

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XE

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit Dual-Core                                                                 |
| Speed                      | 180MHz, 200MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT               |
| Number of I/O              | 39                                                                               |
| Program Memory Size        | 152KB (152K x 8)                                                                 |
| Program Memory Type        | FLASH, PRAM                                                                      |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 20K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 31x12b; D/A 4x12b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 48-TQFP                                                                          |
| Supplier Device Package    | 48-TQFP (7x7)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp505-e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Pin # | Master Core                             | Slave Core                                                                  |
|-------|-----------------------------------------|-----------------------------------------------------------------------------|
| 1     | RP46/PWM1H/RB14                         | S1RP46/S1PWM6L/S1RB14                                                       |
| 2     | <b>RP47</b> /PWM1L/RB15                 | S1RP47/S1PWM6H/S1RB15                                                       |
| 3     | RP60/RC12                               | S1RP60/S1PWM3H/S1RC12                                                       |
| 4     | RP61/RC13                               | S1RP61/S1PWM3L/S1RC13                                                       |
| 5     | MCLR                                    | _                                                                           |
| 6     | RD13                                    | S1ANN0/S1PGA1N2/S1RD13                                                      |
| 7     | AN12/IBIAS3/ <b>RP48</b> /RC0           | S1AN10/ <b>S1RP48</b> /S1RC0                                                |
| 8     | AN0/CMP1A/RA0                           | S1RA0                                                                       |
| 9     | AN1/RA1                                 | S1AN15/S1RA1                                                                |
| 10    | AN2/RA2                                 | S1AN16/S1RA2                                                                |
| 11    | AN3/IBIAS0/RA3                          | S1AN0/S1CMP1A/S1PGA1P1/S1RA3                                                |
| 12    | AN4/IBIAS1/RA4                          | S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4                               |
| 13    | AVDD                                    | AVDD                                                                        |
| 14    | AVss                                    | AVss                                                                        |
| 15    | AN13/ISRC0/ <b>RP49</b> /RC1            | S1ANA1/ <b>S1RP49</b> /S1RC1                                                |
| 16    | AN14/ISRC1/ <b>RP50</b> /RC2            | S1ANA0/ <b>S1RP50</b> /S1RC2                                                |
| 17    | <b>RP54</b> /RC6                        | S1AN11/S1CMP1B/ <b>S1RP54</b> /S1RC6                                        |
| 18    | Vdd                                     | VDD                                                                         |
| 19    | Vss                                     | Vss                                                                         |
| 20    | CMP1B/ <b>RP51</b> /RC3                 | S1AN8/S1CMP3B/ <b>S1RP51</b> /S1RC3                                         |
| 21    | OSCI/CLKI/AN5/ <b>RP32</b> /RB0         | S1AN5/ <b>S1RP32</b> /S1RB0                                                 |
| 22    | OSCO/CLKO/AN6/IBIAS2/ <b>RP33</b> /RB1  | S1AN4/ <b>S1RP33</b> /S1RB1                                                 |
| 23    | ISRC3/RD10                              | S1AN13/S1CMP2B/S1RD10                                                       |
| 24    | AN15/ISRC2/ <b>RP55</b> /RC7            | S1AN12/ <b>S1RP55</b> /S1RC7                                                |
| 25    | DACOUT/AN7/CMP1D/ <b>RP34</b> /INT0/RB2 | S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/S1RP34/<br>S1INT0/S1RB2 |
| 26    | PGD2/AN8/ <b>RP35</b> /RB3              | S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/ <b>S1RP35</b> /S1RB3                        |
| 27    | PGC2/ <b>RP36</b> /RB4                  | S1PGC2/S1AN9/ <b>S1RP36</b> /S1PWM5L/S1RB4                                  |
| 28    | RP56/ASDA1/SCK2/RC8                     | S1RP56/S1ASDA1/S1SCK1/S1RC8                                                 |
| 29    | RP57/ASCL1/SDI2/RC9                     | S1RP57/S1ASCL1/S1SDI1/S1RC9                                                 |
| 30    | SDO2/PCI19/RD8                          | S1SDO1/S1PCI19/S1RD8                                                        |
| 31    | Vss                                     | Vss                                                                         |
| 32    | Vdd                                     | VDD                                                                         |
| 33    | PGD3/ <b>RP37</b> /SDA2/RB5             | S1PGD3/ <b>S1RP37</b> /S1RB5                                                |
| 34    | PGC3/ <b>RP38</b> /SCL2/RB6             | S1PGC3/ <b>S1RP38</b> /S1RB6                                                |
| 35    | TDO/AN9/ <b>RP39</b> /RB7               | S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7                                          |
| 36    | PGD1/AN10/ <b>RP40</b> /SCL1/RB8        | S1PGD1/S1AN7/ <b>S1RP40</b> /S1SCL1/S1RB8                                   |
| 37    | PGC1/AN11/ <b>RP41</b> /SDA1/RB9        | S1PGC1/ <b>S1RP41</b> /S1SDA1/S1RB9                                         |
| 38    | <b>RP52</b> /RC4                        | S1RP52/S1PWM2H/S1RC4                                                        |
| 39    | <b>RP53</b> /RC5                        | S1RP53/S1PWM2L/S1RC5                                                        |
| 40    | <b>RP58</b> /RC10                       | S1RP58/S1PWM1H/S1RC10                                                       |
| 41    | RP59/RC11                               | S1RP59/S1PWM1L/S1RC11                                                       |
| 42    | Vss                                     | VSS                                                                         |
| 43    | VDD                                     |                                                                             |
| 44    |                                         |                                                                             |
| 45    | IMS/ <b>KF42</b> /PWM3H/RB10            | 51RF42/51FWM8L/51RB10                                                       |
| 46    | I GK/ <b>KF43</b> /PWM3L/RB11           | STRF43/STFWM8H/STRB11                                                       |
| 4/    |                                         |                                                                             |
| 48    | Kr49/PWM2L/RB13                         | JJ1KF40/S1PWM/H/S1RB13                                                      |

#### TABLE 7: 48-PIN QFN/TQFP/UQFN

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

### 3.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-3 and Figure 3-4.

| Register(s) Name                  | Description                                                   |
|-----------------------------------|---------------------------------------------------------------|
| W0 through W15 <sup>(1)</sup>     | Working Register Array                                        |
| W0 through W14 <sup>(1)</sup>     | Alternate Working Register Array 1                            |
| W0 through W14 <sup>(1)</sup>     | Alternate Working Register Array 2                            |
| W0 through W14 <sup>(1)</sup>     | Alternate Working Register Array 3                            |
| W0 through W14 <sup>(1)</sup>     | Alternate Working Register Array 4                            |
| ACCA, ACCB                        | 40-Bit DSP Accumulators (Additional 4 Alternate Accumulators) |
| PC                                | 23-Bit Program Counter                                        |
| SR                                | ALU and DSP Engine STATUS Register                            |
| SPLIM                             | Stack Pointer Limit Value Register                            |
| TBLPAG                            | Table Memory Page Address Register                            |
| DSRPAG                            | Extended Data Space (EDS) Read Page Register                  |
| RCOUNT                            | REPEAT Loop Counter Register                                  |
| DCOUNT                            | DO Loop Counter Register                                      |
| DOSTARTH, DOSTARTL <sup>(2)</sup> | DO Loop Start Address Register (High and Low)                 |
| DOENDH, DOENDL                    | DO Loop End Address Register (High and Low)                   |
| CORCON                            | Contains DSP Engine, DO Loop Control and Trap Status bits     |

### TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

**Note 1:** Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

# 3.1.8 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33CH128MP508 family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

#### 3.1.8.1 Multiplier

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

#### 3.1.8.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- · 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. There are additional instructions: DIV2 and DIVF2. Divide instructions will complete in six cycles.

#### 3.1.9 DSP ENGINE

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are, ADD, SUB, NEG, MIN and MAX.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (USx)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

| TABLE 3-2: | DSP INSTRUCTIONS |
|------------|------------------|
|            | SUMMARY          |

| Instruction | Algebraic<br>Operation  | ACC<br>Write-Back |
|-------------|-------------------------|-------------------|
| CLR         | A = 0                   | Yes               |
| ED          | $A = (x - y)^2$         | No                |
| EDAC        | $A = A + (x - y)^2$     | No                |
| MAC         | $A = A + (x \bullet y)$ | Yes               |
| MAC         | $A = A + x^2$           | No                |
| MOVSAC      | No change in A          | Yes               |
| MPY         | $A = x \bullet y$       | No                |
| MPY         | $A = x^2$               | No                |
| MPY.N       | $A = -x \bullet y$      | No                |
| MSC         | $A = A - x \bullet y$   | Yes               |

# REGISTER 3-24: TRISX: OUTPUT ENABLE FOR PORTX REGISTER

| R/W-1                                              | R/W-1 | R/W-1            | R/W-1           | R/W-1                                   | R/W-1 | R/W-1 | R/W-1 |
|----------------------------------------------------|-------|------------------|-----------------|-----------------------------------------|-------|-------|-------|
|                                                    |       |                  | TRIS            | x<15:8>                                 |       |       |       |
| bit 15                                             |       |                  |                 |                                         |       |       | bit 8 |
|                                                    |       |                  |                 |                                         |       |       |       |
| R/W-1                                              | R/W-1 | R/W-1            | R/W-1           | R/W-1                                   | R/W-1 | R/W-1 | R/W-1 |
|                                                    |       |                  | TRIS            | Sx<7:0>                                 |       |       |       |
| bit 7                                              |       |                  |                 |                                         |       |       | bit 0 |
|                                                    |       |                  |                 |                                         |       |       |       |
| Legend:                                            |       |                  |                 |                                         |       |       |       |
| R = Readable bit W = Writable bit U = Unimplemente |       |                  | mented bit, rea | ad as '0'                               |       |       |       |
| -n = Value at F                                    | POR   | '1' = Bit is set |                 | '0' = Bit is cleared x = Bit is unknown |       |       | nown  |

bit 15-0 **TRISx<15:0**: Output Enable for PORTx bits 1 = LATx[n] is not driven on the PORTx[n] pin

0 = LATx[n] is driven on the PORTx[n] pin

#### REGISTER 3-25: PORTX: INPUT DATA FOR PORTX REGISTER

| R/W-1                                                   | R/W-1        | R/W-1 | R/W-1          | R/W-1        | R/W-1           | R/W-1    | R/W-1 |
|---------------------------------------------------------|--------------|-------|----------------|--------------|-----------------|----------|-------|
|                                                         |              |       | PORT           | <15:8>       |                 |          |       |
| bit 15                                                  | bit 15 bit 8 |       |                |              |                 |          |       |
|                                                         |              |       |                |              |                 |          |       |
| R/W-1                                                   | R/W-1        | R/W-1 | R/W-1          | R/W-1        | R/W-1           | R/W-1    | R/W-1 |
|                                                         |              |       | PORT           | x<7:0>       |                 |          |       |
| bit 7                                                   |              |       |                |              |                 |          | bit 0 |
|                                                         |              |       |                |              |                 |          |       |
| Legend:                                                 |              |       |                |              |                 |          |       |
| R = Readable bit W = Writable bit                       |              |       |                | U = Unimplen | nented bit, rea | d as '0' |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared |              | ared  | x = Bit is unk | nown         |                 |          |       |

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM7R7  | ICM7R6  | ICM7R5  | ICM7R4  | ICM7R3  | ICM7R2  | ICM7R1  | ICM7R0  |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
| TCKI7R7 | TCKI7R6 | TCKI7R5 | TCKI7R4 | TCKI7R3 | TCKI7R2 | TCKI7R1 | TCKI7R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Logondy |         |         |         |         |         |         |         |

#### REGISTER 3-45: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-8 ICM7R<7:0>: Assign SCCP Capture 7 (ICM7) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI7R<7:0>:** Assign SCCP Timer7 (TCKI7) Input to the Corresponding RPn Pin bits See Table 3-30.

# REGISTER 3-46: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

| bit 15 | 1      | 1      | 1      | 1      | 1      |        | bit 8  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM8R7 | ICM8R6 | ICM8R5 | ICM8R4 | ICM8R3 | ICM8R2 | ICM8R1 | ICM8R0 |
| R/W-0  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI8R7 | TCKI8R6 | TCKI8R5 | TCKI8R4 | TCKI8R3 | TCKI8R2 | TCKI8R1 | TCKI8R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8 ICM8R<7:0>: Assign SCCP Capture 8 (ICM8) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI8R<7:0>:** Assign SCCP Timer8 (TCKI8) Input to the Corresponding RPn Pin bits See Table 3-30.

# REGISTER 3-101: DMTHOLDREG: DMT HOLD REGISTER<sup>(1)</sup>

| R/W-0                                                                      | R/W-0 | R/W-0 | R/W-0 | R/W-0    | R/W-0 | R/W-0 | R/W-0 |
|----------------------------------------------------------------------------|-------|-------|-------|----------|-------|-------|-------|
|                                                                            |       |       | UPRC  | NT<15:8> |       |       |       |
| bit 15                                                                     |       |       |       |          |       |       | bit 8 |
|                                                                            |       |       |       |          |       |       |       |
| R/W-0                                                                      | R/W-0 | R/W-0 | R/W-0 | R/W-0    | R/W-0 | R/W-0 | R/W-0 |
|                                                                            |       |       | UPRO  | CNT<7:0> |       |       |       |
| bit 7                                                                      |       |       |       |          |       |       | bit 0 |
|                                                                            |       |       |       |          |       |       |       |
| Legend:                                                                    |       |       |       |          |       |       |       |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'       |       |       |       |          |       |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |       |       |       |          | nown  |       |       |

bit 15-0 UPRCNT<15:0>: DMTCNTH Register Value when DMTCNTL and DMTCNTH were Last Read bits

**Note 1:** The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

### REGISTER 3-178: ADTRIGNL AND ADTRIGNH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4)

| U-0    | U-0 | U-0 | R/W-0        | R/W-0        | R/W-0        | R/W-0        | R/W-0        |
|--------|-----|-----|--------------|--------------|--------------|--------------|--------------|
| _      | —   | -   | TRGSRC(x+1)4 | TRGSRC(x+1)3 | TRGSRC(x+1)2 | TRGSRC(x+1)1 | TRGSRC(x+1)0 |
| bit 15 |     |     |              |              |              |              | bit 8        |
|        |     |     |              |              |              |              |              |
| U-0    | U-0 | U-0 | R/W-0        | R/W-0        | R/W-0        | R/W-0        | R/W-0        |
| _      | —   | _   | TRGSRCx4     | TRGSRCx3     | TRGSRCx2     | TRGSRCx1     | TRGSRCx0     |
| bit 7  |     |     |              |              |              |              | bit 0        |

.

| Legena:           |                  |                                |                    |
|-------------------|------------------|--------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as | '0'                |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared           | x = Bit is unknown |

### bit 15-13 Unimplemented: Read as '0'

| bit 12-8 | <b>TRGSRC(x+1)&lt;4:0&gt;:</b> Trigger Source Selection for Corresponding Analog Input bits (TRGSRC1 to TRGSRC19 – Odd) |
|----------|-------------------------------------------------------------------------------------------------------------------------|
|          | 11111 = ADTRG31 (PPS input)                                                                                             |
|          | 11110 = Master PTG                                                                                                      |
|          | 11101 = Slave CLC1                                                                                                      |
|          | 11100 = Master CLC1                                                                                                     |
|          | 11011 = Slave PWM8 Trigger 2                                                                                            |
|          | 11010 = Slave PWM5 Trigger 2                                                                                            |
|          | 11001 = Slave PWM3 Trigger 2                                                                                            |
|          | 11000 = Slave PWM1 Trigger 2                                                                                            |
|          | 10111 = Master SCCP4 PWM interrupt                                                                                      |
|          | 10110 = Master SCCP3 PWM interrupt                                                                                      |
|          | 10101 = Master SCCP2 PWM interrupt                                                                                      |
|          | 10100 = Master SCCP1 PWM interrupt                                                                                      |
|          | 10011 = Reserved                                                                                                        |
|          | 10010 = Reserved                                                                                                        |
|          | 10001 = Reserved                                                                                                        |
|          | 10000 = Reserved                                                                                                        |
|          | 01111 = Reserved                                                                                                        |
|          | 01110 = Reserved                                                                                                        |
|          | 01101 = Reserved                                                                                                        |
|          | 01100 = Reserved                                                                                                        |
|          | 01011 = Master PWM4 Trigger 2                                                                                           |
|          | 01010 = Master PWM4 Trigger 1                                                                                           |
|          | 01001 = Master PWM3 Trigger 2                                                                                           |
|          | 01000 = Master PWM3 Trigger 1                                                                                           |
|          | 00111 = Master PWM2 Trigger 2                                                                                           |
|          | 00110 = Master PWM2 Trigger 1                                                                                           |
|          | 00101 = Master PWM1 Trigger 2                                                                                           |
|          | 00100 = Master PWM1 Trigger 1                                                                                           |
|          | 00011 = Reserved                                                                                                        |
|          | 00010 = Level software trigger                                                                                          |
|          | 00001 = Common software trigger                                                                                         |
|          | 00000 = No trigger is enabled                                                                                           |
| bit 7-5  | Unimplemented: Read as '0'                                                                                              |
|          |                                                                                                                         |





© 2017-2018 Microchip Technology Inc

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK1R7 | SCK1R6 | SCK1R5 | SCK1R4 | SCK1R3 | SCK1R2 | SCK1R1 | SCK1R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |
|        |        |        |        |        |        |        |        |
| R/W-0  |
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |
|        |        |        |        |        |        |        |        |

#### REGISTER 4-49: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8SCK1R<7:0>: Assign SPI1 Clock Input (S1SCK1) to the Corresponding S1RPn Pin bits<br/>See Table 4-27.bit 7-0SDI1R<7:0>: Assign SPI1 Data Input (S1SDI1) to the Corresponding S1RPn Pin bits

See Table 4-27.

### REGISTER 4-50: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| REFOIR7 | REFOIR6 | REFOIR5 | REFOIR4 | REFOIR3 | REFOIR2 | REFOIR1 | REFOIR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-8 **REFOIR<7:0>:** Assign Reference Clock Input (S1REFOI) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (S1SS1) to the Corresponding S1RPn Pin bits See Table 4-27.

| R/W-0           | R/W-0   | R/W-0            | R/W-0   | R/W-0            | R/W-0            | R/W-0           | R/W-0   |
|-----------------|---------|------------------|---------|------------------|------------------|-----------------|---------|
| U1CTSR7         | U1CTSR6 | U1CTSR5          | U1CTSR4 | U1CTSR3          | U1CTSR2          | U1CTSR1         | U1CTSR0 |
| bit 15          |         |                  |         |                  |                  |                 | bit 8   |
|                 |         |                  |         |                  |                  |                 |         |
| U-0             | U-0     | U-0              | U-0     | U-0              | U-0              | U-0             | U-0     |
| —               | —       | —                | —       | —                |                  | —               | —       |
| bit 7           |         |                  |         |                  |                  |                 | bit 0   |
|                 |         |                  |         |                  |                  |                 |         |
| Legend:         |         |                  |         |                  |                  |                 |         |
| R = Readable I  | bit     | W = Writable     | bit     | U = Unimpler     | nented bit, read | as '0'          |         |
| -n = Value at P | OR      | '1' = Bit is set |         | '0' = Bit is cle | ared             | x = Bit is unkr | nown    |

#### REGISTER 4-51: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

bit 15-8 **U1CTSR<7:0>:** Assign UART1 Clear-to-Send (S1U1CTS) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

#### REGISTER 4-52: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

| R/W-0                              | R/W-0   | R/W-0   | R/W-0   | R/W-0                                   | R/W-0   | R/W-0   | R/W-0   |
|------------------------------------|---------|---------|---------|-----------------------------------------|---------|---------|---------|
| PCI17R7                            | PCI17R6 | PCI17R5 | PCI17R4 | PCI17R3                                 | PCI17R2 | PCI17R1 | PCI17R0 |
| bit 15                             |         |         |         |                                         |         |         | bit 8   |
|                                    |         |         |         |                                         |         |         |         |
| U-0                                | U-0     | U-0     | U-0     | U-0                                     | U-0     | U-0     | U-0     |
| —                                  | —       | —       | —       | —                                       | —       | —       |         |
| bit 7                              |         |         |         |                                         |         |         | bit 0   |
|                                    |         |         |         |                                         |         |         |         |
| Legend:                            |         |         |         |                                         |         |         |         |
| R = Readable bit W = Writable bit  |         |         | bit     | U = Unimplemented bit, read as '0'      |         |         |         |
| -n = Value at POR (1' = Bit is set |         |         |         | '0' = Bit is cleared x = Bit is unknown |         |         | nown    |
|                                    |         |         |         |                                         |         |         |         |

bit 15-8 **PCI17R<7:0>:** Assign PWM Input 17 (S1PCI17) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP45R5 | RP45R4 | RP45R3 | RP45R2 | RP45R1 | RP45R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |
| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —      | —   | RP44R5 | RP44R4 | RP44R3 | RP44R2 | RP44R1 | RP44R0 |
| bit 7  |     |        |        |        |        |        | bit 0  |
|        |     |        |        |        |        |        |        |

#### REGISTER 4-66: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | t, read as '0'     |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13-8  | <b>RP45R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to S1RP45 Output Pin bits (see Table 4-31 for peripheral function numbers) |
| bit 7-6   | Unimplemented: Read as '0'                                                                                                                 |
| bit 5-0   | <b>RP44R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to S1RP44 Output Pin bits (see Table 4-31 for peripheral function numbers) |

# REGISTER 4-67: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP47R5 | RP47R4 | RP47R3 | RP47R2 | RP47R1 | RP47R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | RP46R5 | RP46R4 | RP46R3 | RP46R2 | RP46R1 | RP46R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP47R<5:0>:** Peripheral Output Function is Assigned to S1RP47 Output Pin bits<br/>(see Table 4-31 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to S1RP46 Output Pin bits (see Table 4-31 for peripheral function numbers)

# REGISTER 7-12: PMD4: SLAVE PERIPHERAL MODULE DISABLE 4 CONTROL REGISTER

| U-0             | U-0 | U-0              | U-0 | U-0               | U-0              | U-0             | U-0   |
|-----------------|-----|------------------|-----|-------------------|------------------|-----------------|-------|
|                 |     | —                | —   | —                 | —                | —               |       |
| bit 15          |     |                  |     |                   |                  |                 | bit 8 |
|                 |     |                  |     |                   |                  |                 |       |
| U-0             | U-0 | U-0              | U-0 | R/W-0             | U-0              | U-0             | U-0   |
|                 | —   | —                | _   | REFOMD            | —                | —               | —     |
| bit 7           |     |                  |     |                   |                  |                 | bit 0 |
|                 |     |                  |     |                   |                  |                 |       |
| Legend:         |     |                  |     |                   |                  |                 |       |
| R = Readable    | bit | W = Writable I   | oit | U = Unimplem      | nented bit, read | l as '0'        |       |
| -n = Value at F | POR | '1' = Bit is set |     | '0' = Bit is clea | ared             | x = Bit is unkn | iown  |
|                 |     |                  |     |                   |                  |                 |       |

bit 15-4 Unimplemented: Read as '0'

- bit 3 **REFOMD:** Reference Clock Module Disable bit
  - 1 = Reference clock module is disabled
  - 0 = Reference clock module is enabled
- bit 2-0 Unimplemented: Read as '0'

| U-0           | R/W-0                                                     | U-0              | U-0      | U-0               | R/W-0            | U-0             | U-0   |  |
|---------------|-----------------------------------------------------------|------------------|----------|-------------------|------------------|-----------------|-------|--|
| _             | PGA3MD                                                    | —                |          | _                 | PGA2MD           | _               |       |  |
| bit 15        |                                                           |                  |          | ·                 |                  |                 | bit 8 |  |
|               |                                                           |                  |          |                   |                  |                 |       |  |
| U-0           | U-0                                                       | R/W-0            | R/W-0    | R/W-0             | R/W-0            | U-0             | U-0   |  |
| _             | —                                                         | CLC4MD           | CLC3MD   | CLC2MD            | CLC1MD           | —               | —     |  |
| bit 7         |                                                           |                  |          |                   |                  |                 | bit 0 |  |
|               |                                                           |                  |          |                   |                  |                 |       |  |
| Legend:       |                                                           |                  |          |                   |                  |                 |       |  |
| R = Readable  | e bit                                                     | W = Writable b   | pit      | U = Unimplem      | nented bit, read | d as '0'        |       |  |
| -n = Value at | POR                                                       | '1' = Bit is set |          | '0' = Bit is clea | ared             | x = Bit is unkn | nown  |  |
|               |                                                           |                  |          |                   |                  |                 |       |  |
| bit 15        | Unimplement                                               | ted: Read as 'o  | )'       |                   |                  |                 |       |  |
| bit 14        | PGA3MD: PG                                                | GA3 Module Dis   | able bit |                   |                  |                 |       |  |
|               | 1 = PGA3 mo                                               | dule is disabled | ł        |                   |                  |                 |       |  |
|               | 0 = PGA3 mo                                               | dule is enabled  |          |                   |                  |                 |       |  |
| bit 13-11     | Unimplement                                               | ted: Read as '0  | )'       |                   |                  |                 |       |  |
| bit 10        | PGA2MD: PG                                                | GA2 Module Dis   | able bit |                   |                  |                 |       |  |
|               | 1 = PGA2 mo                                               | dule is disabled | ł        |                   |                  |                 |       |  |
|               | 0 = PGA2 mo                                               | dule is enabled  |          |                   |                  |                 |       |  |
| bit 9-6       | Unimplement                                               | ted: Read as '0  | )'       |                   |                  |                 |       |  |
| bit 5         | CLC4MD: CL                                                | C4 Module Dis    | able bit |                   |                  |                 |       |  |
|               | $1 = CLC4 \mod 0$                                         | dule is disabled |          |                   |                  |                 |       |  |
| bit 1         |                                                           |                  | oblo bit |                   |                  |                 |       |  |
| DIL 4         | 1 = CLC3 mod                                              | dule is disabled |          |                   |                  |                 |       |  |
|               | 1 = CLC3 module is disabled<br>0 = CLC3 module is enabled |                  |          |                   |                  |                 |       |  |
| bit 3         | CLC2MD: CLC2 Module Disable bit                           |                  |          |                   |                  |                 |       |  |
|               | 1 = CLC2 module is disabled                               |                  |          |                   |                  |                 |       |  |
|               | 0 = CLC2 module is enabled                                |                  |          |                   |                  |                 |       |  |
| bit 2         | CLC1MD: CLC1 Module Disable bit                           |                  |          |                   |                  |                 |       |  |
|               | 1 = CLC1 mod                                              | dule is disabled | l        |                   |                  |                 |       |  |
|               | 0 = CLC1 mod                                              | dule is enabled  |          |                   |                  |                 |       |  |
| bit 1-0       | Unimplement                                               | ted: Read as '0  | )'       |                   |                  |                 |       |  |

### REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

| R-0                                | R-0 | R-0              | R-0               | R-0                    | R-0            | R-0       | R-0   |
|------------------------------------|-----|------------------|-------------------|------------------------|----------------|-----------|-------|
|                                    |     |                  | PGxC              | AP<15:8>               |                |           |       |
| bit 15                             |     |                  |                   |                        |                |           | bit 8 |
|                                    |     |                  |                   |                        |                |           |       |
| R-0                                | R-0 | R-0              | R-0               | R-0                    | R-0            | R-0       | R-0   |
|                                    |     |                  | PGxCA             | \P<7:0> <sup>(1)</sup> |                |           |       |
| bit 7                              |     |                  |                   |                        |                |           | bit 0 |
|                                    |     |                  |                   |                        |                |           |       |
| Legend:                            |     |                  |                   |                        |                |           |       |
| R = Readable                       | bit | W = Writable bit |                   | U = Unimplem           | ented bit, rea | ıd as '0' |       |
| -n = Value at POR '1' = Bit is set |     |                  | '0' = Bit is clea | ired                   | x = Bit is unk | nown      |       |

# REGISTER 9-32: PGxCAP: PWM GENERATOR x CAPTURE REGISTER

bit 15-0 **PGxCAP<15:0>:** PGx Time Base Capture bits<sup>(1)</sup>

**Note 1:** PGxCAP<1:0> will read as '0' in Standard Resolution mode. PGxCAP<4:0> will read as '0' in High-Resolution mode.

# REGISTER 13-13: UxTXCHK: UARTx TRANSMIT CHECKSUM REGISTER

| U-0          | U-0         | U-0              | U-0             | U-0                | U-0              | U-0             | U-0   |
|--------------|-------------|------------------|-----------------|--------------------|------------------|-----------------|-------|
| —            | —           | —                | -               | —                  | —                | —               | —     |
| bit 15       |             |                  |                 |                    |                  |                 | bit 8 |
|              |             |                  |                 |                    |                  |                 |       |
| R/W-0        | R/W-0       | R/W-0            | R/W-0           | R/W-0              | R/W-0            | R/W-0           | R/W-0 |
|              |             |                  | TXCH            | <<7:0>             |                  |                 |       |
| bit 7        |             |                  |                 |                    |                  |                 | bit 0 |
|              |             |                  |                 |                    |                  |                 |       |
| Legend:      |             |                  |                 |                    |                  |                 |       |
| R = Readab   | le bit      | W = Writable     | bit             | U = Unimplem       | nented bit, read | d as '0'        |       |
| -n = Value a | It POR      | '1' = Bit is set |                 | '0' = Bit is clea  | ared             | x = Bit is unki | nown  |
|              |             |                  |                 |                    |                  |                 |       |
| bit 15-8     | Unimplemer  | nted: Read as '0 | ,               |                    |                  |                 |       |
| bit 7-0      | TXCHK<7:0   | >: Transmit Cheo | cksum bits (cal | culated from T     | ( words)         |                 |       |
|              | LIN Modes:  |                  |                 |                    |                  |                 |       |
|              | COEN = 1: S | um of all transm | itted data + ad | dition carries, in | Icluding PID.    |                 |       |
|              | CUEN = 0:S  | um or all transm | illeu uata + ad | ultion carries, e  | xcluaing PID.    |                 |       |
|              | LIN Slave:  |                  |                 |                    |                  |                 |       |

Cleared when Break is detected.

LIN Master/Slave:

Cleared when Break is detected.

Other Modes:

C0EN = 1: Sum of every byte transmitted + addition carries.

C0EN = 0: Value remains unchanged.

#### REGISTER 13-17: UxINT: UARTx INTERRUPT REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| HS/R/W-0 | HS/R/W-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0   |
|----------|----------|-----|-----|-----|-------|-----|-------|
| WUIF     | ABDIF    | —   | —   | —   | ABDIE | —   | —     |
| bit 7    |          |     |     |     |       |     | bit 0 |

| Legend:           | HS = Hardware Settable bit |                             |                    |
|-------------------|----------------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-8 | Unimplemented: Read as '0'                                                                                                                  |  |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| bit 7    | WUIF: Wake-up Interrupt Flag bit                                                                                                            |  |  |  |  |  |  |  |
|          | <ul> <li>1 = Sets when WAKE = 1 and RX makes a '1'-to-'0' transition; triggers event interrupt (must be cleared<br/>by software)</li> </ul> |  |  |  |  |  |  |  |
|          | 0 = WAKE is not enabled or WAKE is enabled, but no wake-up event has occurred                                                               |  |  |  |  |  |  |  |
| bit 6    | ABDIF: Auto-Baud Completed Interrupt Flag bit                                                                                               |  |  |  |  |  |  |  |
|          | 1 = Sets when ABD sequence makes the final '1'-to-'0' transition; triggers event interrupt (must be cleared by software)                    |  |  |  |  |  |  |  |
|          | 0 = ABAUD is not enabled or ABAUD is enabled but auto-baud has not completed                                                                |  |  |  |  |  |  |  |
| bit 5-3  | Unimplemented: Read as '0'                                                                                                                  |  |  |  |  |  |  |  |
| bit 2    | ABDIE: Auto-Baud Completed Interrupt Enable Flag bit                                                                                        |  |  |  |  |  |  |  |
|          | 1 = Allows ABDIF to set an event interrupt                                                                                                  |  |  |  |  |  |  |  |
|          | 0 = ABDIF does not set an event interrupt                                                                                                   |  |  |  |  |  |  |  |
| bit 1-0  | Unimplemented: Read as '0'                                                                                                                  |  |  |  |  |  |  |  |

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
  - RX watermark interrupt
  - SPIROV = 1
  - SPIRBF = 1
  - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
  - TX watermark interrupt
  - SPITUR = 1
  - SPITBF = 1
  - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxGIF. This event occurs when:
  - FRMERR = 1
  - SPIBUSY = 1
  - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 14-1 and Figure 14-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
  - a) Clear the SPIxBUFL and SPIxBUFH registers.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

# dsPIC33CH128MP508 FAMILY



#### FIGURE 16-1: SENTX MODULE BLOCK DIAGRAM

# FIGURE 16-2: SENTX PROTOCOL DATA FRAMES

| Sy | ync Period | Status | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Data 6 | CRC   | Pause (optional) | Ļ |
|----|------------|--------|--------|--------|--------|--------|--------|--------|-------|------------------|---|
| I  | 56         | 12-27  | 12-27  | 12-27  | 12-27  | 12-27  | 12-27  | 12-27  | 12-27 | 12-768           |   |

# 16.2 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync, followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME<15:0> (SENTxCON2<15:0>) bits. The tick period calculations are shown in Equation 16-1.

#### EQUATION 16-1: TICK PERIOD CALCULATION

 $TICKTIME < 15:0 > = \frac{TTICK}{TCLK} - 1$ 

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME<15:0> (SENTxCON3<15:0>) bits. The formulas used to calculate the value of frame time are shown in Equation 16-2.

#### EQUATION 16-2: FRAME TIME CALCULATIONS

FRAMETIME<15:0> = TTICK/TFRAME

 $FRAMETIME < 15:0 \ge 122 + 27N$ 

 $FRAMETIME < 15:0 \ge 848 + 12N$ 

Where:

 $T_{FRAME}$  = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME<15:0> value. FRAMETIME<15:0> values beyond 2047 will have no effect on the length of a data frame.

### 16.2.1 TRANSMIT MODE CONFIGURATION

#### 16.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 0 for Transmit mode.
- Write TXM (SENTxCON1<10>) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1<8>) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1<7>) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for the desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC<3:0> (SENTxDATL<3:0>).
- 11. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.