

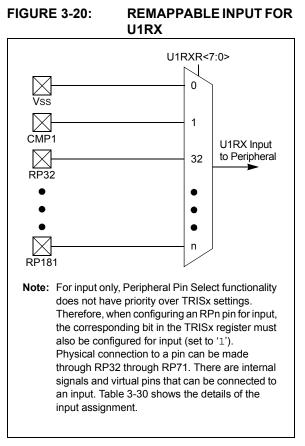
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp506-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CH128MP508 FAMILY

Example 3-2 provides a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 3-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

//
* * * * * * * * * * * * * * * * * * * *
// Unlock Registers
//*************************************
<pre>builtin_write_RPCON(0x0000);</pre>
//**************
// Configure Input Functions (See Table 3-31)
// Assign UlRx To Pin RP35
/ / **************
_U1RXR = 35;
// Assign UlCTS To Pin RP36
/ / ************
_U1CTSR = 36;
//*************************************
// Configure Output Functions (See Table 3-33)
/ / ***********************************
// Assign UlTx To Pin RP37
/ / *************
_RP37 = 1;
/ / ***********
// Assign UlRTS To Pin RP38
/ / *************
_RP38 = 2;
//*************************************
// Lock Registers
/ / ***********************************
builtin_write_RPCON(0x0800);

REGISTER 3-135: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7) (CONTINUED)

bit 2	TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit <u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Empty Interrupt Flag 1 = FIFO is empty 0 = FIFO is not empty, at least one message is queued to be transmitted <u>TXEN = 0 (FIFO configured as a receive FIFO):</u> Receive FIFO Full Interrupt Flag 1 = FIFO is full 0 = FIFO is not full
bit 1	TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit $\underline{TXEN = 1}$ (FIFO configured as a transmit FIFO): Transmit FIFO Half Empty Interrupt Flag $1 = FIFO$ is \leq half full $0 = FIFO$ is $>$ half full $\underline{TXEN = 0}$ (FIFO configured as a receive FIFO): Receive FIFO Half Full Interrupt Flag $1 = FIFO$ is \geq half full $0 = FIFO$ is \geq half full $0 = FIFO$ is \geq half full $0 = FIFO$ is \leq half full $0 = FIFO$ is \leq half full
bit 0	TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit <u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Not Full Interrupt Flag 1 = FIFO is not full 0 = FIFO is full <u>TXEN = 0 (FIFO configured as a receive FIFO):</u> Receive FIFO Not Empty Interrupt Flag 1 = FIFO is not empty, has at least one message 0 = FIFO is empty

- **Note 1:** FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is four messages deep (FSIZE<4:0> = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.
 - 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

- -	Legend:							
- -	bit 7							bit 0
 bit 15		—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
	U-0	U-0	R-1	R-0	R-0	R-0	R-0	R-0
	bit 15							bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	—	_	—	_	_	—	—	_
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

- J				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6	Unimplemented: Read as '0'
bit 5	TXBO: Transmitter in Error State Bus Off bit (TERRCNT<7:0> > 255)
	In Configuration mode, TXBO is set since the module is not on the bus.
bit 4	TXBP: Transmitter in Error State Bus Passive bit (TERRCNT<7:0> > 127)
bit 3	RXBP: Receiver in Error State Bus Passive bit (RERRCNT<7:0> > 127)
bit 2	TXWARN: Transmitter in Error State Warning bit (128 > TERRCNT<7:0> > 95)
bit 1	RXWARN: Receiver in Error State Warning bit (128 > RERRCNT<7:0> > 95)
bit 0	EWARN: Transmitter or Receiver in Error State Warning bit

REGISTER 3-146: C1TRECL: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRCI	NT<7:0>			
bit 15							bit 8
							
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRCI	NT<7:0>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	TERRCNT<7:0>: Transmit Error Counter bits
bit 7-0	RERRCNT<7:0>: Receive Error Counter bits

REGISTER 3-158: ADCON1H: ADC CONTROL REGISTER 1 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	
FORM	SHRRES1	SHRRES0	_	—				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	= Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown	
bit 15-8	Unimplemen	ted: Read as 'd)'					
bit 7	FORM: Fracti	onal Data Outp	out Format bit					
	1 = Fractional 0 = Integer							
bit 6-5	SHRRES<1:0>: Shared ADC Core Resolution Selection bits							
	<pre>11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution 00 = 6-bit resolution</pre>							
bit 4-0	Unimplemen	ted: Read as 'o)'					

HSC/R-0	HSC/R-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15		·		·		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0
bit 7							bit 0
Legend:		U = Unimplem	ented bit, read	l as '0'			
R = Readable	bit	W = Writable I	oit	HSC = Hardwa	are Settable/C	earable bit	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		nd Gap and Re	ference Voltage	e Ready Flag b	it		
	1 = Band gap 0 = Band gap	•					
bit 14	•	nd Gap or Refe	rence Voltage	Error Elag bit			
		was removed a	•	•	abled (ADON =	= 1)	
		ap error was d				_,	
bit 13-10	Unimplement	ted: Read as 'd)'				
bit 9-0	SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits						
	These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core						
		Sample Time = (= 1025 Tadcor	•	0> + 2) * TADCC	PRE).		
		- 1023 TADCON	χ <u>ε</u>				
	000000001 = 3 TADCORE						
	000000000 = 2 TADCORE						

REGISTER 3-160: ADCON2H: ADC CONTROL REGISTER 2 HIGH

REGISTER 3-185: PTGBTE: PTG BROADCAST TRIGGER ENABLE LOW REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBTE<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBTE	<7:0>			
bit 7							bit 0
Legend:							
D - Doodoblo hit		\// = \//ritable bit			ontod hit room	1 00 '0'	

Eogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGBTE<15:0>:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 3-186: PTGBTEH: PTG BROADCAST TRIGGER ENABLE HIGH REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-U	R/W-U	R/ W-U	R/W-U	R/W-U	R/W-U	R/W-U	R/ W-U
			PTGBT	E<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGBTE<31:16>: PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

4.2.2 DATA ADDRESS SPACE (SLAVE)

The dsPIC33CH128MP508S1 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CH128MP508S1 family devices implement up to 4 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.2.1 Data Space Width

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2.2 Data Memory Organization and Alignment

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CH128MP508S1 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.2.3 SFR Space

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CH128MP508S1 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.2.4 Near Data Space

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Register	Audress	All Resets	Register	Audress	All Resets	Register	Auuress	All Resets
ССР			CCP2STATL	980	000xx0000	CCP3RAL	9B0	000000000000000000000000000000000000000
CCP1CON1L	950	0-00000000000000	CCP2STATH	982	00000	CCP3RBL	9B4	000000000000000000000000000000000000000
CCP1CON1H	952	00000000000000	CCP2TMRL	984	000000000000000000000000000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP2TMRH	986	000000000000000000000000000000000000000	CCP3BUFH	9BA	000000000000000000000000000000000000000
CCP1CON2H	956	0100-00000	CCP2PRL	988	111111111111111111	CCP4CON1L	9BC	0-00000000000000
CCP1CON3H	95A	00000-00	CCP2PRH	98A	111111111111111111	CCP4CON1H	9BE	00000000000000
CCP1STATL	95C	000xx0000	CCP2RAL	98C	000000000000000000000000000000000000000	CCP4CON2L	9C0	00-000000000
CCP1STATH	95E	00000	CCP2RBL	990	000000000000000000000000000000000000000	CCP4CON2H	9C2	0100-00000
CCP1TMRL	960	000000000000000000000000000000000000000	CCP2BUFL	994	000000000000000000000000000000000000000	CCP4CON3H	9C6	00000-00
CCP1TMRH	962	000000000000000000000000000000000000000	CCP2BUFH	996	000000000000000000000000000000000000000	CCP4STATL	9C8	000xx0000
CCP1PRL	964	111111111111111111	CCP3CON1L	998	0-00000000000000	CCP4STATH	9CA	00000
CCP1PRH	966	111111111111111111	CCP3CON1H	99A	00000000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
CCP1RAL	968	000000000000000000000000000000000000000	CCP3CON2L	99C	00-000000000	CCP4TMRH	9CE	000000000000000000000000000000000000000
CCP1RBL	96C	000000000000000000000000000000000000000	CCP3CON2H	99E	0100-00000	CCP4PRL	9D0	111111111111111111
CCP1BUFL	970	000000000000000000000000000000000000000	CCP3CON3H	9A2	00000-00	CCP4PRH	9D2	111111111111111111
CCP1BUFH	972	000000000000000000000000000000000000000	CCP3STATL	9A4	000xx0000	CCP4RAL	9D4	000000000000000000000000000000000000000
CCP2CON1L	974	0-00000000000000	CCP3STATH	9A6	00000	CCP4RBL	9D8	000000000000000000000000000000000000000
CCP2CON1H	976	00000000000000	CCP3TMRL	9A8	000000000000000000000000000000000000000	CCP4BUFL	9DC	000000000000000000000000000000000000000
CCP2CON2L	978	00-000000000	CCP3TMRH	9AA	000000000000000000	CCP4BUFH	9DE	0000000000000000000
CCP2CON2H	97A	0100-00000	CCP3PRL	9AC	11111111111111111			
CCP2CON3H	97E	00000-00	CCP3PRH	9AE	11111111111111111			

TABLE 4-9:SLAVE SFR BLOCK 900h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

TABLE 4-10: SLAVE SFR BLOCK A00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
DMA			DMACH0	AC4	0-00000000000	DMACH1	ACE	0-00000000000
DMACON	ABC	0-00	DMAINT0	AC6	0000000000000000	DMAINT1	AD0	0000000000000000
DMABUF	ABE	000000000000000000000000000000000000000	DMASRC0	AC8	000000000000000000000000000000000000000	DMASRC1	AD2	000000000000000000000000000000000000000
DMAL	AC0	0001000000000000	DMADST0	ACA	000000000000000000000000000000000000000	DMADST1	AD4	000000000000000000000000000000000000000
DMAH	AC2	0001000000000000	DMACNT0	ACC	0000000000000001	DMACNT1	AD6	0000000000000001

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

4.3.8 SLAVE ECC CONTROL/STATUS REGISTERS

REGISTER 4-9: ECCCONL: ECC FAULT INJECTION CONFIGURATION REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	_	—	—	_
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	_	—	—	—	—	FLTINMJ
bit 7						•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

FLTINJ: Fault Injection Sequence Enable bit

1 = Enabled

bit 0

0 = Disabled

REGISTER 4-10: ECCCONH: ECC FAULT INJECTION CONFIGURATION REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FLT2F	PTR<7:0>			
bit 15							bit 8
F							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FLT1F	PTR<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	FLT2PTR<7:0>: ECC Fault Injection Bit Pointer 2
	11111111-00111000 = No Fault injection occurs
	00110111 = Fault injection (bit inversion) occurs on bit 55 of ECC bit order
	00000001 = Fault injection (bit inversion) occurs on bit 1 of ECC bit order
	0000000 = Fault injection (bit inversion) occurs on bit 0 of ECC bit order
bit 7-0	FLT1PTR<7:0>: ECC Fault Injection Bit Pointer 1
	1111111-00111000 = No Fault injection occurs
	00110111 = Fault injection occurs on bit 55 of ECC bit order
	•••
	00000001 = Fault injection occurs on bit 1 of ECC bit order
	0000000 = Fault injection occurs on bit 0 of ECC bit order

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP175R5 ⁽¹⁾	RP175R4 ⁽¹⁾	RP175R3 ⁽¹⁾	RP175R2 ⁽¹⁾	RP175R1 ⁽¹⁾	RP175R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP174R5 ⁽¹⁾	RP174R4 ⁽¹⁾	RP174R3 ⁽¹⁾	RP174R2 ⁽¹⁾	RP174R1 ⁽¹⁾	RP174R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP175R<5:0>: Peripheral Output Function is Assigned to S1RP175 Output Pin bits ⁽¹⁾
	(see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP174R<5:0>:** Peripheral Output Function is Assigned to S1RP174 Output Pin bits⁽¹⁾ (see Table 4-31 for peripheral function numbers)

Note 1: These are virtual output ports.

EXAMPLE 6-1: CODE EXAMPLE FOR USING MASTER PRIMARY PLL WITH 8 MHz INTERNAL FRC

```
//code example for 50 MIPS system clock using 8MHz FRC
// Select FRC on POR
#pragma config FNOSC = FRC
                                  // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config IESO = OFF
// Enable Clock Switching
#pragma config FCKSM = CSECMD
int
       main()
// Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
CLKDIVbits.PLLPRE = 1;
                            // N1=1
PLLFBDbits.PLLFBDIV = 125;
                                  // M = 125
PLLDIVbits.POST1DIV = 5;
                                  // N2=5
PLLDIVbits.POST2DIV = 1;
                                  // N3=1
// Initiate Clock Switch to FRC with PLL (NOSC=0b001)
 _builtin_write_OSCCONH(0x01);
__builtin_write_OSCCONL(OSCCON | 0x01);
// Wait for Clock switch to occur
while (OSCCONbits.OSWEN!= 0);
}
Note: FPLLO = FPLLI * M/(N1 * N2 * N3); FPLLI = 8; M = 125; N1 = 1; N2 = 5; N3 = 1;
       so FPLLO = 8 * 125/(1 * 5 * 1) = 200 MHz or 50 MIPS.
```

EXAMPLE 6-2: CODE EXAMPLE FOR USING SLAVE PRIMARY PLL WITH 8 MHz INTERNAL FRC

```
//code example for 60 MIPS system clock using 8MHz FRC
// Select Internal FRC at POR
// Select FRC on POR
                                 // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config S1FNOSC = FRC
#pragma config SllESO = OFF
                                 // Two-speed Oscillator Start-up Enable bit (Start up with
user-selected oscillator source)
// Enable Clock Switching
#pragma config S1FCKSM = CSECMD
int
       main()
// Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
CLKDIVbits.PLLPRE = 1;
                            // N1=1
PLLFBDbits.PLLFBDIV = 150;
                                 // M = 150
PLLDIVbits.POST1DIV = 5;
                                 // N2=5
PLLDIVbits.POST2DIV = 1;
                                  // N3=1
// Initiate Clock Switch to FRC with PLL (NOSC=0b001)
__builtin_write_OSCCONH(0x01);
 builtin write OSCCONL(OSCCON | 0x01);
// Wait for Clock switch to occur
while (OSCCONbits.OSWEN!= 0);
}
Note: FPLLO = FPLLI * M/(N1 * N2 * N3); FPLLI = 8; M = 150; N1 = 1; N2 = 5; N3 = 1;
      so FPLLO = 8 * 150/(1 * 5 * 1) = 240 MHz or 60 MIPS.
```

REGISTE	ER 6-13: CLKL			GISTER (SLA	VE)		
R/W-0		R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	PLLPRE3 ⁽⁴⁾	PLLPRE2 ⁽⁴⁾	PLLPRE1 ⁽⁴⁾	PLLPRE0 ⁽⁴
bit 7							bit
Logondi		r = Reserved	hit				
Legend: R = Read	abla bit	W = Writable			nented bit, read	1 22 (0)	
-n = Value		'1' = Bit is set	UIL	'0' = Bit is clea		x = Bit is unkn	
	alFOR				aleu		IOWIT
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	on Interrupt bi will clear the D have no effect Processor Cloc	OZEN bit and t t on the DOZE		ock, and the pe	ripheral clock ra	itio is set to 1
	101 = FP divid 100 = FP divid 011 = FP divid 010 = FP divid	<pre>110 = FP divided by 64 101 = FP divided by 32 100 = FP divided by 16 011 = FP divided by 8 (default) 010 = FP divided by 4 001 = FP divided by 2</pre>					
bit 11	DOZEN: Doze	e Mode Enable	bit ^(2,3)				
				ween the peripl atio is forced to		d the processo	r clocks
bit 10-8	FRCDIV<2:0> 111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di	Internal Fast vided by 256 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4	RC Oscillator	Postscaler bits			
bit 7-6		ted: Read as '	-				
bit 5-4	Reserved: Re						
Note 1:	The DOZE<2:0> DOZE<2:0> are ig	-	e written to wh	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2:	This bit is cleared	when the ROI	bit is set and a	an interrupt occ	urs.		
3:	The DOZEN bit ca set the DOZEN bit		DOZE<2:0> =	000. If DOZE<2	2:0> = 000, an	y attempt by us	er software t

REGISTER 6-13: CLKDIV: CLOCK DIVIDER REGISTER (SLAVE)

4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

REGISTER 6-15: PLLDIV: PLL OUTPUT DIVIDER REGISTER (SLAVE)

					. ,		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_					VCOD	VCODIV<1:0>	
bit 15		-					bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
—	P	OST1DIV<2:0>(1,2)	—	F	POST2DIV<2:0>	.(1,2)
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, r	ead as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-10	Unimpleme	nted: Read as '	כ'				
bit 9-8	VCODIV<1:0)>: PLL VCO Ou	utput Divider S	Select bits			
	11 = Fvco						
	10 = Fvco/2 01 = Fvco/3						
	01 = FVCO/3 00 = FVCO/4						
bit 7	Unimpleme	nted: Read as ')'				
bit 6-4	•	POST1DIV<2:0>: PLL Output Divider #1 Ratio bits ^(1,2)					
					POST1DIVx v	alue should be	greater than o
				·		to operate at hig	0
	than the POST2DIVx divider.						
bit 3	Unimpleme	nted: Read as ')'				
bit 2-0	POST2DIV<	2:0>: PLL Outpu	ut Divider #2 F	Ratio bits ^(1,2)			
	 POST2DIV<2:0>: PLL Output Divider #2 Ratio bits^(1,2) POST2DIV<2:0> can have a valid value, from 1 to 7 (POST2DIVx value should be less than or eq to the POST1DIVx value). The POST1DIVx divider is designed to operate at higher clock rates the states that the post of the POST1DIVx value is the post of the POST1DIVx value. 						

the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

REGISTER 7-10: PMD1: SLAVE PERIPHERAL MODULE DISABLE 1 CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
_	_			T1MD	QEIMD	PWMMD		
bit 15							bit 8	
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	
I2C1MD		U1MD	_	SPI1MD			ADC1MD	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable I	oit	U = Unimplem		d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-12	•	nted: Read as '0						
bit 11		er1 Module Disab						
	-	module is disable						
h:1 10		nodule is enable						
bit 10		I Module Disable	DIT					
		dule is disabled						
bit 9		WM Module Disa	able bit					
		odule is disabled						
	0 = PWM m	odule is enabled						
bit 8	Unimpleme	nted: Read as 'o)'					
bit 7	12C1MD: 120	C1 Module Disab	le bit					
		odule is disabled						
		odule is enabled						
bit 6	Unimpleme	nted: Read as '0)'					
bit 5		RT1 Module Disa						
	1 = UART1 module is disabled							
bit 4		0 = UART1 module is enabled						
	-	ented: Read as '(
bit 3	SPI1MD: SPI1 Module Disable bit							
		1 = SPI1 module is disabled 0 = SPI1 module is enabled						
bit 2-1		nted: Read as '0)'					
bit 0	•	DC Module Disa						
		dule is disabled						
	J III							

Table 12-2 shows the truth table that describes how the Quadrature signals are decoded.

TABLE 12-2:TRUTH TABLE FOR
QUADRATURE ENCODER

Quad	rent rature ate	Previous Quadrature State		Action
QA	QB	QA	QB	
1	1	1	1	No count or direction change
1	1	1	0	Count up
1	1	0	1	Count down
1	1	0	0	Invalid state change; ignore
1	0	1	1	Count down
1	0	1	0	No count or direction change
1	0	0	1	Invalid state change; ignore
1	0	0	0	Count up
0	1	1	1	Count up
0	1	1	0	Invalid state change; ignore
0	1	0	1	No count or direction change
0	1	0	0	Count down
0	0	1	1	Invalid state change; ignore
0	0	1	0	Count down
0	0	0	1	Count up
0	0	0	0	No count or direction change

Figure 12-2 illustrates the simplified block diagram of the QEI module. The QEI module consists of decoder logic to interpret the Phase A (QEAx) and Phase B (QEBx) signals, and an up/down counter to accumulate the count. The counter pulses are generated when the Quadrature state changes. The count direction information must be maintained in a register until a direction change is detected. The module also includes digital noise filters, which condition the input signal. The QEI module consists of the following major features:

- Four Input Pins: Two Phase Signals, an Index Pulse and a Home Pulse
- Programmable Digital Noise Filters on Inputs
- Quadrature Decoder providing Counter Pulses and Count Direction
- Count Direction Status
- 4x Count Resolution
- Index (INDXx) Pulse to Reset the Position Counter
- General Purpose 32-Bit Timer/Counter mode
- · Interrupts generated by QEI or Counter Events
- 32-Bit Velocity Counter
- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 32-Bit Position Initialization/Capture Register
- 32-Bit Compare Less Than and Greater Than Registers
- External Up/Down Count mode
- · External Gated Count mode
- External Gated Timer mode
- Interval Timer mode

14.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The SPI is Identical for both Master core and Slave core. The x is common for both Master and Slave (where the x represents the number of the specific module being addressed). The number of SPI modules available on the Master and Slave is different and they are located in different SFR locations.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device. The Master is SPI1 and SPI2, and the Slave is SPI1.

Table 14-1 shows an overview of the SPI module.

TABLE 14-1: SPI MODULE OVERVIEW

	Number of SPI Modules	ldentical (Modules)
Master Core	2	Yes
Slave Core	1	Yes

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola® SPI and SIOP interfaces. All devices in the dsPIC33CH128MP508 family include three SPI modules: two SPIs for the Master core and one for the Slave core. One of the SPI modules can work up to 50 MHz speed when selected as a non-PPS pin. For the Master core, it will be SPI2 and for the Slave core, it will be SPI1. The selection is done using the SPI2PIN bit (FDEVOPT<13>) for the Master and the S1SPI1PIN bit (FS1DEVOPT<13>) for the Slave. If the bit for SPI2PIN/S1SPI1PIN is '1', the PPS pin will be used. If the SPI2PIN/S1SPI1PIN is '0', it will use the dedicated SPI pads.

The module supports operation in two Buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Note:	FIFO depth for this device is four (in 8-Bit
	Data mode).

Variable length data can be transmitted and received, from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified mode
- · Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Slaves. Because the audio protocols require free-running clocks, the Master can be a third-party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx/S1SDIx: Serial Data Input
- SDOx/S1SDOx: Serial Data Output
- SCKx/S1SCKx: Shift Clock Input or Output
- SSx/S1SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the 3-pin mode, SSx/S1SSx is not used. In the 2-pin mode, both SDOx/S1SDOx and SSx/S1SSx are not used.

21.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33CH128MP508 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

21.1 Configuration Bits

In dsPIC33CH128MP508 family devices, the Configuration Words are implemented as volatile memory. This means that configuration data will get loaded to volatile memory (from the Flash Configuration Words) each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 21-1. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types of device Master Resets. Slave Resets do
	not load the Configuration registers. It is
	recommended not to change the Slave
	Configuration register without resetting the
	Slave along with the Master (S1MSRE = 1).

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset. The Master code, as well as the Slave code, are located in Flash memory. Table 21-1 shows the Master and the Slave Configuration registers and their address locations in Flash memory. Slave Configuration bits are located in the Master Flash and loaded during a Master Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 21-1: CONFIGURATION WORD ADDRESSES

	DRESSES						
Register	64k Address	128k Address					
Master/General Configuration Registers							
FSEC	00AF00	015F00					
FBSLIM	00AF10	015F10					
FSIGN	00AF14	015F14					
FOSCSEL	00AF18	015F18					
FOSC	00AF1C	015F1C					
FWDT	00AF20	015F20					
FPOR	00AF24	015F24					
FICD	00AF28	015F28					
FDMTIVTL	00AF2C	015F2C					
FDMTIVTH	00AF30	015F30					
FDMTCNTL	00AF34	015F34					
FDMTCNTH	00AF38	015F38					
FDMT	00AF3C	015F3C					
FDEVOPT	00AF40	015F40					
FALTREG	00AF44	015F44					
FMBXM	00AF48	015F48					
FMBXHS1	00AFC4	015F4C					
FMBXHS2	00AF50	015F50					
FMBXHSEN	00AF54	015F54					
FCFGPRA0	00AF58	015F58					
FCFGPRB0	00AF60	015F60					
FCFGPRC0	00AF68	015F68					
FCFGPRD0	00AF70	015F70					
FCFGPRE0	00AF78	015F7C					
Slave Co	nfiguration Regis	sters					
FS10SCSEL	00AF80	015F80					
FS10SC	00AF84	015F84					
FS1WDT	00AF88	015F88					
FS1POR	00AF8C	015F8C					
FS1ICD	00AF90	015F90					
FS1DEVOPT	00AF94	015F94					
FS1ALTREG	00AF98	015F98					

REGISTER 21-32: DEVREV: DEVICE REVISION REGISTER

Legend:	R = Read-only bit			U = Unimpler	nented bit		
bit 7							bit 0
			DEVRE	V<7:0>			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVRE	V<15:8>			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVREV	/<23:16>			
R	R	R	R	R	R	R	R

bit 23-0 **DEVREV<23:0>:** Device Revision bits

REGISTER 21-33: DEVID: DEVICE ID REGISTERS

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—	—			-			—		
bit 23							bit 16		
R	R	R	R	R	R	R	R		
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0		
bit 15							bit 8		
R	R	R	R	R	R	R	R		
DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾	DEV2 ⁽¹⁾	DEV1 ⁽¹⁾	DEV0 ⁽¹⁾		
bit 7	bit 7 bit 0								
Legend: R = Read-only bit U = Unimplemented bit									
bit 23-16 Unimplemented: Read as '1'									

bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 1000 0111 = dsPIC33CH128MP508 family

bit 7-0 DEV<7:0>: Individual Device Identifier bits⁽¹⁾

Note 1: See Table 21-5 for the list of Device Identifier bits.

TABLE 24-7: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (MASTER RUN/SLAVE SLEEP)

DC CHARACTERISTICS		(Run) + (Sleep)	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units	Inits Conditions				
Operating Current (IDD) ⁽¹⁾								
DC20b	7.9	9.8	mA	-40°C		10 MIPS (N = 1, N2 = 5,		
	8.0	13.4	mA	+25°C	3.3V	N3 = 2, M = 50,		
	8.2	19.5	mA	+85°C	3.3V	Fvco = 400 MHz,		
	12.2	26.3	mA	+125°C	-	FPLLO = 40 MHz)		
DC21b	10.3	12.4	mA	-40°C	- 3.3V	20 MIPS (N = 1, N2 = 5,		
	10.5	16.0	mA	+25°C		N3 = 1, M = 50, Fvco = 400 MHz,		
	10.6	22.1	mA	+85°C				
	14.6 28.7 mA +125°C	-	FPLLO = 80 MHz)					
DC22b	14.2	16.5	mA	-40°C	- 3.3V	40 MIPS (N = 1, N2 = 3, N3 = 1, M = 60,		
	14.4	20.3	mA	+25°C				
	14.5	26.3	mA	+85°C		Fvco = 480 MHz,		
	18.4	32.6	mA	+125°C	-	FPLLO = 160 MHz)		
DC23b	22.3	25.4	mA	-40°C		70 MIPS (N = 1, N2 = 2,		
	22.5	29.4	mA	+25°C	2.21/	N3 = 1, M = 70,		
	22.4	34.9	mA	+85°C	3.3V	Fvco = 560 MHz,		
	26.4	40.7	mA	+125°C	1	FPLLO = 280 MHz)		
DC24b	25.6	29.0	mA	-40°C		90 MIPS (N = 1, N2 = 2,		
	25.8	33.1	mA	+25°C	2.21/	N3 = 1, M = 90,		
	25.7	38.2	mA	+85°C	3.3V	Fvco = 720 MHz,		
	29.4	43.8	mA	+125°C]	FPLLO = 360 MHz)		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- FIN = 8 MHz, FPFD = 8 MHz
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- · No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- JTAG is disabled

TABLE 24-18: I/O PIN INPUT SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V		
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled	
	Viн	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽³⁾	0.8 Vdd	—	Vdd	V		
		5V Tolerant I/O Pins and MCLR ⁽³⁾	0.8 Vdd	—	5.5	V		
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	0.8 Vdd	—	5.5	V	SMBus disabled	
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	2.1	—	5.5	V	SMBus enabled	
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	0.8 Vdd	_	Vdd	V	SMBus disabled	
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	2.1	_	Vdd	V	SMBus enabled	
DI30	ICNPU	Input Change Notification Pull-up Current ^(2,4)	175	360	545	μA	VDD = 3.6V, VPIN = VSS	
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁴⁾	65	215	360	μA	VDD = 3.6V, VPIN = VDD	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: All parameters are characterized but not tested during manufacturing.

TABLE 24-19: I/O PIN INPUT SPECIFICATIONS

		itions: 3.0V to 3.6V (unless otherwise stature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No. Symbol Characteristic Min. Max. Units Conditions									
DI50	lı∟	Input Leakage Current ⁽¹⁾							
		I/O Pins 5V Tolerant ⁽²⁾	-700	+700	nA	VPIN = VSS or VDD			
		I/O Pins Not 5V Tolerant ⁽²⁾	-700	+700	nA				
		MCLR	-700	+700	nA				
		OSCI	-700	+700	nA	XT and HS modes			

Note 1: Negative current is defined as current sourced by the pin.

2: See the "Pin Diagrams" section for the 5V tolerant I/O pins. All parameters are characterized but not tested during manufacturing.