error trap has not occurred
bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

FIGURE 3-19: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_	—			FILHIT<4:0>				
bit 15							bit 8		
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
				ICODE<6:0>					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15-13	Unimpleme	nted: Read as '0'							
bit 12-8	FILHIT<4:0>	: Filter Hit Number	r bits						
	01111 = Filt								
	01110 = Filt	er 14							
	 00001 = Filt	er 1							
	00000 = Filt	-							
bit 7	Unimpleme	nted: Read as '0'							
bit 6-0	ICODE<6:0>	Interrupt Flag Co	de bits						
		111111 = Reserve							
		Transmit attempt in							
		Transmit event FIF Invalid message of	•		EFSTA IS Set)				
		CAN module mode			-/IE)				
		CAN timer overflow			,				
		RX/TX MAB overfl							
		saved to memory;					nt data)		
		Address error inter							
		1000011 = Receive FIFO overflow interrupt (any bit in C1RXOVIF is set) 1000010 = Wake-up interrupt (WAKIF/WAKIE)							
		Error interrupt (CE		,					
	1000000 =								
		111111 = Reserve FIFO 7 interrupt (T		IE7 is sot)					
	0000111 =			ir i is selj					
		FIFO 1 interrupt (T	FIF1 or RF	IF1 is set)					
	0000000 =	FIFO 0 interrupt (T	FIF0 is set)					

REGISTER 3-115: C1VECL: CAN INTERRUPT CODE REGISTER LOW

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	U-0	U-0
IVMIF ⁽¹⁾	WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF		
bit 15							bit 8
U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0
—			TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF
bit 7							bit C
Legend:		C = Clearable			are Settable bit		
R = Readable		W = Writable b	it		mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		Message Inter					
		essage interrupt I message interr					
bit 14		Wake-up Activity	•	a bit ⁽¹⁾			
		activity interrupt	, ,				
	0 = No wake-	up activity interr	upt				
bit 13		N Bus Error Inte		1)			
		error interrupt o					
h:: 40		ous error interru					
bit 12		tem Error Interro rror interrupt occ					
	•	n error interrupt	Juneu				
bit 11	•	eive Buffer Ove	rflow Interrupt	Flag bit			
		ouffer overflow in	-	-			
	0 = No receiv	e buffer overflow	v interrupt				
bit 10		smit Attempt Int		t			
		attempt interrup mit Attempt Inte					
bit 9-5		ted: Read as '0	-				
bit 4	-	mit Event FIFO		hit			
		event FIFO inter					
		nit event FIFO ir					
bit 3	MODIF: CAN	Mode Change	Interrupt Flag	bit ⁽¹⁾			
		ule mode chang)PMOD<2:0>	have changed t	o reflect REQC)P<2:0>)
		change occurre		(1)			
bit 2	1 = TBC has	Timer Overflow	Interrupt Flag	bit			
		not overflowed					
bit 1		e Object Interru	pt Flag bit				
		bject interrupt is	-				
		e object interrup	-	g			
bit 0		it Object Interru	-				
		object interrupt i nit object interru		ng l			
	v - i v v u a n S n		pis are perioli	IY			

REGISTER 3-117: C1INTL: CAN INTERRUPT REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0	R/W-0	HSC/R-0
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15			I	I			bit 8
R/W-0	HSC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSELO
bit 7							bit C
Legend:		U = Unimplen	nented bit, read	as '0'			
R = Readable		W = Writable			vare Settable/C		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	REFSEL<2:0	>: ADC Refere	nce Voltage Se	lection bits			
	Value	VREFH	VREFL				
	000	AVDD	AVss				
hit 10		nimplemented		hit.			
bit 12			iggers Disable r all ADC cores				
		ores can be tri					
bit 11	SUSPCIE: Su	spend All ADC	Cores Commo	on Interrupt En	able bit		
	1 = Common	interrupt will b	e generated wh	en ADC core	triggers are sus	pended (SUSF	PEND bit = 1)
				•	bit becomes se	et)	
hit 10		-	t generated for	-	cores event		
bit 10			Suspended Flag		no conversions	in progress	
		•	is conversions i	,		in progress	
bit 9	SHRSAMP: S	Shared ADC Co	ore Sampling Di	irect Control bi	it		
					rsion trigger co		
					5:0> bits, to the y hardware and		
			VRTCH to '1').		y naruware and	i must be clea	
	1 = Shared Al	DC core sampl	es an analog in	put specified b	by the CNVCHS	SEL<5:0> bits	
			y the shared AD				
bit 8			lual Channel Co				
					ed by the CNVC next instruction		ts; when the bit
		•	conversion trigg			cycic	
bit 7			Sensitive Com				
					s with the softv	vare; level-sen	sitive common
					DTRIGnH regist	ers	
1.1.0			itive common tr	iggers are gen	ierated		
bit 6		oftware Commo		als with the co	oftware; commo	n trigger coloct	ad as a source
	in the AD		ADTRIGnH reg		the bit is set, i		
			next software co	ommon trigger			
bit 5-0	-	-			re Individual Ch	annel Convers	ion Trigger bits
	These bits de	fine a channel	to be converted	I when the CN	VRTCH bit is se	et.	

REGISTER 3-161: ADCON3L: ADC CONTROL REGISTER 3 LOW

REGISTER 4-32: CNSTATX: INTERRUPT CHANGE NOTIFICATION STATUS FOR PORTX REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTA	Гх<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTA	Tx<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CNSTAT<15:0>:** Interrupt Change Notification Status for PORTx bits When CNSTYLE (CNCONx<11>) = 0:

1 = Change occurred on PORTx[n] since last read of PORTx[n]

0 = Change did not occur on PORTx[n] since last read of PORTx[n]

REGISTER 4-33: CNEN1x: INTERRUPT CHANGE NOTIFICATION EDGE SELECT FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	1x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNE	N1x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-0 **CNEN1x<15:0>:** Interrupt Change Notification Edge Select for PORTx bits

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

4.6.7 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.6.7.1 Key Resources

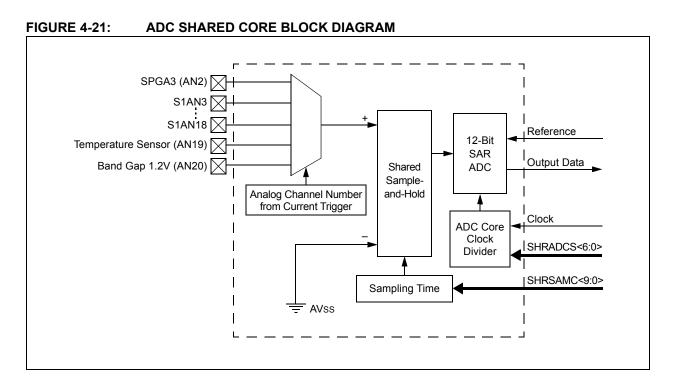
- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.6.8 PERIPHERAL PIN SELECT REGISTERS

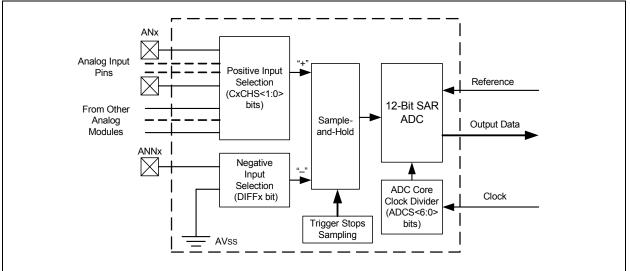
REGISTER 4-35: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—		—	IOLOCK	—	—	—
						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	_	—	—
						bit 0
	_			— — — IOLOCK	— — IOLOCK —	— — — IOLOCK — —

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-12	Unimplemented: Read as '0'
bit 11	IOLOCK: Peripheral Remapping Register Lock bit
	1 = All Peripheral Remapping registers are locked and cannot be written
	0 = All Peripheral Remapping registers are unlocked and can be written
bit 10-0	Unimplemented: Read as '0'

REGISTER 4-36: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	_	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-8 **INT1R<7:0>:** Assign External Interrupt 1 (S1INT1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

6.5 Slave Special Function Registers

These Special Function Registers provide run-time control and status of the Slave core's oscillator system.

6.5.1 SLAVE OSCILLATOR CONTROL REGISTERS

REGISTER 6-12: OSCCON: OSCILLATOR CONTROL REGISTER (SLAVE)⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							bit 8

R/W-0	U-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	—	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

Legend:	y = Value Set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only)
	 111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN) 110 = Backup FRC (BFRC) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator (FRC) with PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾
	 111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN) 110 = Backup FRC (BFRC) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified
bit 6	Unimplemented: Read as '0'
Note 1: 2:	Writes to this register require an unlock sequence. Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permit- ted. This applies to clock switches in either direction. In these instances, the application must switch to

- 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
- **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 9-18: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

- bit 3 **TQPS:** Termination Qualifier Polarity Select bit
 - 1 = Inverted
 - 0 = Not inverted
- bit 2-0 **TQSS<2:0>:** Termination Qualifier Source Selection bits
 - 111 = SWPCI control bit only (qualifier forced to '0')
 - 110 = Selects PCI Source #9
 - 101 = Selects PCI Source #8
 - 100 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI<2:0> bits)
 - 011 = PWM Generator is triggered
 - 010 = LEB is active
 - 001 = Duty cycle is active (base PWM Generator signal)
 - 000 = No termination qualifier used (qualifier forced to '1')
- Note 1: Selects '0' if selected PWM Generator is not present.

				·	-	R/W-0	R/W-0
—	UTXISEL2	UTXISEL1	UTXISEL0	—	URXISEL2 ⁽¹⁾	URXISEL1 ⁽¹⁾	URXISEL0 ⁽¹
bit 15							bit 8
HS/R/W-0	R/W-0	R/S-1	R-0	R-1	R-1	R/S-1	R-0
TXWRE	STPMD	UTXBE	UTXBF	RIDLE	XON	URXBE	URXBF
bit 7							bit (
Legend:		HS = Hardwar	e Settable bit	S = Settable	bit		
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	nown
bit 15	Unimplement	ed: Read as 'o)'				
bit 14-12	UTXISEL<2:0	>: UART Trans	smit Interrupt S	elect bits			
	111 = Sets tra	insmit interrupt	when there is	one empty slo	ot left in the buffe	er	
	 010 - Soto tro	nomit intorrunt	when there are	o iv omntv ol	ots or more in th	o buffor	
					y slots or more ii		
					slots in the buffe		empty
bit 11	Unimplement	ed: Read as 'o)'				
bit 10-8	URXISEL<2:0	>: UART Rece	eive Interrupt Se	elect bits ⁽¹⁾			
	111 = Triggers	s receive interr	upt when there	are eight wo	ds in the buffer;	RX buffer is fu	II
					s or more in the or more in the bu		
bit 7			Error Status bit				
	LIN and Parity						
			/hen the buffer	was full or wh	en P2<8:0> = 0 (must be cleare	d by software
	by softwar	te was written w	vhen the buffer	was full or to	P1<8:0> when F	P1x was full (m	ust be cleare
	0 = No error						
	Other Modes: 1 = A new byt 0 = No error	te was written v	when the buffer	was full (mu	st be cleared by	software)	
bit 6	STPMD: Stop	Bit Detection N	/lode bit				
			of the last Stop dle of the first (d		pending on the §	STSEL<1:0> se	etting) Stop b
bit 5	UTXBE: UAR	T TX Buffer Err	npty Status bit				
		ouffer is empty; ouffer is not em	-	n UTXEN = 0	will reset the TX	FIFO Pointers	and counter
bit 4	UTXBF: UART	T TX Buffer Ful	ll Status bit				
	1 = Transmit b 0 = Transmit b						
bit 3	RIDLE: Receiv	ve Idle bit					
	1 = UART RX	line is in the Id	le state				

REGISTER 13-4: UxSTAH: UARTx STATUS REGISTER HIGH

Note 1: The receive watermark interrupt is not set if PERIF or FERIF is set and the corresponding IE bit is set.

REGISTER 21-32: DEVREV: DEVICE REVISION REGISTER

Legend:	R = Read-only bit			U = Unimpler	nented bit		
bit 7							bit 0
1.1.7			DEVRE	V<7:0>			h:: 0
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVRE	/<15:8>			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVREV	/<23:16>			
R	R	R	R	R	R	R	R

bit 23-0 **DEVREV<23:0>:** Device Revision bits

REGISTER 21-33: DEVID: DEVICE ID REGISTERS

| U-1 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| — | — | | | — | | | — |
| bit 23 | | | | | | | bit 16 |
| | | | | | | | |
| R | R | R | R | R | R | R | R |
| FAMID7 | FAMID6 | FAMID5 | FAMID4 | FAMID3 | FAMID2 | FAMID1 | FAMID0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R | R | R | R | R | R | R | R |
| DEV7 ⁽¹⁾ | DEV6 ⁽¹⁾ | DEV5 ⁽¹⁾ | DEV4 ⁽¹⁾ | DEV3 ⁽¹⁾ | DEV2 ⁽¹⁾ | DEV1 ⁽¹⁾ | DEV0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: R = | Read-only bit | | | U = Unimpler | nented bit | | |
| | | | | | | | |
| bit 23-16 | Unimplement | ted: Read as 'a | L' | | | | |

bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 1000 0111 = dsPIC33CH128MP508 family

bit 7-0 DEV<7:0>: Individual Device Identifier bits⁽¹⁾

Note 1: See Table 21-5 for the list of Device Identifier bits.

REGISTER 21-37: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = Power-on Reset has occurred
 - 0 = Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD Acc		Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None
8	BOOTSWP	BOOTSWP		Swap the Active and Inactive Program Flash Space	1	2	None

TABLE 22-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

TABLE 24-22: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.68	2.96	2.99	V	VDD (Note 2)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-23: PROGRAM MEMORY

-	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	—	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	3.0	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	3.6	V		
D134	TRETD	Characteristic Retention	20	_	Year	Provided no other specifications are violated, -40°C to +125°C	
D137a	TPE	Page Erase Time	15.3	16.82	ms	TPE = 128,454 FRC cycles (Note 1)	
D138a	Tww	Word Write Time	47.7	52.3	μs	Tww = 400 FRC cycles (Note 1)	
D139a	Trw	Row Write Time	2.0	2.2	ms	Trw = 16,782 FRC cycles (Note 1)	

Note 1: Other conditions: FRC = 8 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 24-29) and the value of the FRC Oscillator Tuning register (see Register 6-4). For complete details on calculating the Minimum and Maximum time, see **Section 3.3.1 "Flash Programming Operations**".

PLLDIV (Master PLL Output Divider)	
	448
PLLDIV (Slave PLL Output Divider)	
PLLFBD (Master PLL Feedback Divider)	
PLLFBD (Slave PLL Feedback Divider)	
PMD1 (Master PMD1 Control Low)	
PMD1 (Slave PMD1 Control)	483
PMD2 (Master PMD2 Control High)	
PMD2 (Slave PMD2 Control)	484
PMD3 (Master PMD3 Control Low)	477
PMD4 (Master PMD4 Control)	478
PMD4 (Slave PMD4 Control)	
PMD6 (Master PMD6 Control High)	
PMD6 (Slave PMD6 Control High)	486
PMD7 (Master PMD7 Control Low)	480
PMD7 (Slave PMD7 Control Low)	
PMD8 (Master PMD8 Control)	
PMD8 (Slave PMD8 Control)	
PMDCON (Slave PMD Control)	482
PMDCONL (Master PMD Control Low)	
PORTx (Input Data for PORTx)1	
POSxCNTH (Position x Counter High)	573
POSxCNTL (Position x Counter Low)	573
POSxHLDH (Position x Counter Hold High)	
(0)	
POSxHLDL (Position x Counter Hold Low)	5/4
PTGADJ (PTG Adjust)	255
PTGBTE (PTG Broadcast Trigger Enable Low) .	251
PTGBTEH (PTG Broadcast Trigger	
	054
Enable High)	
PTGC0LIM (PTG Counter 0 Limit)	254
PTGC1LIM (PTG Counter 1 Limit)	
PTGCON (PTG Control/Status High)	
PTGCST (PTG Control/Status Low)	
PTGHOLD (PTG Hold)	252
PTGL0 (PTG Literal 0)	
PTGQPTR (PTG Step Queue Pointer)	
PTGQUEn (PTG Step Queue n Pointer)	
PTGSDLIM (PTG Step Delay Limit)	253
PTGT0LIM (PTG Timer0 Limit)	
PTGT1LIM (PTG Timer1 Limit)	
PWMEVTy (PWM Event Output Control y)	
QEIxCONL (QEIx Control Low)	568
OFINGECH (OFIN Greater Than or Equal	
QEIxGECH (QEIx Greater Than or Equal	
Compare High)	
Compare High) QEIxGECL (QEIx Greater Than or Equal	581
Compare High) QEIxGECL (QEIx Greater Than or Equal	581
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low)	581
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High)	581 581 571
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low)	581 581 571
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal	581 581 571 569
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal	581 581 571 569
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High)	581 581 571 569
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal	581 581 571 569 582
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low)	581 571 569 582 582
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal	581 571 569 582 582
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 571 569 582 582 572
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 571 569 582 582 572
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 571 569 582 582 582 572 12, 708
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 571 569 582 582 582 572 12, 708
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 571 569 582 582 572 12, 708 454
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 571 569 582 582 572 12, 708 454
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 571 569 582 582 572 12, 708 454
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 571 569 582 582 572 12, 708 454 465
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 581 571 569 582 582 572 12, 708 454 465
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 571 569 582 582 572 12, 708 454 465
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 569 569 582 572 12, 708 454 455 453
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 581 569 569 582 572 12, 708 454 455 453
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 581 569 569 582 582 572 12, 708 454 454 465 453 464
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 581 569 569 582 582 572 12, 708 454 454 465 453 464 39, 355
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 569 569 582 582 572 12, 708 454 454 453 464 39, 355 355
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status) RCON (Reset Control)	581 581 569 569 582 582 572 12, 708 454 454 453 464 39, 355 355
Compare High) QEIxGECL (QEIx Greater Than or Equal Compare Low) QEIxIOCH (QEIx I/O Control High) QEIxIOCL (QEIx I/O Control Low) QEIxLECH (QEIx Less than or Equal Compare High) QEIxLECL (QEIx Less than or Equal Compare Low) QEIxSTAT (QEIx Status)	581 581 569 569 582 582 572 12, 708 454 454 453 464 39, 355 355

RPINR1 (Peripheral Pin Select Input 1)...... 140, 356 RPINR10 (Peripheral Pin Select Input 10)...... 144 RPINR11 (Peripheral Pin Select Input 11)...... 145, 359 RPINR12 (Peripheral Pin Select Input 12)...... 145, 359 RPINR13 (Peripheral Pin Select Input 13)...... 146, 360 RPINR14 (Peripheral Pin Select Input 14)...... 146, 360 RPINR15 (Peripheral Pin Select Input 15)...... 147, 361 RPINR18 (Peripheral Pin Select Input 18)...... 147, 361 RPINR19 (Peripheral Pin Select Input 19)..... 148 RPINR2 (Peripheral Pin Select Input 2)..... 140, 356 RPINR20 (Peripheral Pin Select Input 20)...... 148, 362 RPINR21 (Peripheral Pin Select Input 21)...... 149, 362 RPINR22 (Peripheral Pin Select Input 22)...... 149 RPINR23 (Peripheral Pin Select Input 23)...... 150, 363 RPINR26 (Peripheral Pin Select Input 26)...... 150 RPINR3 (Peripheral Pin Select Input 3)..... 141, 357 RPINR30 (Peripheral Pin Select Input 30)..... 151 RPINR37 (Peripheral Pin Select Input 37)...... 151, 363 RPINR38 (Peripheral Pin Select Input 38)...... 152, 364 RPINR4 (Peripheral Pin Select Input 4)..... 141, 357 RPINR42 (Peripheral Pin Select Input 42)...... 152, 364 RPINR43 (Peripheral Pin Select Input 43)...... 153, 365 RPINR44 (Peripheral Pin Select Input 44)...... 153, 365 RPINR45 (Peripheral Pin Select Input 45)...... 154, 366 RPINR46 (Peripheral Pin Select Input 46)...... 154, 366 RPINR47 (Peripheral Pin Select Input 47)...... 155, 367 RPINR5 (Peripheral Pin Select Input 5)..... 142, 358 RPINR6 (Peripheral Pin Select Input 6)..... 142, 358 RPINR7 (Peripheral Pin Select Input 7)...... 143 RPINR8 (Peripheral Pin Select Input 8)..... 143 RPINR9 (Peripheral Pin Select Input 9)..... 144 RPOR0 (Peripheral Pin Select Output 0)...... 156, 368 RPOR1 (Peripheral Pin Select Output 1)...... 156, 368 RPOR10 (Peripheral Pin Select Output 10)..... 161, 373 RPOR11 (Peripheral Pin Select Output 11)..... 161, 373 RPOR12 (Peripheral Pin Select Output 12)..... 162, 374 RPOR13 (Peripheral Pin Select Output 13)..... 162, 374 RPOR14 (Peripheral Pin Select Output 14)..... 163, 375 RPOR15 (Peripheral Pin Select Output 15)..... 163. 375 RPOR16 (Peripheral Pin Select Output 16)..... 164, 376 RPOR17 (Peripheral Pin Select Output 17)..... 164, 376 RPOR18 (Peripheral Pin Select Output 18)..... 165, 377 RPOR19 (Peripheral Pin Select Output 19)..... 165, 377 RPOR2 (Peripheral Pin Select Output 2)...... 157, 369 RPOR20 (Peripheral Pin Select Output 20)..... 166, 378 RPOR21 (Peripheral Pin Select Output 21)..... 166, 378 RPOR22 (Peripheral Pin Select Output 22)..... 167, 379 RPOR3 (Peripheral Pin Select Output 3)...... 157, 369 RPOR4 (Peripheral Pin Select Output 4)...... 158, 370 RPOR5 (Peripheral Pin Select Output 5)...... 158, 370 RPOR6 (Peripheral Pin Select Output 6)...... 159, 371 RPOR7 (Peripheral Pin Select Output 7)...... 159, 371 RPOR8 (Peripheral Pin Select Output 8)...... 160, 372 RPOR9 (Peripheral Pin Select Output 9)...... 160, 372 SENTxDATH (SENTx Receive Data High)...... 641 SENTxDATL (SENTx Receive Data Low) 641 SENTxSTAT (SENTx Status) 639 SI1FIFOCS (MSI1 Slave FIFO Status)...... 427 SI1MBX (MSI1 Slave Mailbox Data Transfer Status)..... 426 SI1MBXnD (MSI1 Slave Mailbox n Data) 426 SI1STAT (MSI1 Slave Status) 425 SLPxCONH (DACx Slope Control High)...... 561