

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	27
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp503-i-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI15R7 | PCI15R6 | PCI15R5 | PCI15R4 | PCI15R3 | PCI15R2 | PCI15R1 | PCI15R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-63: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI14R7 | PCI14R6 | PCI14R5 | PCI14R4 | PCI14R3 | PCI14R2 | PCI14R1 | PCI14R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **PCI15R<7:0>:** Assign PWM Input 15 (PCI15) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 PCI14R<7:0>: Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-64: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT1R7 | SENT1R6 | SENT1R5 | SENT1R4 | SENT1R3 | SENT1R2 | SENT1R1 | SENT1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI16R7 | PCI16R6 | PCI16R5 | PCI16R4 | PCI16R3 | PCI16R2 | PCI16R1 | PCI16R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SENT1R<7:0>: Assign SENT1 Input (SENT1) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **PCI16<7:0>:** Assign PWM Input 16 (PCI16) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-65: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT2R7 | SENT2R6 | SENT2R5 | SENT2R4 | SENT2R3 | SENT2R2 | SENT2R1 | SENT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 3-30.bit 7-0SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-66: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-131: C1TXQCONL: CAN TRANSMIT QUEUE CONTROL REGISTER LOW

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
	_	_		_	FRESET	TXREQ	UINC					
bit 15							bit 8					
							,					
R-0	U-0	U-0	HS/C-0	U-0	R/W-0	U-0	R/W-0					
TXEN	—	—	TXATIE	—	TXQEIE	—	TXQNIE					
bit 7							bit 0					
Legend:		HS = Hardware	e Settable bit	C = Clearab	le bit							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'												
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15-11	Unimplemen	ted: Read as '0'	•									
bit 10	FRESET: FIF	O Reset bit										
	1 = FIFO will	I be reset when	bit is set, cle	eared by hard	ware when FIF	O is reset; us	er should poll					
	whether this bit is clear before taking any action											
hit 9	0 = No ellect											
Sit o	1 = Requests	s sending a mes	sage: the bit	will automatic	ally clear when	all the messad	es aueued in					
	the TXQ	are successfully	sent		,		,,					
	0 = Clearing	the bit to '0' whil	le set ('1') will	request a me	essage abort							
bit 8	UINC: Increm	ent Head/Tail bi	t									
	When this bit	is set, the FIFO	head will incr	ement by a si	ngle message.							
bit 7	TXEN: TX En	able bit										
bit 6-5	Unimplemen	ted: Read as '0'	1									
bit 4	TXATIE: Tran	ismit Attempts E	xhausted Inte	errupt Enable	bit							
	1 = Enables in	nterrupt										
hit 2		interrupt	,									
DIL 3			untur lunta un untu	Enchla hit								
DIL Z	1 - Interrunt i		ipiy interrupi i O omntv	Enable bit								
	0 = Interrupt i	s disabled for TX	KQ empty									
bit 1	Unimplemen	ted: Read as '0'										
bit 0	TXQNIE: Trai	nsmit Queue No	t Full Interrup	t Enable bit								
	1 = Interrupt i 0 = Interrupt i	s enabled for TX s disabled for TX	(Q not full KQ not full									

REGISTER 3-174: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			١E٠	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpleme	ented bit, rea	ad as 'O'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 IE<15:0>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 3-175: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			IE<20:16>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 IE<20:16>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
. .							
Legend:		C = Clearable	e bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	VAR: Variable 1 = Variable e 0 = Fixed exc	e Exception Pro exception proce ception process	ocessing Late essing is enab sing is enabled	ncy Control bit bled d			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits			
bit 11	11 = Reserve 10 = DSP en 01 = DSP en 00 = DSP en EDT: Early DO	ed gine multiplies gine multiplies gine multiplies D Loop Termina	are mixed sig are unsigned are signed ation Control b	n _{Dit} (1)			
	1 = Terminate 0 = No effect	es executing Do	loop at the e	end of the curre	nt loop iteratio	n	
bit 10-8	DL<2:0>: DO 111 = Seven	Loop Nesting	Level Status b active	bits			
	001 = One D0 000 = Zero D	○ loop is active ○ loops are active	tive				
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	8 Saturation En	able bit				
	1 = Accumula 0 = Accumula	ator B saturatio ator B saturatio	n is enabled n is disabled				
bit 5	SATDW: Data 1 = Data Spa 0 = Data Spa	a Space Write t ce write satura ce write satura	from DSP Eng tion is enable tion is disable	gine Saturation d d	Enable bit		
bit 4	ACCSAT: Acc 1 = 9.31 satu 0 = 1.31 satu	cumulator Saturation (super s	iration Mode S aturation) saturation)	Select bit			
bit 3	IPL3: CPU In	terrupt Priority	Level Status	bit 3 ⁽²⁾			
	1 = CPU Inter 0 = CPU Inter	rrupt Priority Le rrupt Priority Le	evel is greater evel is 7 or les	than 7 s			
Note 1: Th	nis bit is always r	ead as '0'.					

REGISTER 4-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

	11. 5			•				
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC			ADCMP1LO	B44	000000000000000000000000000000000000000	ADTRIG2L	B88	000000000000000000000000000000000000000
ADCON1L	B00	000-00000000	ADCMP1HI	B46	000000000000000000000000000000000000000	ADTRIG2H	B8A	000000000000000000000000000000000000000
ADCON1H	B02	011	ADCMP2ENL	B48	0000000000000000000	ADTRIG3L	B8C	0000000000000000000
ADCON2L	B04	00-0-00000000000	ADCMP2ENH	B4A	00000	ADTRIG3H	B8E	0000000000000000000
ADCON2H	B06	00-0000000000000	ADCMP2LO	B4C	0000000000000000000	ADTRIG4L	B90	0000000000000000000
ADCON3L	B08	00000x000000000	ADCMP2HI	B4E	0000000000000000000	ADTRIG4H	B92	0000000000000000000
ADCON3H	B0A	00000000	ADCMP3ENL	B50	0000000000000000000	ADTRIG5L	B94	00000000000
ADCON4L	B0C	0000xx	ADCMP3ENH	B52	00000	ADCMP0CON	BA0	0000000000000000000
ADCON4H	B0E	000000	ADCMP3LO	B54	000000000000000000	ADCMP1CON	BA4	0000000000000000000
ADMOD0L	B10	-0-0-0-0-0-0-0-0	ADCMP3HI	B56	000000000000000000	ADCMP2CON	BA8	0000000000000000000
ADIEL	B20	*****	ADFL0DAT	B68	000000000000000000	ADCMP3CON	BAC	0000000000000000000
ADIEH	B22	xxxxx	ADFL0CON	B6A	0xx00000000000000	ADLVLTRGL	BD0	0000000000000000000
ADCSS1L	B28	000000000000000000000000000000000000000	ADFL1DAT	B6C	000000000000000000	ADLVLTRGH	BD2	xxxxx
ADCSS1H	B2A	000	ADFL1CON	B6E	0xx0000000000000	ADCORE0L	BD4	000000000000000000000000000000000000000
ADSTATL	B30	000000000000000000000000000000000000000	ADFL2DAT	B70	000000000000000000	ADCORE0H	BD6	0000001100000000
ADSTATH	B32	00000	ADFL2CON	B72	0xx0000000000000	ADCORE1L	BD8	000000000000000000000000000000000000000
ADCMP0ENL	B38	000000000000000000000000000000000000000	ADFL3DAT	B74	000000000000000000000000000000000000000	ADCORE1H	BDA	0000001100000000
ADCMP0ENH	B3A	00000	ADFL3CON	B76	0xx0000000000000	ADEIEL	BF0	*****
ADCMP0LO	B3C	000000000000000000000000000000000000000	ADTRIG0L	B80	000000000000000000000000000000000000000	ADEIEH	BF2	xxxxx
ADCMP0HI	B3E	000000000000000000000000000000000000000	ADTRIG0H	B82	000000000000000000	ADEISTATL	BF8	*****
ADCMP1ENL	B40	000000000000000000000000000000000000000	ADTRIG1L	B84	000000000000000000	ADEISTATH	BFA	xxxxx
ADCMP1ENH	B42	00000	ADTRIG1H	B86	000000000000000000			

TABLE 4-11: SLAVE SFR BLOCK B00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC (Contin	ued)		ADCBUF12	C24	00000000000000000	SLP1CONL	C90	000000000000000000000000000000000000000
ADCON5L	C00	0	ADCBUF13	C26	000000000000000000	SLP1CONH	C92	0000
ADCON5H	C02	0xxxx0	ADCBUF14	C28	000000000000000000	SLP1DAT	C94	000000000000000000000000000000000000000
ADCAL0L	C04	0000000000000000000	ADCBUF15	C2A	000000000000000000	DAC2CONL	C98	000000x000000
ADCAL1H	C0A	00000-00-000	ADCBUF16	C2C	000000000000000000	DAC2CONH	C9A	0000000000
ADCBUF0	COC	0000000000000000000	ADCBUF17	C2E	000000000000000000	DAC2DATL	C9C	000000000000000000000000000000000000000
ADCBUF1	C0E	0000000000000000000	ADCBUF18	C30	000000000000000000	DAC2DATH	C9E	000000000000000000000000000000000000000
ADCBUF2	C10	000000000000000000	ADCBUF19	C32	000000000000000000	SLP2CONL	CA0	000000000000000000000000000000000000000
ADCBUF3	C12	000000000000000000	DAC			SLP2CONH	CA2	0000
ADCBUF4	C14	000000000000000000	DACCTRL1L	C80	0000000-000	SLP2DAT	CA4	000000000000000000000000000000000000000
ADCBUF5	C16	000000000000000000	DACCTRL2L	C84	0001010101	DAC3CONL	CA8	000000x000000
ADCBUF6	C18	000000000000000000	DACCTRL2H	C86	0010001010	DAC3CONH	CAA	0000000000
ADCBUF7	C1A	000000000000000000	DAC1CONL	C88	000000x0000000	DAC3DATL	CAC	000000000000000000000000000000000000000
ADCBUF8	C1C	000000000000000000	ADCBUF12	C24	000000000000000000	DAC3DATH	CAE	000000000000000000000000000000000000000
ADCBUF9	C1E	000000000000000000	DAC1CONH	C8A	0000000000	SLP3CONL	CB0	000000000000000000000000000000000000000
ADCBUF10	C20	0000000000000000000	DAC1DATL	C8C	00000000000000000	SLP3CONH	CB2	0000
ADCBUF11	C22	000000000000000000000000000000000000000	DAC1DATH	C8E	000000000000000000000000000000000000000	SLP3DAT	CB4	000000000000000000000000000000000000000

TABLE 4-12: SLAVE SFR BLOCK C00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	abled				
h :+ 4 4		nesting is ena	ibled				
DIL 14	1 = Tran was	s caused by ov	overnow trap r	-lag bit mulator A			
	0 = Trap was	s not caused by	y overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B	Overflow Trap I	Flag bit			
	1 = Trap was	s caused by ov	verflow of Accu	mulator B			
h# 40	0 = Irap was	s not caused b	y overflow of A	Councilator B	lee hit		
DIT 12	1 = Tran was	Accumulator A	tastrophic over	flow of Accumul	ag bit ator A		
	0 = Trap was	s not caused by	y catastrophic	overflow of Accu	imulator A		
bit 11	COVBERR:	Accumulator E	3 Catastrophic	Overflow Trap F	lag bit		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B		
bit 10		s not caused by s not caused by s	y calastrophic (verflow Tran En	able bit			
	1 = Trap ove	erflow of Accun	nulator A				
	0 = Trap is d	lisabled					
bit 9	OVBTE: Acc	cumulator B O	verflow Trap Er	able bit			
	1 = Trap ove 0 = Trap is d	erflow of Accun	nulator B				
bit 8	COVTE: Cat	tastrophic Ove	rflow Trap Enal	ble bit			
2.00	1 = Trap on	catastrophic o	verflow of Accu	mulator A or B is	s enabled		
	0 = Trap is d	lisabled					
bit 7	SFTACERR	: Shift Accumu	lator Error Stat	us bit			
	1 = Math err 0 = Math err	or trap was ca	used by an inva t caused by an	alid accumulator invalid accumul	shift ator shift		
bit 6	DIV0ERR: D)ivide-by-Zero	Error Status bit				
	1 = Math err	or trap was ca	used by a divid	e-by-zero			
	0 = Math err	or trap was no	t caused by a c	livide-by-zero			
bit 5	Unimpleme	nted: Read as	'O'				
bit 4	MATHERR:	Math Error Sta	itus bit				
	\perp = Math err 0 = Math err	or trap has oc	occurred				
bit 3	ADDRERR:	Address Error	Trap Status bit	t			
	1 = Address	error trap has	occurred				
	0 = Address	error trap has	not occurred				

REGISTER 4-18: INTCON1: SLAVE INTERRUPT CONTROL REGISTER 1

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0

REGISTER 4-45: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8PCI11R<7:0>: Assign PWM Input 11 (S1PCI11) to the Corresponding S1RPn Pin bits
See Table 4-27.bit 7-0PCI10R<7:0>: Assign PWM Input 10 (S1PCI10) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-46: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (S1QEIB1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (S1QEIA1) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-47: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM1R<7:0>:** Assign QEI Home 1 Input (S1QEIHOM1) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-48: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U1DSRR<7:0>:** Assign UART1 Data-Set-Ready (S1U1DSR) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **U1RXR<7:0>:** Assign UART1 Receive (S1U1RX) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEINDX1R<7:0>:** Assign QEI Index 1 Input (S1QEINDX1) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—		—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 9-7: CMBTRIGL: COMBINATIONAL TRIGGER REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTA8EN	CTA7EN	CTA6EN	CTA5EN	CTA4EN	CTA3EN	CTA2EN	CTA1EN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	Unimplement	ted: Read as				o	-
bit 7	CTA8EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#8 as Source for	Combinational	Irigger A bit
	\perp = Enables s 0 = Disabled	specified trigge	er signal to be	OR a into the	Combinatorial Tr	igger A signal	
bit 6	CTA7EN: Ena	able Trigger Ou	Itput from PW	M Generator #	7 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
	0 = Disabled						
bit 5	CTA6EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#6 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
bit 4		able Trigger Ou	itout from D\M	M Conorator t	te as Source for	Combinational	Triggor A bit
DIL 4	1 = Enables	specified triage	ar signal to be	OR'd into the	Combinatorial Tr		Thyger A bit
	0 = Disabled	specifica trigge	a signal to be				
bit 3	CTA4EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#4 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
	0 = Disabled						
bit 2	CTA3EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#3 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
bit 1		able Trigger Ou	itout from D\M	M Conorator t	to an Source for	Combinational	Triggor A bit
DILI	1 - Enables	able Thyyel Ot	ar signal to be	OP'd into the	Combinatorial Tr		mgger A bit
	0 = Disabled	specified trigge	a signal to be				
bit 0	CTA1EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#1 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	20
	0 = Disabled						

REGISTER 9-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER y⁽²⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWMS1y3 ⁽¹⁾	PWMS1y2 ⁽¹⁾	PWMS1y1 ⁽¹⁾	PWMS1y0 ⁽¹⁾	PWMS2y3 ⁽¹⁾	PWMS2y2 ⁽¹⁾	PWMS2y1 ⁽¹⁾	PWMS2y0 ⁽¹⁾
bit 15						-	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
S1yPOL	S2yPOL	PWMLFy1	PWMLFy0	_	PWMLFyD2	PWMLFyD1	PWMLFyD0
bit 7			-			<u>, I</u>	bit 0
Legend:							
R = Readable I	oit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	-						
bit 15-12	PWMS1v<3:0	>: Combinato	ial PWM Logic	: Source #1 Se	lection bits(1)		
	1111 = PWM	81	ian min Logi				
	1110 = PWM	8H					
	1101 = PWM	7L					
	1100 = PWM	7H					
	1011 = PWM	6L					
	1010 = PWM	6H					
	1001 = PWM	5L					
	1000 = PWM	5H					
	0111 = PWM	4L					
	0110 = PVVW	4H 21					
	0101 - PVIVI0100 - PV/M	১∟ ২⊔					
	0.011 = PWM	21					
	0010 = PWM	2H					
	0001 = PWM	1L					
0000 = PWM1H							
bit 11-8	PWMS2y<3:0	>: Combinator	ial PWM Logi	c Source #2 Se	lection bits ⁽¹⁾		
	1111 = PWM	8L	-				
	1110 = PWM	8H					
	1101 = PWM	7L					
	1100 = PWM	7H					
	1011 = PWM	6L					
	1010 = PWM	6H					
	1001 = PVVIVI	5L EU					
	1000 - PVW	3FI 41					
	0110 = PWM	4H					
	0101 = PWM	3L					
	0100 = PWM	3H					
	0011 = PWM	2L					
	0010 = PWM	2H					
	0001 = PWM	1L					
	0000 = PWM	1H					
bit 7	S1yPOL: Con	nbinatorial PW	M Logic Sourc	e #1 Polarity b	it		
	1 = Input is in	nverted					
	0 = Input is p	ositive logic					

- Note 1: Logic function input will be connected to '0' if the PWM channel is not present.
 - **2:** 'y' denotes a common instance (A-F).

REGISTER 9-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)

bit 5	CAP: Capture Status bit ⁽¹⁾
	1 = PWM Generator time base value has been captured in PGxCAP0 = No capture has occurred
bit 4	UPDATE: PWM Data Register Update Status/Control bit
	 1 = PWM Data register update is pending – user Data registers are not writable 0 = No PWM Data register update is pending
bit 3	UPDREQ: PWM Data Register Update Request bit
	User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending.
bit 2	STEER: Output Steering Status bit (Push-Pull Output mode only)
	1 = PWM Generator is in 2nd cycle of Push-Pull mode
	0 = PWM Generator is in 1st cycle of Push-Pull mode
bit 1	CAHALF: Half Cycle Status bit (Center-Aligned modes only)
	 1 = PWM Generator is in 2nd half of time base cycle 0 = PWM Generator is in 1st half of time base cycle
bit 0	TRIG: PWM Trigger Status bit
	1 = PWM Generator is triggered and PWM cycle is in progress0 = No PWM cycle is in progress

Note 1: User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
OETRIG	OSCNT2	OSCNT1	OSCNT0	_				
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	POLACE		PSSACE1	PSSACE0	PSSBDF1	PSSBDF0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown	
bit 15	OETRIG: CCI	Px Dead-Time	Select bit					
	1 = For Trigg	ered mode (TR	IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered	
	0 = Normal o	utput pin opera	tion					
bit 14-12	OSCNT<2:0>	: One-Shot Eve	ent Count bits					
	111 = Extend	s one-shot eve	nt by 7 time ba	ise periods (8 ti	ime base perio	ds total)		
	110 = Extend 101 = Extend	s one-shot eve	nt by 6 time ba	ise periods (7 ti ase periods (6 ti	ime base perior	ds total) ds total)		
	100 = Extends one-shot event by 4 time base periods (5 time base periods total)							
	011 = Extends one-shot event by 3 time base periods (4 time base periods total)							
	010 = Extends one-shot event by 2 time base periods (3 time base periods total)							
	001 = Extends one-shot event by 1 time base period (2 time base periods total)							
bit 11-6	Unimplemented: Read as '0'							
bit 5	POLACE: CCPx Output Pins, OCxA, OCxC and OCxE, Polarity Control bit							
bit o	1 = Output pir	n polarity is acti	ve low					
	0 = Output pir	n polarity is acti	ve high					
bit 4	Unimplemen	ted: Read as 'd)'					
bit 3-2	PSSACE<1:0	>: PWMx Outp	ut Pins, OCxA	, OCxC and O	CxE, Shutdown	State Control	bits	
	11 = Pins are driven active when a shutdown event occurs							
	10 = Pins are	driven inactive	when a shutd	own event occu	urs			
	0x = Pins are	in high-impeda	ince state whe	n a shutdown e	event occurs			
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins, OCMx	B, OCMxD, an	d OCMxF, Shut	tdown State Co	ontrol bits	
	11 = Pins are	driven active w	/hen a shutdov	vn event occurs	S			
	10 = Pins are 0x = Pins are	in a high-impe	dance state wh	own event occl	uis Nevent occurs			
		a mgn mpc		ion a onataowi				

REGISTER 10-5: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 15							bit 8
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0
							
Legend:		C = Clearable	bit				
R = Readable	e bit	W1 = Write '1'	Only bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	CCPTRIG: C	CPx Trigger Sta	tus bit				
	1 = 1 imer has 0 = 1 imer has	s been triggered s not been trigg	d and is runnir ered and is he	ng Ald in Reset			
bit 6	TRSET CCP	x Trigger Set R	ence and is ne				
bit o	Writes '1' to the	his location to tr	igger the time	r when TRIGEN	I = 1 (location a	alwavs reads a	ıs '0').
bit 5	TRCLR : CCPx Trigger Clear Request bit						
	Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').						
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit						
	1 = A shutdown event is in progress; CCPx outputs are in the shutdown state						
	0 = CCPx outputs operate normally						
bit 3	SCEVT: Single Edge Compare Event Status bit						
	1 = A single edge compare event has occurred						
hit 2	U = A single edge compare event has not occurred						
DIL Z	ווווווווווווווווווווווווווווווווווווו						
	0 = Event on	Input Capture 2	k pin will gene	rate a capture e	event	it.	
bit 1	ICOV: Input Capture x Buffer Overflow Status bit						
	1 = The Inpu	t Capture x FIF	O buffer has o	verflowed			
	0 = The Inpu	t Capture x FIF	O buffer has n	ot overflowed			
bit 0	ICBNE: Input	Capture x Buffe	er Status bit				
	1 = Input Cap 0 = Input Cap	pture x buffer ha pture x buffer is	as data availat empty	ble			

REGISTER 10-6: CCPxSTATL: CCPx STATUS REGISTER

Table 12-2 shows the truth table that describes how the Quadrature signals are decoded.

TABLE 12-2:TRUTH TABLE FOR
QUADRATURE ENCODER

Cur Quad Sta	rent rature ate	Prev Quad Sta	ious rature ate	Action
QA	QB	QA	QB	
1	1	1	1	No count or direction change
1	1	1	0	Count up
1	1	0	1	Count down
1	1	0	0	Invalid state change; ignore
1	0	1	1	Count down
1	0	1	0	No count or direction change
1	0	0	1	Invalid state change; ignore
1	0	0	0	Count up
0	1	1	1	Count up
0	1	1	0	Invalid state change; ignore
0	1	0	1	No count or direction change
0	1	0	0	Count down
0	0	1	1	Invalid state change; ignore
0	0	1	0	Count down
0	0	0	1	Count up
0	0	0	0	No count or direction change

Figure 12-2 illustrates the simplified block diagram of the QEI module. The QEI module consists of decoder logic to interpret the Phase A (QEAx) and Phase B (QEBx) signals, and an up/down counter to accumulate the count. The counter pulses are generated when the Quadrature state changes. The count direction information must be maintained in a register until a direction change is detected. The module also includes digital noise filters, which condition the input signal. The QEI module consists of the following major features:

- Four Input Pins: Two Phase Signals, an Index Pulse and a Home Pulse
- Programmable Digital Noise Filters on Inputs
- Quadrature Decoder providing Counter Pulses and Count Direction
- Count Direction Status
- 4x Count Resolution
- Index (INDXx) Pulse to Reset the Position Counter
- General Purpose 32-Bit Timer/Counter mode
- · Interrupts generated by QEI or Counter Events
- 32-Bit Velocity Counter
- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 32-Bit Position Initialization/Capture Register
- 32-Bit Compare Less Than and Greater Than Registers
- External Up/Down Count mode
- · External Gated Count mode
- External Gated Timer mode
- Interval Timer mode

REGISTER 13-1: UXMODE: UARTX CONFIGURATION REGISTER (CONTINUED)

- bit 5 UTXEN: UART Transmit Enable bit
 - 1 = Transmit enabled except during Auto-Baud Detection
 - 0 = Transmit disabled all transmit counters, pointers and state machines are reset; TX buffer is not flushed, status bits are not reset

bit 4 URXEN: UART Receive Enable bit

- 1 = Receive enabled except during Auto-Baud Detection
- 0 = Receive disabled all receive counters, pointers and state machines are reset; RX buffer is not flushed, status bits are not reset

bit 3-0 MOD<3:0>: UART Mode bits

- Other = Reserved
- 1111 = Smart card⁽²⁾
- 1110 = IrDA^{®(2)}
- 1101 = Reserved
- 1100 = LIN Master/Slave
- 1011 = LIN Slave only
- 1010 = DMX⁽²⁾
- 1001 = Reserved
- 1000 = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Reserved
- 0100 = Asynchronous 9-bit UART with address detect, ninth bit = 1 signals address
- 0011 = Asynchronous 8-bit UART without address detect, ninth bit is used as an even parity bit
- 0010 = Asynchronous 8-bit UART without address detect, ninth bit is used as an odd parity bit
- 0001 = Asynchronous 7-bit UART
- 0000 = Asynchronous 8-bit UART

Note 1: R/HS/HC in DMX and LIN mode.

2: These modes are not available on all devices.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157).

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{}	Optional field or operation			
a ∈ {b, c, d}	a is selected from the set of values b, c, d			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double-Word mode selection			
.S	Shadow register select			
.w	Word mode selection (default)			
Acc	One of two accumulators {A, B}			
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}			
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0x00000x1FFF}			
lit1	1-bit unsigned literal ∈ {0,1}			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal ∈ {031}			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016384}			
lit16	16-bit unsigned literal $\in \{065535\}$			
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'			
None	Field does not require an entry, can be blank			
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate			
PC	Program Counter			
Slit10	10-bit signed literal \in {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal \in {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈			
	{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)			

TABLE 22-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

SPI Master Transmit Only (Half-Duplex)	SPI Master Transmit/Receive (Full-Duplex)	SPI Slave Transmit/Receive (Full-Duplex)	СКЕ	Maximum Data Rate (MHz)	Condition
Figure 24-7			0	15	Using PPS
Table 24-35	—	—	0	40	Dedicated Pin
Figure 24-8			1	15	Using PPS
Table 24-35	—	—	⊥ ⊥	40	Dedicated Pin
	Figure 24-9	_	0	9	Using PPS
—	Table 24-36			40	Dedicated Pin
	Figure 24-10		1	9	Using PPS
_	Table 24-37	—	T	40	Dedicated Pin
	—	Figure 24-12		15	Using PPS
—		Table 24-39	U	40	Dedicated Pin
		Figure 24-13	1	15	Using PPS
_	—	Table 24-38		40	Dedicated Pin

TABLE 24-34: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 24-7: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

dsPIC33CH128MP508 FAMILY

Master I/O Ports	112
Configuring Analog/Digital Port Pins	115
Control Registers	116
Helpful Tips	134
Open-Drain Configuration	115
Parallel I/O (PIO)	112
Resources	135
Write/Read Timing	115
Master Interrupt Controller	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	103
INTCON1	103
INTCON2	103
INTCON3	103
INTCON4	103
INTTREG	103
Interrupt Vector Details	
Interrupt Vector Table (IVT)	
Reset Sequence	
Resources	103
Status/Control Registers	104
Master Interrupt Vector Table	
Master Memory Organization	
Master Program Memory	
Address Space	
Construction	75
Data Access from Program Memory Using	
Table Instructions	76
Memory Map	
(dsPIC33CH128MPXXX Devices)	
Memory Map	
(dsPIC33CH64MPXXX Devices)	
Table Read High Instructions (TBLRDH)	76
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL)	76 76
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces	76 76 75
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	76 76 75 48
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector	76 76 75 48 48
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets	76 76 75 48 48 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR)	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM)	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR)	76 76 75 48 48 89 89 89 91
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	76 76 75 48 48 89 89 89 89 91 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	76 76 75 48 48 89 89 89 89 91 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	76 76 75 48 48 89 89 89 91 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR)	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO)	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Configuration Reset (IOPUWR) Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register	
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 100h 200h 300h-400h	76 76 75 48 48 48 89 89 91 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h	76 76 75 48 48 48 89 89 91 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h	76 76 75 48 48 48 89 89 91 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h 800h 900h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h 800h 900h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h 800h 900h A00h B00h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89
Table Read High Instructions (TBLRDH) Table Read Low Instructions (TBLRDL) Interfacing with Data Memory Spaces Organization Reset Vector Master Resets Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Control Register Illegal Condition Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Master Clear (MCLR) Pin Reset Power-on Reset (POR) RESET Instruction (SWR) Resources Trap Conflict Reset (TRAPR) Watchdog Timer Time-out Reset (WDTO) Master SFR Block 000h 300h-400h 500h 600h 700h 800h 900h A00h B00h	76 76 75 48 48 48 89 89 89 89 89 89 89 89 89 89 89 89 89

E00h	64
F00h	65
Master Slave Interface (MSI)	417
Master Slave Interface. See MSI.	
Memory Organization	
Resources	51
Microchip Internet Web Site	802
Modulo Addressing	72, 292
Applicability	73, 293
Operation Example	72, 292
Start and End Address	72, 292
W Address Register Selection	72, 292
MPLAB REAL ICE In-Circuit Emulator System	725
MPLAB X Integrated Development	
Environment Software	723
MPLINK Object Linker/MPLIB Object Librarian	
MSI	
Master Control Registers	417
Slave Control Registers	424
Slave Processor Control	429
Slave Reset Coupling Control	429
NI .	

Ν	

NVM Control Registers	82
-----------------------	----

0

Oscillator	
CPU Clocking	439
Internal Fast RC (FRC)	466
Low-Power RC (LPRC)	466
Master Configuration Registers	440
Master SFRs	442
Primary (POSC)	466
Slave Configuration Registers	441
Slave SFRs	455
Oscillator with High-Frequency PLL	431

Ρ

Packaging		767
Details		769
Marking Information		767
Peripheral Module Disable (PMD)		473
Control Registers		474
Peripheral Pin Select (PPS)	123	342
Available Perinherals	123	342
Available Pins	123	342
Considerations		124
Control		342
Control Register Lock		124
Control Registers	139	355
Controlling Configuration Changes	. 100,	124
Input Mapping	124	343
Master Remannable Output Pin Registers	,	132
Master Remannable Pin Inputs		126
Output Mapping	131	340
Output Napping	. 101,	133
Selectable Input Sources		120
Slave Output Selection for Remannable Pins		351
Slave Selectable Input Sources		347
Perinheral Trigger Generator (PTG)		246
Peripheral Trigger Generator See PTG		240
Din and ANSELX Availability		113
Pinout I/O Descriptions (table)		24
		24