

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp506t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Master Core	Slave Core
51	Vdd	Vod
52	RP71/RD7	\$1RP71/S1PWM8H/S1RD7
53	RP70/RD6	\$1RP70/S1PWM6H/S1RD6
54	RP69/RD5	S1RP69/S1PWM6L/S1RD5
55	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
56	PGC3/ RP38 /SCL2/RB6	S1PGC3/S1RP38/S1RB6
57	RE10	S1RE10
58	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
59	RE11	S1RE11
60	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8
61	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/S1RP41/S1SDA1/S1RB9
62	ASCL2/RE12	S1RE12
63	RP52/RC4	S1RP52/S1PWM2H/S1RC4
64	ASDA2/RE13	S1RE13
65	RP53/RC5	S1RP53/S1PWM2L/S1RC5
66	RP58/RC10	S1RP58/S1PWM1H/S1RC10
67	RP59/RC11	S1RP59/S1PWM1L/S1RC11
68	RP68/RD4	S1RP68/S1PWM3H/S1RD4
69	RP67/RD3	S1RP67/S1PWM3L/S1RD3
70	Vss	Vss
71	Vdd	VDD
72	RP66/RD2	S1RP66/S1PWM8L/S1RD2
73	RP65/RD1	S1RP65/S1PWM4H/S1RD1
74	RP64/RD0	S1RP64/S1PWM4L/S1RD0
75	TMS/RP42/PWM3H/RB10	S1RP42/S1RB10
76	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
77	RE14	S1RE14
78	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
79	RE15	S1RE15
80	RP45/PWM2L/RB13	S1RP45 /S1RB13

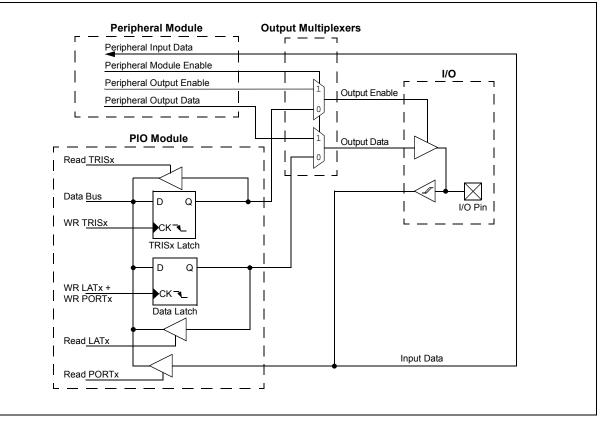
TABLE 9: 80-PIN TQFP (CONTINUED)

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	-	—	—	ECCDBE	SGHT
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkr	nown

REGISTER 3-21: INTCON4: INTERRUPT CONTROL REGISTER 4

bit 15-2 Unimplemented: Read as '0'


bit 1 ECCDBE: ECC Double-Bit Error Trap bit 1 = ECC double-bit error trap has occurred 0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

FIGURE 3-19: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

REGISTER 3-65: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT2R7 | SENT2R6 | SENT2R5 | SENT2R4 | SENT2R3 | SENT2R2 | SENT2R1 | SENT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 3-30.bit 7-0SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-66: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | • | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 3-30.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits ⁽¹⁾ (see Table 3-33 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP176R<5:0>:** Peripheral Output Function is Assigned to RP176 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	able bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	—			FILHIT<4:0>		
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
				ICODE<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-13	Unimpleme	nted: Read as '0'					
bit 12-8	FILHIT<4:0>	: Filter Hit Number	r bits				
	01111 = Filt						
	01110 = Filt	er 14					
	 00001 = Filt	er 1					
	00000 = Filt	-					
bit 7	Unimpleme	nted: Read as '0'					
bit 6-0	ICODE<6:0>	Interrupt Flag Co	de bits				
		111111 = Reserve					
		Transmit attempt in					
		Transmit event FIF Invalid message of			EFSTA IS Set)		
		CAN module mode			-/IE)		
		CAN timer overflow			,		
		RX/TX MAB overfl					
		saved to memory;					nt data)
		Address error inter Receive FIFO over					
		Wake-up interrupt				()	
		Error interrupt (CE		,			
	1000000 =						
		111111 = Reserve FIFO 7 interrupt (T		IE7 is sof)			
	0000111 =			ir i is selj			
		FIFO 1 interrupt (T	FIF1 or RF	IF1 is set)			
	0000000 =	FIFO 0 interrupt (T	FIF0 is set)			

REGISTER 3-115: C1VECL: CAN INTERRUPT CODE REGISTER LOW

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0
Lagandi							

REGISTER 4-45: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8PCI11R<7:0>: Assign PWM Input 11 (S1PCI11) to the Corresponding S1RPn Pin bits
See Table 4-27.bit 7-0PCI10R<7:0>: Assign PWM Input 10 (S1PCI10) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-46: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (S1QEIB1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (S1QEIA1) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-53: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI18R7 | PCI18R6 | PCI18R5 | PCI18R4 | PCI18R3 | PCI18R2 | PCI18R1 | PCI18R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 Unimplemented: Read as '0'

 bit 7-0
 PCI18R<7:0>: Assign PWM Input 18 (S1PCI18) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-54: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

PCI13R7 PCI13R6 PCI13R5 PCI13R4 PCI13R3 PCI13R2 PCI13R1 PCI13R0 bit 15 bit	R/W-0							
bit 15 bit	PCI13R7	PCI13R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0
	bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI12R7 | PCI12R6 | PCI12R5 | PCI12R4 | PCI12R3 | PCI12R2 | PCI12R1 | PCI12R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **PCI13R<7:0>:** Assign PWM Input 13 (S1PCI13) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 PCI12R<7:0>: Assign PWM Input 12 (S1PCI12) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-97: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EIEN	N<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EIE	N<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' =		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 4-98: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	EIEN<20:16>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Un			U = Unimplem	J = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	it is set '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EIEN<20:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 4-101: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	DIFF1	SIGN1	DIFF0	SIGN0		
bit 7 bit 0									
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			iown		
bit 15-4	Unimplement	ted: Read as 'd)'						
bit 3 and bit 1	DIFF<1:0>: D	ifferential-Mode	e for Correspoi	nding Analog Ir	nputs bits				
(odd)	1 = Channel is differential								
	0 = Channel is single-ended								
bit 2 and bit 0	SIGN<1:0>: (Output Data Sig	n for Correspo	nding Analog I	nputs bits				
(even)	1 = Channel output data is signed								
	0 = Channel output data is unsigned								

REGISTER 5-3: MSI1KEY: MSI1 MASTER INTERLOCK KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	—	—	—		
bit 15							bit 8		
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
MSI1KEY<7:0>									
bit 7							bit 0		
Legend:									

=ogona.					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-0 MSI1KEY<7:0>: MSI1 Key bits

The MSI1KEYx bits are monitored for specific write values.

REGISTER 5-4: MSI1MBXS: MSI1 MASTER MAILBOX DATA TRANSFER STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DTRDY <h:a></h:a>											
bit 7							bit 0				

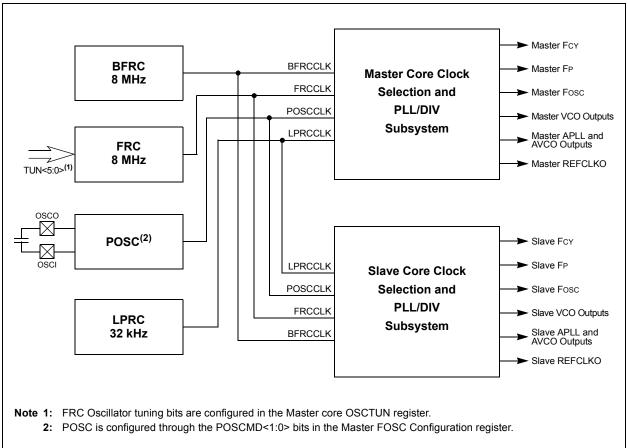
Legend:				
R = Readable bit	W = Writable bit	<i>W</i> = Writable bit U = Unimplemented bit, read		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DTRDY<H:A>: Data Ready Status bits

- 1 = Data transmitter has indicated that data is available to be read by data receiver in MSI1MBXnD (DTRDYx is automatically set by a data transmitter processor write to assigned MSI1MBXnD); Meaning when configured as a:
 - Transmitter: Data is written. Waiting for receiver to read.
 - Receiver: New data is ready to read.
- 0 = No data is available to be read by receiver in MSI1MBXnD (or the handshake protocol logic block is disabled)

6.0 OSCILLATOR WITH HIGH-FREQUENCY PLL


Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module with High-Speed PLL" (DS70005255) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33CH128MP508 family oscillator with high-frequency PLL includes these characteristics:

- Master and Core Subsystems
- Internal and External Oscillator Sources Shared between Master and Slave Cores

- Master and Slave Independent On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- Master and Slave Independent Auxiliary PLL (APLL) Clock Generator to Boost Operating Frequency for Peripherals
- Master and Slave Independent Doze mode for System Power Savings
- Master and Slave Independent Scalable Reference Clock Output (REFCLKO)
- On-the-Fly Clock Switching between Various Clock Sources
- Fail-Safe Clock Monitoring (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown

A block diagram of the dsPIC33CH128MP508 oscillator system is shown in Figure 6-1.

FIGURE 6-1: MASTER AND SLAVE CORE SHARED CLOCK SOURCES BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	_	_	—	—	_	P1<8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			P1<	7:0>				
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '0	,					
bit 8-0	P1<8:0>: Par	ameter 1 bits						
	DMX TX:							
		tes to Transmit	 – 1 (not includ 	ling Start code)				
	LIN Master T							
		nit (bits<5:0>).	_					
		s TX with Addre		a a what a limit a lait	0 (1):40 (7:0)			
		ansmit. A '1' is a Inde:	iutomatically in	iserted into bit	9 (DItS< $7:0>$).			
	Smart Card M	<u>liode:</u> Counter bits. This	s counter is on	erated on the h	it clock whose	neriod is alway	equal to one	
	ETU (bits<8:0					period is diway.		
	Other Modes:	<u>.</u>						
	Not used.							

REGISTER 13-9: UxP1: UARTx TIMING PARAMETER 1 REGISTER

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

20.1 Current Bias Generator Control Registers

REGISTER 20-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
ON		—	—	—		—			
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	—	110EN3	I10EN2	110EN1	110EN0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	ON: Current Bias Module Enable bit								
	1 = Module is								
	0 = Module is								
bit 14-4	Unimplemen	ted: Read as '0)'						
bit 3	Ι10ΕΝ3: 10 μ	I10EN3: 10 µA Enable for Output 3 bit							
		$1 = 10 \mu\text{A}$ output is enabled							
	•	put is disabled							
bit 2	•	A Enable for Ou	utput 2 bit						
		put is enabled put is disabled							
bit 1	•	A Enable for O	itout 1 bit						
	-	put is enabled	aiput i bit						
		put is disabled							
bit 0	-	A Enable for Ou	utput 0 bit						
		put is enabled	•						
	•	, put is disabled							

REGISTER 20-2: IBIASCONH: CURRENT BIAS GENERATOR 50 μA CURRENT SOURCE CONTROL HIGH REGISTER

	-										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	SHRSRCEN3	SHRSNKEN3	GENSRCEN3	GENSNKEN3	SRCEN3	SNKEN3				
bit 15							bit 8				
		-			-						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	SHRSRCEN2	SHRSNKEN2	GENSRCEN2	GENSNKEN2	SRCEN2	SNKEN2				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable bi	t	U = Unimpleme	ented bit, read a	s '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkr	nown				
bit 15-14	Unimpleme	ented: Read as 'C	3								
bit 13		N3: Share Source		•							
		g Current Mirror r g Current Mirror r			ce from another	source)					
bit 12	-	13: Share Sink E									
	1 = Sinking	Current Mirror me	ode is enabled	(uses reference	e from another s	ource)					
	•	Current Mirror m									
bit 11		N3: Generated So		•							
		generates the cu does not generat			erence						
bit 10	 0 = Source does not generate the current source mirror reference GENSNKEN3: Generated Sink Enable for Output #3 bit 										
		generates the cu									
		does not generat		ource mirror refe	erence						
bit 9		SRCEN3: Source Enable for Output #3 bit 1 = Current source is enabled									
		source is disable									
bit 8	SNKEN3: S	ink Enable for Ou	utput #3 bit								
		sink is enabled									
hit 7 G		sink is disabled	3								
bit 7-6 bit 5	•	ented: Read as '0		itout #2 hit							
DIL O				-	ce from another	source)					
	 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled 										
bit 4		12: Share Sink E	•								
	 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled 										
bit 3	•	N2: Generated So									
		generates the cu does not generat			erence						
bit 2	GENSNKEN	N2: Generated Si	nk Enable for	Output #2 bit							
		generates the cu does not generat			erence						
bit 1	SRCEN2: S	ource Enable for	Output #2 bit								
		source is enable									
bit 0		ink Enable for Ou									
	1 = Current	sink is enabled sink is disabled									
		SILIN IS UISAULEU									

23.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

24.1 DC Characteristics

Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	Maximum MIPS dsPIC33CH128MP508 Family		
	(III Volts)	(11 0)	Master	Slave	
	3.0V to 3.6V	-40°C to +85°C	90	100	
	3.0V to 3.6V	-40°C to +125°C	90	100	

TABLE 24-1: OPERATING MIPS vs. VOLTAGE

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — ΤΑ)/θ.	IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 80-Pin TQFP 12x12x1 mm	θJA	50.67	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm	θJA	45.7	—	°C/W	1
Package Thermal Resistance, 64-Pin QFN 9x9 mm	θJA	18.7	_	°C/W	1
Package Thermal Resistance, 48-Pin TQFP 7x7 mm	θJA	62.76	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	27.6	_	°C/W	1
Package Thermal Resistance, 36-Pin UQFN 5x5 mm	θJA	29.2	_	°C/W	1
Package Thermal Resistance, 28-Pin UQFN 6x6 mm	θJA	22.41	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP 5.30 mm	θJA	52.84	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 24-4: OPERATING VOLTAGE SPECIFICATIONS

-	-	tions: 3.0V to 3.6V (unless other ature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ind $-40^{\circ}C \le TA \le +125^{\circ}C$ for E	ustrial	ted) ⁽¹⁾			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage	3.0	_	3.6	V	
DC12	Vdr	RAM Retention Voltage ⁽²⁾	1.8	_		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0	_	_	V/ms	0V-3V in 3 ms
BO10	VBOR	BOR Event on VDD Transition High-to-Low ⁽³⁾	2.68	2.84	2.99	V	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance.

2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

3: Parameters are characterized but not tested.

ECCCONH (ECC Fault Injection	
Configuration High)	
ECCCONL (ECC Fault Injection	
Configuration Low)	
ECCSTATH (ECC System Status Display High) 309	
ECCSTATL (ECC System Status Display Low) 309	
FALTREG Configuration	
FBSLIM Configuration	
FCFGPRA0 (PORTA Configuration)	
FCFGPRB0 (PORTB Configuration)	
FCFGPRC0 (PORTC Configuration)	
FCFGPRD0 (PORTD Configuration)	
FCFGPRE0 (PORTE Configuration	
FDEVOPT Configuration	
FDMT Configuration	
FDMTCNTH Configuration	
FDMTCNTL Configuration678	
FDMTIVTH Configuration	
FDMTIVTL Configuration	
FICD Configuration	
FMBXHS1 Configuration	
FMBXHS2 Configuration	
FMBXHSEN Configuration	
FMBXM Configuration	
FOSC Configuration	
FOSCSEL Configuration	
FPOR Configuration	
FS1ALTREG Configuration (Slave)695	
FS1DEVOPT Configuration (Slave)694	
FS1ICD Configuration (Slave)693	
FS1OSC Configuration (Slave)	
FS1OSCSEL Configuration (Slave)	
FS1POR Configuration (Slave)	
FS1WDT Configuration (Slave)	
FSCL (Frequency Scale)	
FSEC Configuration	
FSIGN Configuration	
FSMINPER (Frequency Scaling	
Minimum Period)	
FWDT Configuration	
I2CxCONH (I2Cx Control High)	
I2CxCONL (I2Cx Control Low)627	
I2CxMSK (I2Cx Slave Mode Address Mask)631	
I2CxSTAT (I2Cx Status)	
IBIASCONH (Current Bias Generator Current	
Source Control High) 665	
IBIASCONL (Current Bias Generator Current	
Source Control Low)	
INDXxCNTH (Index x Counter High)	
INDXxCNTL (Index x Counter Low)	
INDXxHLDH (Index x Counter Hold High)	
INDXxHLDL (Index x Counter Hold Low)	
INTCON1 (Interrupt Control 1)106	
INTCON1 (Slave Interrupt Control 1)	
INTCON2 (Interrupt Control 2)108	
INTCON2 (Slave Interrupt Control 2)	
INTCON3 (Interrupt Control 3) 109	
INTCON3 (Slave Interrupt Control 3)	
INTCON4 (Interrupt Control 4)110	
INTCON4 (Slave Interrupt Control 4)	
INTTREG (Interrupt Control and Status)	
INTTREG (Slave Interrupt Control and Status)	
INTxTMRH (Interval x Timer High)	
INTxTMRL (Interval x Timer Low)	
INTXTNICL (Interval x Timer Low)	
THE REAL PROVIDE A COUNCELLOU LIGHT	

INTXxHLDL (Index x Counter Hold Low)	578
LATx (Output Data for PORTx) 118,	
LFSR (Linear Feedback Shift)	513
LOGCONy (Combinatorial PWM Logic Control y)	
MDC (Master Duty Cycle)	505
MDED (Maatar Daried)	FOR
MPER (Master Period)	
MPHASE (Master Phase)	505
MRSWFDATA (Master Read (Slave Write)	
FIFO Data)	423
MSI1CON (MSI1 Master Control)	418
MSI1FIFOCS (MSI1 Master FIFO	
Control/Status)	422
MSI1KEY (MSI1 Master Interlock Key)	420
MSI1MBXnD (MSI1 Master Mailbox n Data)	421
MSI1MBXS (MSI1 Master Mailbox Data	
Transfer Status)	420
MSI1STAT (MSI1 Master Status)	419
	410
MWSRFDATA (Master Write (Slave Read)	
FIFO Data)	423
NVMADR (Nonvolatile Memory Lower Address)	84
NVMADR (Slave Program Memory	
Lower Address)	305
NVMADRU (Nonvolatile Memory Upper Address)	
	04
NVMADRU (Slave Program Memory	
	205
Upper Address)	
NVMCON (Nonvolatile Memory (NVM) Control)	82
NVMCON (Program Memory Slave Control)	303
NVMKEY (Nonvolatile Memory Key)	85
NVMKEY (Slave Nonvolatile Memory Key)	306
NVMSRCADR (NVM Source Data Address)	85
	00
NVMSRCADR (Slave NVM Source	
Data Address)	306
ODCx (Open-Drain Enable for PORTx) 118,	336
OSCCON (Master Oscillator Control)	442
OSCCON (Slave Oscillator Control)	455
OSCTUN (Master FRC Oscillator Tuning)	
PCLKCON (PWM Clock Control)	503
PGAxCAL (PGAx Calibration)	
PGAxCON (PGAx Control)	415
PGxCAP (PWM Generator x Capture)	
PGxCONH (PWM Generator x Control High)	515
PGxCONL (PWM Generator x Control Low)	
PGxDC (PWM Generator x Duty Cycle)	530
PGxDCA (PWM Generator x	
Duty Cycle Adjustment)	531
PGxDTH (PWM Generator x Dead-Time High)	
PGxDTL (PWM Generator x Dead-Time Low)	533
PGxEVTH (PWM Generator x Event High)	
PGxEVTL (PWM Generator x Event Low)	526
PGxIOCONH (PWM Generator x	
I/O Control High)	520
PGxIOCONL (PWM Generator x	
I/O Control Low)	519
PGxLEBH (PWM Generator x Leading-Edge	
Blanking High)	529
	020
PGxLEBL (PWM Generator x Leading-Edge	
Blanking Low)	528
PGxPER (PWM Generator x Period)	531
PGxPHASE (PWM Generator x Phase)	
PGxSTAT (PWM Generator x Status)	517
PGxTRIGA (PWM Generator x Trigger A)	
PGxTRIGB (PWM Generator x Trigger B)	532
PGxTRIGC (PWM Generator x Trigger C)	
PGxyPCIH (PWM Generator xy PCI High)	524
	504
PGxyPCIL (PWM Generator xy PCI Low)	52'l