

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp506-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 5: 28-PIN UQFN

Pin #	Master Core	Slave Core
1	RP46/PWM1H/RB14	S1RP46/S1PWM1H/S1RB14
2	RP47/PWM1L/RB15	S1RP47/S1PWM6H/S1PWM1L/S1RB15
3	MCLR	_
4	AN0/CMP1A/RA0	S1RA0
5	AN1/RA1	S1AN15/S1RA1
6	AN2/RA2	S1AN16/S1RA2
7	AN3/IBIAS0/RA3	S1AN0/S1CMP1A/S1PGA1P1/S1RA3
8	AN4/IBIAS1/RA4	S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4
9	AVDD	AVDD
10	AVss	AVss
11	VDD	VDD
12	Vss	Vss
13	OSCI/CLKI/AN5/RP32/RB0	S1AN5/ S1RP32 /S1RB0
14	OSCO/CLKO/AN6/IBIAS2/RP33/RB1	S1AN4/ S1RP33 /S1RB1
15	DACOUT/AN7/CMP1D/RP34/INT0/RB2	S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/S1RP34/S1INT0/S1RB2
16	PGD2/AN8/RP35/RB3	S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/S1RP35/S1RB3
17	PGC2/ RP36 /RB4	S1PGC2/S1AN9/S1RP36/S1PWM5L/S1RB4
18	PGD3/RP37/SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
19	PGC3/RP38/SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
20	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
21	PGD1/AN10/RP40/SCL1/RB8	S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8
22	PGC1/AN11/RP41/SDA1/RB9	S1PGC1/S1RP41/S1SDA1/S1RB9
23	Vss	Vss
24	VDD	VDD
25	TMS/RP42/PWM3H/RB10	S1RP42/S1PWM3H/S1RB10
26	TCK/RP43/PWM3L/RB11	S1RP43/S1PWM8H/S1PWM3L/S1RB11
27	TDI/ RP44 /PWM2H/RB12	S1RP44/S1PWM2H/S1RB12
28	RP45/PWM2L/RB13	S1RP45/S1PWM7H/S1PWM2L/S1RB13

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

REGISTER 3-7: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	_	—	—	—	—		
bit 15	·	· · ·					bit 8		
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
			NVMKI	EY<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 3-8: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC	ADR<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC	ADR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at P	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown				

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

TABLE 3-26: MASTER INTERRUPT PRIORITY REGISTERS (CONTINUED)

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC35	886h	_	-	_	—	_	-	_	—	_	S1SRSTIP2	S1SRSTIP1	S1SRSTIP0	—	MSIFLTIP2	MSIFLTIP1	MSIFLTIP0
IPC36	888h	—	_	-	—	—	S1BRKIP2	S1BRKIP1	S1BRKIP0		-		—	_	—		_
IPC37	88Ah	—	_		—	—	CCT7IP2	CCT7IP1	CCT7IP0		CCP7IP2	CCP7IP1	CCP7IP0	_	—		
IPC38	88Ch	—	_	_	_	—	_	_	_	_	CCT8IP2	CCT8IP1	CCT8IP0	_	CCP8IP2	CCP8IP1	CCP8IP0
IPC39	88Eh	—	_	_	_	—	_	_	_	_	S1CLKFIP2	S1CLKFIP1	S1CLKFIP0	_	_	_	_
IPC40	890h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC41	892h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC42	894h	—	PEVTCIP2	PEVTCIP1	PEVTCIP0	—	PEVTBIP2	PEVTBIP1	PEVTBIP0		PEVTAIP2	PEVTAIP1	PEVTAIP0	_	ADFIFOIP2	ADFIFOIP1	ADFIFOIP0
IPC43	896h	—	CLC3PIP2	CLC3PIP1	CLC3PIP0	—	PEVTFIP2	PEVTFIP1	PEVTFIP0	_	PEVTEIP2	PEVTEIP1	PEVTEIP0	_	PEVTDIP2	PEVTDIP1	PEVTDIP0
IPC44	898h	—	CLC3NIP2	CLC3NIP1	CLC3NIP0	—	CLC2NIP2	CLC2NIP1	CLC2NIP0	_	CLC1NIP2	CLC1NIP1	CLC1NIP0	_	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	89Ah	—	_	_	_	—	_	_	_	_	_	_	_	_	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC46	89Ch	—	_	—	—	_	—	—	—	_	—	—	—	_	—	—	—
IPC47	89Eh	—	_	—	—	_	U2EVTIP2	U2EVTIP1	U2EVTIP0	_	U1EVTIP2	U1EVTIP1	U1EVTIP0	_	—	—	—

Legend: — = Unimplemented.

dsPIC33CH128MP508 FAMILY

Example 3-2 provides a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 3-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

//
* * * * * * * * * * * * * * * * * * * *
// Unlock Registers
//*************************************
<pre>builtin_write_RPCON(0x0000);</pre>
//**************
// Configure Input Functions (See Table 3-31)
// Assign UlRx To Pin RP35
/ / **************
_U1RXR = 35;
// Assign UlCTS To Pin RP36
/ / *************
_U1CTSR = 36;
/ / ***********************************
// Configure Output Functions (See Table 3-33)
/ / ***********************************
// Assign UlTx To Pin RP37
/ / *************
_RP37 = 1;
/ / ***********
// Assign UlRTS To Pin RP38
/ / *************
_RP38 = 2;
//*************************************
// Lock Registers
/ / ***********************************
builtin_write_RPCON(0x0800);

Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 3-33 for peripheral function numbers)

(see Table 3-33 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimp			U = Unimpler	nented bit, read	as '0'		
-n = Value at F	Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown	

RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

REGISTER 3-80: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

REGISTER 3-81:	RPOR13: PERIPHERAL	. PIN SELECT OUTPU	FREGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	RP59R<5:0>: Peripheral Output Function is Assigned to RP59 Output Pin bits (see Table 3-33 for peripheral function numbers)								

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 3-33 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

REGISTER 3-126: C1TXREQH: CAN TRANSMIT REQUEST REGISTER HIGH

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0				
	TXREQ<31:24>										
bit 15	bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	S/HC-0				
			TXREC	(<23:16>							
bit 7							bit 0				
Legend:		S = Settable bit		HC = Hardware Clearable bit							
R = Readable I	bit	W = Writable bit		U = Unimpler	nented bit, rea	ad as '0'					
-n = Value at P	OR	'1' = Bit is set	' = Bit is set '0' = Bit is cleared x = Bit is unknown								

bit 15-0 TXREQ<31:16>: Unimplemented

REGISTER 3-127: C1TXREQL: CAN TRANSMIT REQUEST REGISTER LOW

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0			
			TXREC	Q<15:8>						
bit 15							bit 8			
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0s			
	TXREQ<7:1>						TXREQ0			
bit 7	bit 7 bit 0									
Legend:		S = Settable bit		HC = Hardware Clearable bit						
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	TXREQ<15:	8>: Unimplemen	ted							
bit 7-1	TXREQ<7:1	>: Message Sen	d Request bit	s						
	<u>TXEN = 1 (o</u>	bject configured	as a transmit	object):						
	Setting this b	oit to '1' requests	sending a me	ssage. The bit	will automatica	lly clear when th	ne message(s)			
	queued in the	e object is (are) s	uccessfully se	ent. This bit can	NOT be used	for aborting a tr	ansmission.			
	<u>TXEN = 0 (o</u>	bject configured	as a receive	object):						

This bit has no effect.

bit 0 **TXREQ0:** Transmit Queue Message Send Request bit Setting this bit to '1' requests sending a message. The bit will automatically clear when the message(s) queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
SHREN									
bit 7							bit 0		
F									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-14	CLKSEL<1:0>: ADC Module Clock Source Selection bits 11 = Fvco/4								
	01 = Fosc $00 = FP (Fosc$	c/2)							
bit 13-8	CLKDIV<5:0> The divider for module clock TCORESRC clo register or the 111111 = 64	ADC Module rms a TCORESR source, selecte ick to get a col SHRADCS<6 Source Clock F	Clock Source c clock used by d by the CLKS re-specific TAD 0> bits in the p Periods	Divider bits y all ADC cores SEL<1:0> bits. T CORE clock usi ADCON2L regis	(shared and de Then, each ADC ing the ADCS< ster.	edicated), from C core individua 6:0> bits in the	the TsRc ADC ally divides the e ADCORExH		
	000011 = 4 Source Clock Periods 000010 = 3 Source Clock Periods 000001 = 2 Source Clock Periods 000000 = 1 Source Clock Period								
bit 7	SHREN: Shared ADC Core Enable bit 1 = Shared ADC core is enabled 0 = Shared ADC core is disabled								
bit 6-0	Unimplemen	ted: Read as ')'						

REGISTER 3-162: ADCON3H: ADC CONTROL REGISTER 3 HIGH

4.1.6 CPU RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.1.6.1 Key Resources

- "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.8 Programmable Gain Amplifier (PGA) Slave

Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33CH128MP508S1 family devices have three Programmable Gain Amplifiers (PGA1, PGA2, PGA3). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has four selectable gains and may be used as a ground referenced amplifier (singleended) or used with an independent ground reference point.

Key features of the PGA module include:

- · Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x and 32x (and 6x,12x, 24x and 48x with the 1.5 gain)
- High-Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

Table 4-38 shows an overview of the PGA module.

TABLE 4-38:	PGA MODULE OVERVIEW ⁽¹⁾
-------------	------------------------------------

	Number of PGA Modules	ldentical (Modules)						
Master	_	_						
Slave	3	—						

Note 1: The Slave owns the PGA module, but it is shared with the Master.

FIGURE 4-23: PGAx MODULE BLOCK DIAGRAM

6.2 Master Oscillator Configuration Registers

Table 6-1 lists the configuration settings that select the device's Master core oscillator source and operating mode at a POR.

Oscillator Source	Oscillator Mode	FNOSC<2:0> Value	POSCMD<1:0> Value ⁽³⁾	Notes
S0	Fast RC Oscillator (FRC)	000	xx	1
S1	Fast RC Oscillator with PLL (FRCPLL)	001	xx	1
S2	Primary Oscillator (EC)	010	00	1
S2	Primary Oscillator (XT)	010	01	
S2	Primary Oscillator (HS)	010	10	
S3	Primary Oscillator with PLL (ECPLL)	011	00	1
S3	Primary Oscillator with PLL (XTPLL)	011	01	
S3	Primary Oscillator with PLL (HSPLL)	011	10	
S4	Reserved	100	xx	
S5	Low-Power RC Oscillator (LPRC)	101	xx	1
S6	Backup FRC (BFRC)	110	xx	1
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	xx	1, 2

TABLE 6-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION FOR THE MASTER

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

3: The POSCMDx bits are only available in the Master FOSC Configuration register.

REGISTER 6-5: PLLDIV: PLL OUTPUT DIVIDER REGISTER (MASTER)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	_	—	VCODIV1	VCODIV0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
_	POST1DIV2(1,2)	POST1DIV1 ^(1,2)	POST1DIV0 ^(1,2)		POST2DIV2 ^(1,2)	POST2DIV1(1,2)	POST2DIV0 ^(1,2)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

- bit 9-8 VCODIV<1:0>: PLL VCO Output Divider Select bits
 - 11 **=** Fvco
 - 10 = Fvco/2
 - 01 = Fvco/3
 - 00 = Fvco/4

bit 7 Unimplemented: Read as '0'

- bit 6-4 **POST1DIV<2:0>:** PLL Output Divider #1 Ratio bits^(1,2) POST1DIV<2:0> can have a valid value, from 1 to 7 (POST1DIVx value should be greater than or equal to the POST2DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.
- bit 3 Unimplemented: Read as '0'
- bit 2-0 **POST2DIV<2:0>:** PLL Output Divider #2 Ratio bits^(1,2)

POST2DIV<2:0> can have a valid value, from 1 to 7 (POST2DIVx value should be less than or equal to the POST1DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

dsPIC33CH128MP508 FAMILY

FIGURE 10-1: SCCPx CONCEPTUAL BLOCK DIAGRAM

10.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 10-2. There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000).

REGISTER 13-14: UXRXCHK: UARTX RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—		—		—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RXCH	<<7:0>					
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	ble bit U = Unimplemented b		nented bit, read	read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-8	Unimplement	ed: Read as '0	,						
bit 7-0	RXCHK<7:0>	: Receive Cheo	cksum bits (cal	culated from R	X words)				
	LIN Modes:								
	COEN = 1: Su	m of all receive	d data + additi	on carries, incl	uding PID.				
	CUEN = U: Sum of all received data + addition carries, excluding PID.								
	Cleared when Break is detected.								
	<u>LIN Master/Slave:</u> Cleared when Break is detected.								
	<u>Other Modes:</u> C0EN = 1: Sum of every byte received + addition carries.								

C0EN = 0: Value remains unchanged.

REGISTER 14-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

11-0	I I_O	11-0	11-0	11-0	U_0	[]_0	U_0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
	_					_	
DIT 15							bit 8
U-0	U-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			W	LENGTH<4:0>	(1,2)	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Rit is se	t	·0' = Bit is clea	ared	x = Rit is unkn	own
							own
bit 15 5	Unimplana	ntadi Daad aa	· • ·				
	Unimpleme						
bit 4-0	WLENGIH<	4:0>: Variable	Word Length	Dits(",=)			
	11111 = 32-	bit data					
	11110 = 31-	bit data					
	11101 = 30	bit data					
	1100 = 29	bit data					
	11011 = 27	bit data					
	11001 = 26 -	bit data					
	11000 = 25 -	bit data					
	10111 = 24 -	bit data					
	10110 = 23 -	bit data					
	10101 = 22-	bit data					
	10100 = 21-	bit data					
	10011 = 20-	bit data					
	10010 = 19-	bit data					
	10001 - 18	bit data					
	01111 = 16-	bit data					
	01110 = 15-	bit data					
	01101 = 14 -	bit data					
	01100 = 13 -	bit data					
	01011 = 12 -	bit data					
	01010 = 11 -	bit data					
	01001 = 10-	bit data					
	01000 = 9-b	it data					
	00111 = 8-0	it data					
	00110 - 7-0	it data					
	00100 = 5-b	it data					
	00011 = 4-h	it data					
	00010 = 3 -b	it data					
	00001 = 2-b	it data					
	00000 = Se	e MODE<32.1	6> bits in SPIx	CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

NOTES:

REGISTER 21-8: FICD CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_			_		_			
bit 23							bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—		—	—	—			
bit 15							bit 8	
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	
—	—	JTAGEN	—	—	—	ICS1	ICS0	
bit 7							bit 0	
Legend:		PO = Program	n Once bit	r = Reserved	bit			
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown	
bit 23-8	Unimplement	ted: Read as '1	,					
bit 7	Reserved: Maintain as '1'							
bit 6	Unimplemented: Read as '1'							
bit 5	JTAGEN: JTA	G Enable bit						
	1 = JTAG port	is enabled						

0 = JTAG port is disabled

bit 4-2 Unimplemented: Read as '1'

bit 1-0 ICS<1:0>: ICD Communication Channel Select bits

11 = Master communicates on PGC1 and PGD1

10 = Master communicates on PGC2 and PGD2

01 = Master communicates on PGC3 and PGD3

00 = Reserved, do not use

TABLE 24-11: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS	Master Slave	Sleep + Sleep	ep + $ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extend} \end{array} $			
Parameter No.	Тур.	Max.	Units Conditions			
Power-Down Current (IPD) ⁽¹⁾						
DC60	3.2	4.8	mA	-40°C		
	3.4	8.2	mA	+25°C	2 2)/	
	3.7	14.3	mA	+85°C	3.3 V	
	7.6	21.5	mA	+125°C		

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and External Clock is active; OSCI is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled

TABLE 24-12: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (\(\triangle WDT\))^{(1)}

DC CHARACTERISTICS	Maste Sla	er and ave	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
DC61d	2.9	—	μA	-40°C			
DC61a	2.7	_	μA	+25°C			
DC61b	3.9	_	μA	+85°C 3.3V			
DC61c	5.5		μA	+125°C			

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

FIGURE 24-17: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 24-42: UARTx MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67			ns	
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.