

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	39
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 31x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp505t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
r							
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	Ibled				
hit 14		ccumulator A (Overflow Tran F	lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator A			
	0 = Trap was	s not caused by	y an overflow o	f Accumulator A	4		
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	-lag bit			
	1 = Trap was	s caused by an	overflow of Ac	cumulator B	_		
	0 = Trap was	s not caused by	y an overflow o	f Accumulator E	3		
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	\perp = Trap was 0 = Trap was	s caused by a (s not caused b	v a catastrophic ov	erriow of Accurr	cumulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by a	catastrophic ov	erflow of Accun	nulator B		
	0 = Trap was	s not caused by	y a catastrophic	c overflow of Ac	cumulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove	rflow of Accum	nulator A				
		Isabled	a				
bit 9	t 9 OVBTE: Accumulator B Overflow Trap Enable bit						
	1 = Trap ove 0 = Trap is d	isabled					
bit 8	COVTE: Catastrophic Overflow Trap Enable bit						
1 = Trap catastrophic overflow of Accumulator A or B is enabled							
	0 = Trap is d	isabled					
bit 7	SFTACERR	Shift Accumu	lator Error State	us bit			
	1 = Math err	or trap was cau	used by an inva	alid accumulator	r shift		
	o = wath error	or trap was not	caused by an	invalio accumu	iator snift		

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

3.6.16 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.16.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

REGISTER 3-99: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	⁻ V<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSIN	TV<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **PSINTV<15:0>:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

REGISTER 3-100: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSINT	V<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as 'C			l as '0'				
-n = Value at POR (1' = Bit is set (0' = E		'0' = Bit is cle	ared	x = Bit is unki	nown		
L							

bit 15-0 **PSINTV<31:16>:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Logond:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	bit U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-182: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER (x = 0, 1, 2, 3) (CONTINUED)

bit 4-0 FLCHSEL<4:0>: Oversampling Filter Input Channel Selection bits

11111 = Reserved ... 10101 = Reserved 10100 = Band gap, 1.2V (AN20) 10011 = Temperature sensor (AN19) 10010 = SPGA3 (AN18) 10001 = SPGA2 (AN17) 10000 = SPGA1 (AN16) 01111 = AN15 ... 00000 = AN0

4.2.5 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-17 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.2.5.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.2.5.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-17: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.4 Slave Resets

Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Reset**" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is shown in Figure 4-15.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.2 "Slave Memory Organization" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 4-15).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note:	The status bits in the RCON register					
	should be cleared after they are read so					
	that the next RCON register value after a					
	device Reset is meaningful.					

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

FIGURE 4-15: RESET SYSTEM BLOCK DIAGRAM

4.5.7 SLAVE INTERRUPT CONTROL/STATUS REGISTERS

REGISTER 4-16: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 4-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

Function	RPnR<5:0>	Output Name
Default PORT	000000	S1RPn tied to Default Pin
S1U1TX	000001	S1RPn tied to UART1 Transmit
S1U1RTS	000010	S1RPn tied to UART1 Request-to-Send
S1SDO1	000101	S1RPn tied to SPI1 Data Output
S1SCK1OUT	000110	S1RPn tied to SPI1 Clock Output
S1SS1OUT	000111	S1RPn tied to SPI1 Slave Select
S1REFCLKO	001110	S1RPn tied to Reference Clock Output
S10CM1	001111	S1RPn tied to SCCP1 Output
S10CM2	010000	S1RPn tied to SCCP2 Output
S1OCM3	010001	S1RPn tied to SCCP3 Output
S10CM4	010010	S1RPn tied to SCCP4 Output
S1CMP1	010111	S1RPn tied to Comparator 1 Output
S1CMP2	011000	S1RPn tied to Comparator 2 Output
S1CMP3	011001	S1RPn tied to Comparator 3 Output
S1PWMH4	100010	S1RPn tied to PWM4H Output
S1PWML4	100011	S1RPn tied to PWM4L Output
S1PWMEA	100100	S1RPn tied to PWM Event A Output
S1PWMEB	100101	S1RPn tied to PWM Event B Output
S1QEICMP1	100110	S1RPn tied to QEI Comparator Output
S1CLC1OUT	101000	S1RPn tied to CLC1 Output
S1CLC2OUT	101001	S1RPn tied to CLC2 Output
S1PWMEC	101100	S1RPn tied to PWM Event C Output
S1PWMED	101101	S1RPn tied to PWM Event D Output
MPTGTRG1	101110	Master PTG24 Output
MPTGTRG2	101111	Master PTG25 Output
S1CLC3OUT	110010	S1RPn tied to CLC3 Output

TABLE 4-31: OUTPUT SELECTION FOR REMAPPABLE PINS (S1RPn)

'1' = Bit is set

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

REGISTER 4-76: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP65R<5:0>: Peripheral Output Function is Assigned to S1RP65 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP64R<5:0>: Peripheral Output Function is Assigned to S1RP64 Output Pin bits

REGISTER 4-77: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

(see Table 4-31 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP67R5	RP67R4	RP67R3	RP67R2	RP67R1	RP67R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP66R5	RP66R4	RP66R3	RP66R2	RP66R1	RP66R0
bit 7				·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP67R<5:0>:** Peripheral Output Function is Assigned to S1RP67 Output Pin bits (see Table 4-31 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP66R<5:0>:** Peripheral Output Function is Assigned to S1RP66 Output Pin bits (see Table 4-31 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown

REGISTER 4-89:	ADCON4L: ADC	CONTROL	REGISTER 4 LOW
----------------	--------------	---------	-----------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 Reserved: Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

REGISTER 5-3: MSI1KEY: MSI1 MASTER INTERLOCK KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
	MSI1KEY<7:0>									
bit 7							bit 0			
Legend:										

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 MSI1KEY<7:0>: MSI1 Key bits

The MSI1KEYx bits are monitored for specific write values.

REGISTER 5-4: MSI1MBXS: MSI1 MASTER MAILBOX DATA TRANSFER STATUS REGISTER

r							
bit 15							bit 8
_	—	_		—	—	_	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTRD	Y <h:a></h:a>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DTRDY<H:A>: Data Ready Status bits

- 1 = Data transmitter has indicated that data is available to be read by data receiver in MSI1MBXnD (DTRDYx is automatically set by a data transmitter processor write to assigned MSI1MBXnD); Meaning when configured as a:
 - Transmitter: Data is written. Waiting for receiver to read.
 - Receiver: New data is ready to read.
- 0 = No data is available to be read by receiver in MSI1MBXnD (or the handshake protocol logic block is disabled)

REGISTER 9-7: CMBTRIGL: COMBINATIONAL TRIGGER REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTA8EN	CTA7EN	CTA6EN	CTA5EN	CTA4EN	CTA3EN	CTA2EN	CTA1EN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	Unimplement	ted: Read as				o	-
bit 7	CTA8EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#8 as Source for	Combinational	Irigger A bit
	\perp = Enables s 0 = Disabled	specified trigge	er signal to be	OR a into the	Combinatorial Tr	igger A signal	
bit 6	CTA7EN: Ena	able Trigger Ou	Itput from PW	M Generator #	7 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
	0 = Disabled						
bit 5	CTA6EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#6 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
bit 4		able Trigger Ou	itout from D\M	M Conorator t	te as Source for	Combinational	Triggor A bit
DIL 4	1 = Enables	specified triage	ar signal to be	OR'd into the	Combinatorial Tr		Thyger A bit
	0 = Disabled	specifica trigge	a signal to be				
bit 3	CTA4EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#4 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
	0 = Disabled						
bit 2	CTA3EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#3 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	
bit 1		able Trigger Ou	itout from D\M	M Conorator t	to an Source for	Combinational	Triggor A bit
DILI	1 - Enables	able Thyyel Ot	ar signal to be	OP'd into the	Combinatorial Tr		mgger A bit
	0 = Disabled	specified trigge	a signal to be				
bit 0	CTA1EN: Ena	able Trigger Ou	Itput from PW	M Generator #	#1 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigge	er signal to be	OR'd into the	Combinatorial Tr	igger A signal	20
	0 = Disabled						

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	_			
bit 15							bit 8
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	POLACE		PSSACE1	PSSACE0	PSSBDF1	PSSBDF0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 15	OETRIG: CCI	Px Dead-Time	Select bit				
	1 = For Trigg	ered mode (TR	IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered
	0 = Normal o	utput pin opera	tion				
bit 14-12	OSCNT<2:0>	: One-Shot Eve	ent Count bits				
	111 = Extend	s one-shot eve	nt by 7 time ba	ise periods (8 ti	ime base perio	ds total)	
	110 = Extend 101 = Extend	s one-shot eve	nt by 6 time ba	ise periods (7 ti ase periods (6 ti	ime base perior	ds total) ds total)	
	100 = Extend	s one-shot eve	nt by 4 time ba	ase periods (5 t	ime base perior	ds total)	
	011 = Extend	s one-shot eve	nt by 3 time ba	ase periods (4 t	ime base period	ds total)	
	010 = Extend	s one-shot eve	nt by 2 time ba	ase periods (3 t	ime base perio	ds total)	
	001 = Extend	s one-snot eve	nt by 1 time ba	ise period (2 tir ent	ne base period	s total)	
bit 11-6	Unimplemen	ted: Read as '()'				
bit 5	POI ACE: CC	Px Output Pine		C and OCxE P	olarity Control h	oit	
bit o	1 = Output pir	n polarity is acti	ve low				
	0 = Output pir	n polarity is acti	ve high				
bit 4	Unimplemen	ted: Read as 'd)'				
bit 3-2	PSSACE<1:0	>: PWMx Outp	ut Pins, OCxA	, OCxC and O	CxE, Shutdown	State Control	bits
	11 = Pins are	driven active w	hen a shutdov	vn event occurs	5		
	10 = Pins are	driven inactive	when a shutd	own event occu	urs		
	0x = Pins are	in high-impeda	ince state whe	n a shutdown e	event occurs		
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins, OCMx	B, OCMxD, an	d OCMxF, Shut	tdown State Co	ontrol bits
	11 = Pins are	driven active w	/hen a shutdov	vn event occurs	S		
	10 = Pins are 0x = Pins are	in a high-impe	dance state wh	own event occl	uis Nevent occurs		
		a mgn mpc		ion a onataowi			

REGISTER 10-5: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

NOTES:

15.4 I²C Control/Status Registers

REGISTER 15-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

P/M/_0	11-0		D/\\/_1	P/M/_0	P/M/-0	P/\\/_0	P/M_0	
	0-0				A10M		SMEN	
hit 15		IZCOIDE	JOLINEL	311(101	ATOM	DISSEW	bit 8	
							bit o	
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7	1	I					bit 0	
Legend:		HC = Hardware	e Clearable bit					
R = Readab	ole bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	I2CEN: I2Cx I 1 = Enables th 0 = Disables the Unimplement	Enable bit (writa he I2Cx module he I2Cx module	able from softwa , and configure e; all I ² C pins a ,	are only) s the SDAx and re controlled by	d SCLx pins as port functions	serial port pins	5	
bit 13		x Ston in Idle M	ode bit					
bit 10	1 = Discontinu 0 = Continues	ues module operat	ration when de ion in Idle mod	vice enters Idle	e mode			
DIT 12	t 12 SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾ 1 = Releases the SCLx clock 0 = Holds the SCLx clock low (clock stretch) If STREN = 1: ⁽²⁾ User software may write '0' to initiate a clock stretch and write '1' to release the clock. Hardware clears at the beginning of every Slave data byte transmission. Hardware clears at the end of every Slave address byte reception. Hardware clears at the end of every Slave data byte reception. If STREN = 0: User software may only write '1' to release the clock. Hardware clears at the beginning of every Slave							
bit 11	STRICT: I2Cx	Strict Reserve	d Address Rule	Enable bit	,	<i></i>		
	 STRICT: I2CX Strict Reserved Address Rule Enable bit 1 = Strict Reserved Addressing is enforced; for reserved addresses, refer to Table 15-2. (In Slave Mode) – The device doesn't respond to reserved address space and addresses falling in that category are NACKed. (In Master Mode) – The device is allowed to generate addresses with reserved address space. 0 = Reserved Addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. (In Master Mode) – Reserved 							
bit 10	A10M: 10-Bit	Slave Address	Flag bit					
	1 = I2CxADD 0 = I2CxADD	is a 10-bit Slav is a 7-bit Slave	e address address					
bit 9	DISSLW: Slev	w Rate Control	Disable bit					
	1 = Slew rate 0 = Slew rate	control is disab control is enabl	led for Standar led for High-Spo	d Speed mode eed mode (400	(100 kHz, also kHz)	disabled for 1 l	MHz mode)	
Note 1: A	 I: Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave recention 							

2: Automatically cleared to '0' at the beginning of Slave transmission.

17.1 Timer1 Control Register

REGISTER 17-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
TON ⁽¹⁾	—	SIDL	TMWDIS	TMWIP	PRWIP	TECS1	TECS0
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
TGATE	—	TCKPS1	TCKPS0	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—
bit 7							bit 0
Legend:	L:4		L:4				
R = Readable		vv = vvritable	DIL	$0^{\circ} = 0^{\circ}$	nented bit, read	as u	
	FUR	I – DILIS SEL			aleu		IOWIT
bit 15	TON: Timer1	On hit(1)					
	1 = Starts 16-	bit Timer1					
	0 = Stops 16-	bit Timer1					
bit 14	Unimplemen	ted: Read as '	כ'				
bit 13	SIDL: Timer1	Stop in Idle Mo	ode bit				
	1 = Discontinu	ues module op	eration when	device enters I	dle mode		
h # 40		s module opera					
DICIZ	1 = Timer wri	tes are ignored	while a poster	able bit d write to TMP	1 or PP1 is sync	hronized to the	asynchronous
	clock don	nain					asynchionous
	0 = Back-to-t	back writes are	enabled in As	synchronous m	node		
bit 11	TMWIP: Asyn	nchronous Time	er1 Write in Pr	ogress bit			
	1 = Write to th	ne timer in Asyı	nchronous mo	de is pending			
hit 10		ie liner in Asyr	d Write in Pro	aross bit	;		
	1 = Write to th	ne Period regis	ter in Asynchr	onous mode is	spending		
	0 = Write to th	ne Period regis	ter in Asynchr	onous mode is	s complete		
bit 9-8	TECS<1:0>:	Timer1 Extende	ed Clock Sele	ct bits			
	11 = FRC clo	ck					
	10 = 2 ICY 01 = TCY						
	00 = External	Clock comes f	rom the T1Ck	(pin			
bit 7	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS =	1:					
	This bit is igno	ored.					
	<u>When $1CS = 1$</u> = Gated tim	<u>0:</u> le accumulation	n is enabled				
	0 = Gated tim	e accumulation	n is disabled				
bit 6	Unimplemen	ted: Read as '	כ'				
Note 1: Wh	nen Timer1 is en	abled in Extern	al Synchrono	us Counter m	ode (TCS = 1 T	SYNC = 1. TO	N = 1), anv

attempts by user software to write to the TMR1 register are ignored.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
	_	_	_	_	_		—	
bit 23				·			bit 16	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<15:8>								

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<7:0>								
bit 7							bit 0	

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16Unimplemented: Read as '1'bit 15-0DMTIVT<15:0>: DMT Window Interval Lower 16 bits

REGISTER 21-10: FDMTIVTH CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	_		—			—	
						bit 16	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<31:24>							
						bit 8	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<23:16>							
						bit 0	
	U-1 — R/PO-1 R/PO-1	U-1 U-1 — — — R/PO-1 R/PO-1 R/PO-1 R/PO-1	U-1 U-1 U-1 — — — — R/PO-1 R/PO-1 R/PO-1 DMTIVT R/PO-1 R/PO-1 R/PO-1 DMTIVT	U-1 U-1 U-1 U-1 — — — — R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 DMTIVT<31:24> DMTIVT<31:24>	U-1 U-1 U-1 U-1 — — — — R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 DMTIVT<31:24>	U-1 U-1 U-1 U-1 U-1 — — — — — R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 DMTIVT<31:24> R/PO-1 R/PO-1 R/PO-1	

Legend:	PO = Program Once bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 23-16 **Unimplemented:** Read as '1'

bit 15-0 DMTIVT<31:16>: DMT Window Interval Higher 16 bits

bit 8

21.6 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source based on the device Configuration bit selections.

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 24-32 of **Section 24.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

21.8 Watchdog Timer Control Registers

REGISTER 21-35: WDTCONL: WATCHDOG TIMER CONTROL REGISTER LOW

R/W-0	U-0	U-0	R-y	R-y	R-y	R-y	R-y
ON ^(1,2)	—	—	RUNDIV4 ⁽³⁾	RUNDIV3 ⁽³⁾	RUNDIV2 ⁽³⁾	RUNDIV1 ⁽³⁾	RUNDIV0 ⁽³⁾
bit 15		•	•	•	•		bit 8
R	R	R-y	R-y	R-y	R-y	R-y	HS/R/W-0
CLKSEL1 ^{(3,5}	⁵⁾ CLKSEL0 ^(3,5)	SLPDIV4 ⁽³⁾	SLPDIV3 ⁽³⁾	SLPDIV2 ⁽³⁾	SLPDIV1 ⁽³⁾	SLPDIV0 ⁽³⁾	WDTWINEN ⁽⁴⁾
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	y = Value fror	n Configuratior	n bit on POR	
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	bit 15 ON: Watchdog Timer Enable bit ^(1,2) 1 = Enables the Watchdog Timer if it is not enabled by the device configuration						
	0 = Disables t	he Watchdog 1	imer if it was e	enabled in softw	vare		
bit 14-13	Unimplement	ed: Read as ')'				
bit 12-8	RUNDIV<4:0>	: WDT Run M	ode Postscaler	Status bits ⁽³⁾			
bit 7-6	bit 7-6 CLKSEL<1:0>: WDT Run Mode Clock Select Status bits ^(3,5) 11 = LPRC Oscillator 10 = FRC Oscillator 01 = Reserved 00 = Fcy (Fosc/2)						
bit 5-1	SLPDIV<4:0>	: Sleep and Idl	e Mode WDT I	Postscaler Stat	us bits ⁽³⁾		
bit 0 WDTWINEN: Watchdog Timer Window Enable bit ⁽⁴⁾ 1 = Enables Window mode 0 = Disables Window mode							
 Note 1: A read of this bit will result in a '1' if the WDT is enabled by the device configuration or by software. 2: The user's software should not read or write to the peripheral's SERs in the SYSCI K cycle immediately. 							

- following the instruction that clears the module's ON bit.
- 3: These bits reflect the value of the Configuration bits.
- 4: The WDTWINEN bit reflects the status of the Configuration bit if the bit is set. If the bit is cleared, the value is controlled by software.
- 5: The available clock sources are device-dependent.