

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	•
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp508-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CH128MP508 FAMILY

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 - CFO Interrupt Priority Level is 4 (12) $0.11 = CPU Interrupt Priority Level is 3 (11)$
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress
	0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1	The IPI <2:0> hits are concatenated with the IPI <3> hit (CORCON<3>) to form the CPI I Interrupt Priority

- Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 3-14: ADDRESSING FOR TABLE REGISTERS

		170		Interrupt Bit Location			
Interrupt Source	Vector #	IRQ #	IVT Address	Elea	Enable	Briority	
	"	"		Flay	Ellable	Phonty	
PEVTA – PWM Event A	177	169	0x000166	IFS10<9>	IEC10<9>	IPC42<6:4>	
PEVTB – PWM Event B	178	170	0x000168	IFS10<10>	IEC10<10>	IPC42<10:8>	
PEVTC – PWM Event C	179	171	0x00016A	IFS10<11>	IEC10<11>	IPC42<14:12>	
PEVTD – PWM Event D	180	172	0x00016C	IFS10<12>	IEC10<12>	IPC43<2:0>	
PEVTE – PWM Event E	181	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<6:4>	
PEVTF – PWM Event F	182	174	0x000170	IFS10<14>	IEC10<14>	IPC43<10:8>	
CLC3P – CLC3 Positive Edge	183	175	0x000172	IFS10<15>	IEC10<15>	IPC43<14:12>	
CLC4P – CLC4 Positive Edge	184	176	0x000174	IFS11<0>	IEC11<0	IPC44<2:0>	
CLC1N – CLC1 Negative Edge	185	177	0x000176	IFS11<1>	IEC11<1	IPC44<6:4>	
CLC2N – CLC2 Negative Edge	186	178	0x000178	IFS11<2>	IEC11<2	IPC44<10:8>	
CLC3N – CLC3 Negative Edge	187	179	0x00017A	IFS11<3>	IEC11<3	IPC44<14:>12>	
CLC4N – CLC4 Negative Edge	188	180	0x00017C	IFS11<4>	IEC11<4	IPC45<2:0>	
Reserved	189-196	181-188	0x0017E-0x0018C	_	_	_	
U1EVT – UART1 Event	197	189	0x00018E	IFS11<13>	IF2C11<13>	IPC47<6:4>	
U2EVT – UART2 Event	198	190	0x000190	IFS11<14>	IF2C11<14>	IPC47<12:8>	

TABLE 3-23: MASTER INTERRUPT VECTOR DETAILS (CONTINUED)

3.6.11 VIRTUAL CONNECTIONS

The dsPIC33CH128MP508 devices support six Master virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

3.6.12 SLAVE PPS INPUTS TO MASTER CORE PPS

The dsPIC33CH128MP508 Slave core subsystem PPS has connections to the Master core subsystem virtual PPS (RPV5-RPV0) output blocks. These inputs are mapped as S1RP175, S1RP174, S1RP173, S1RP172, S1RP171 and S1RP170.

The RPn inputs, RP1-RP13, are connected to internal signals from both the Master and Slave core subsystems. Additionally, the Master core virtual output PPS blocks (RPV5-RPV0) are connected to the Slave core PPS circuitry. There are virtual pins in PPS to share between Master and Slave:

- RP181 is for Master input (RPV5)
- RP180 is for Master input (RPV4)
- RP179 is for Master input (RPV3)
- RP178 is for Master input (RPV2)
- RP177 is for Master input (RPV1)
- RP176 is for Master input (RPV0)
- RP175 is for Slave input (S1RPV5)
- RP174 is for Slave input (S1RPV4)
- RP173 is for Slave input (S1RPV3)
- RP172 is for Slave input (S1RPV2)
- RP171 is for Slave input (S1RPV1)
- RP170 is for Slave input (S1RPV0)

The idea of the RPVn (Remappable Pin Virtual) is to interconnect between the Master and Slave without an I/O pin. For example, the Master UART receiver can be connected to the Slave UART transmit using RPVn and data communication can happen from Slave to Master without using any physical pin.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM5R7 | ICM5R6 | ICM5R5 | ICM5R4 | ICM5R3 | ICM5R2 | ICM5R1 | ICM5R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-43: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TCKI5R7	TCKI5R6	TCKI5R5	TCKI5R4	TCKI5R3	TCKI5R2	TCKI5R1	TCKI5R0	
bit 7 bit 0								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 ICM5R<7:0>: Assign SCCP Capture 5 (ICM5) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI5R<7:0>:** Assign SCCP Timer5 (TCKI5) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-44: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM6R7 | ICM6R6 | ICM6R5 | ICM6R4 | ICM6R3 | ICM6R2 | ICM6R1 | ICM6R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI6R7 | TCKI6R6 | TCKI6R5 | TCKI6R4 | TCKI6R3 | TCKI6R2 | TCKI6R1 | TCKI6R0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
n = Value at POR '1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 ICM6R<7:0>: Assign SCCP Capture 6 (ICM6) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI6R<7:0>:** Assign SCCP Timer6 (TCKI6) Input to the Corresponding RPn Pin bits See Table 3-30.

4.1.3 DATA SPACE ADDRESSING

The base Data Space can be addressed as up to 4K words or 8 Kbytes, and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to **"Data Memory"** (DS70595) in the *"dsPlC33/PlC24 Family Reference Manual"* for more details on PSV and table accesses.

On dsPIC33CH128MP508S1 family devices, overheadfree circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

4.1.4 ADDRESSING MODES

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

4.3.2 RTSP OPERATION

RTSP allows the user application to program one double instruction word, or one row, at a time.

The double instruction word write blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of one double instruction word and 64 double instruction words, respectively.

Note: Because the PRAM is volatile, RTSP writes that change the Slave PRAM user code will be lost when the device is powered down. For persistent changes to Slave PRAM user code, the Slave image in the Master Flash should be updated. The basic sequence for RTSP programming is to first load two 24-bit instructions into the NVM write latches found in configuration memory space. Refer to Figure 4-3 for write latch addresses. Then, the WR bit in the NVMCON register is set to initiate the write process. The processor stalls (waits) until the programming operation is finished. The WR bit is automatically cleared when the operation is finished. All program operations may optionally use the NVM interrupt to signal the successful completion of the operation.

Double instruction word writes are performed by manually loading both write latches, using TBLWTL and TBLWTH instructions, and then initiating the NVM write while the NVMOP<3:0> bits (NVMCON<3:0>) are set to '0x1'. The program space destination address is defined by the NVMADR/U registers.

EXAMPLE 4-1: PRAM WRITE/READ

```
//Sample code for PRAM write
// Writing 0 \mathrm{x} 777777 to location 0 \mathrm{x} 3000
   NVMCON = 0 \times 4001;
   TBLPAG = 0xFA;
                                         // write latch upper address
   NVMADR = 0 \times 3000;
                                         // set target write address of general segment
   NVMADRU = 0 \times 0000;
    __builtin_tblwtl(0, 0x7777);
                                        // load write latches
   __builtin_tblwth (0,0x77);
   __builtin_tblwtl(2, 0x7777);
                                         // load write latches
   __builtin_tblwth (2,0x77);
    asm volatile ("disi #5");
    ___builtin_write_NVM();
    while(_WR == 1 ) ;
// Sample code for reading address location 0x3000
//readDataL /readDataLH need to be defined as variables.
    TBLPAG = 0 \times 0000;
    readDataL = __builtin_tblrdl(0x3000);
    readDataH = __builtin_tblrdh(0x0000);
```

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	EISEL2	EISEL1	EISEL0	RES1	RES2
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	ented bit, read	as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

REGISTER 4-94: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 TO 1)

bit 15-13 **Unimplemented:** Read as '0'

bit 12-10	EISEL<2:0>: ADC Core x Early Interrupt Time Selection bits
	111 = Early interrupt is set and an interrupt is generated 8 TADCORE clocks prior to when the data is ready 110 = Early interrupt is set and an interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and an interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 2 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and an interrupt is generated 1 TADCORE clocks prior to when the data is ready
bit 9-8	RES<1:0>: ADC Core x Resolution Selection bits
	11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution ⁽¹⁾ 00 = 6-bit resolution ⁽¹⁾
bit 7	Unimplemented: Read as '0'
bit 6-0	ADCS<6:0>: ADC Core x Input Clock Divider bits These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period (TADCORE). 1111111 = 254 Source Clock Periods
	0000011 = 6 Source Clock Periods 0000010 = 4 Source Clock Periods 0000001 = 2 Source Clock Periods 0000000 = 2 Source Clock Periods

Note 1: For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from '100' to '111', are not valid and should not be used. For the 8-bit ADC core resolution (RES<1:0> = 01), the EISEL<2:0> bits settings, '110' and '111', are not valid and should not be used.

REGISTER 4-104: ADSTATL: ADC DATA READY STATUS REGISTER LOW

HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
			AN<15	:8>RDY					
bit 15	bit 15 bit 8								
HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
			AN<7:	0>RDY					
bit 7							bit 0		
Legend:		U = Unimplem	nented bit, read	d as '0'					
R = Readable bit W = Writable bit			bit	HSC = Hardw	are Settable/C	learable bit			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown		

bit 15-0 AN<15:0>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 4-105: ADSTATH: ADC DATA READY STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	—		ŀ	AN<20:16>RD`	Ý	
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 AN<20:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 5-14: SWMRFDATA: SLAVE WRITE (MASTER READ) FIFO DATA REGISTER

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			SWMRFD)ATA<15:8>			
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			SWMRFI	DATA<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			known

bit 15-0 SWMRFDATA<15:0>: Read FIFO Data Out Register bits

REGISTER 5-15: SRMWFDATA: SLAVE READ (MASTER WRITE) FIFO DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SRMWFD)ATA<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SRMWFI	DATA<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	'alue at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown					known	

bit 15-0 SRMWFDATA<15:0>: Write FIFO Data Out Register bits

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	HC/R/W-0	HSC/R-0
ROEN	_	ROSIDI	ROOUT	ROSLP	_	ROSWEN	ROACTIV
bit 15		TROOLDE	10001	ROOLI		ROOMER	bit 8
Sit 10							510
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit	
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ROEN: Refe	erence Clock En	able bit				
	1 = Referen	ce Oscillator is e	nabled on the	REFCLKO pin			
	0 = Referen	ce Oscillator is c	lisabled				
bit 14	Unimpleme	nted: Read as '	0'				
bit 13	ROSIDL: Re	eference Clock S	Stop in Idle bit	1.0			
	1 = Referen	ce Oscillator cor	itinues to run ir lisabled in Idle	n Idle mode			
bit 12	ROOUT: Re	ference Clock C	utput Enable b	it			
SICIE	1 = Referen	ce clock externa	l output is enat	oled and availab	le on the REF	CLKO pin	
	0 = Referen	ce clock externa	l output is disal	bled			
bit 11	ROSLP: Re	ference Clock S	top in Sleep bit				
	1 = Referen	ce Oscillator cor	tinues to run ir	n Sleep modes			
h# 40	0 = Referen	ce Oscillator is c	isabled in Siee	ep modes			
bit 0		Poforonoo Clook	U Output Enchla	hit			
bit 9		kelelence Clock		; DIL hanges to POC		ted or is in pr	oaress (set in
	software	e, cleared by ha	rdware upon co	mpletion)	(IVX) is reques		Syless (set in
	0 = Clock d	ivider change ha	as completed or	r is not pending			
bit 8	ROACTIV: F	Reference Clock	Status bit				
	1 = Referen	ce clock is active	e; do not chang	e clock source			
	0 = Referen	ce clock is stopp	ed; clock sourc	ce and configura	ation may be s	afely changed	
bit 7-4	Unimpleme	nted: Read as '	0'				
bit 3-0	ROSEL<3:0	I>: Reference Cl	ock Source Se	lect bits			
		erved					
	1000 = Res	erved					
	0111 = REF	-I pin					
	0110 = Fvc	0/4					
	0101 = BFF	RC					
	0100 = LPR						
	0010 = Prim	- nary Oscillator					
	0001 = Peri	pheral clock (FP)				
	0000 = Syst	tem clock (Fosc)				

REGISTER 6-10: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER (MASTER)

REGISTER	7-2: PMD1	: MASTER P	ERIPHERAL	MODULE DIS	ABLE 1 CO	NTROL REGI	STER LOW
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
	—	—	—	T1MD	QEIMD	PWMMD	_
bit 15		•	•			•	bit 8
	DAMA		DAMA	DANO		DAMA	DAMA
R/W-U	R/W-U		R/W-U	R/W-U	0-0	R/W-U	
bit 7	02IMD	UTIVID	SFIZIND	SFILMD		CIMD	ADC TMD
							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	כי				
bit 11	T1MD: Timer	1 Module Disat	ole bit				
	1 = Timer1 m	odule is disable	ed Id				
bit 10		Module Disable	hit				
	1 = QEI modu	ile is disabled					
	0 = QEI modu	ile is enabled					
bit 9	PWMMD: PW	/M Module Disa	able bit				
	1 = PWM mod 0 = PWM mod	dule is disabled	1				
bit 8	Unimplemen	ted: Read as '	D'				
bit 7	12C1MD: 12C	1 Module Disat	ole bit				
	$1 = 12C1 \mod 0 = 12C1 \mod 1$	ule is disabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	1 = UART2 m	odule is disable	ed ed				
bit 5	U1MD: UART	1 Module Disa	ble bit				
	1 = UART1 m	odule is disable	ed				
hit 4			ole hit				
	$1 = SPI2 \mod 1$	lule is disabled					
	0 = SPI2 mod	lule is enabled					
bit 3	SPI1MD: SPI	1 Module Disal	ole bit				
	1 = SPI1 mod	lule is disabled					
bit 2	Unimplemen	ted: Read as '	י)				
bit 1	C1MD: CAN1	Module Disab	le bit				
	1 = CAN1 mo	dule is disable	d				
	0 = CAN1 mo	dule is enabled	ł				
bit 0	ADC1MD: AD	C Module Disa	able bit				
	1 = ADC mod 0 = ADC mod	ule is disabled ule is enabled					

REGISTER 9-4: MPHASE: MASTER PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPHA	SE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPHA	SE<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u		x = Bit is unk	nown				

bit 15-0 **MPHASE<15:0>:** Master Phase Register bits

REGISTER 9-5: MDC: MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDO	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown			

bit 15-0 MDC<15:0>: Master Duty Cycle Register bits

REGISTER 9-23: PGxPHASE: PWM GENERATOR x PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPH	IASE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPH	HASE<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				own			

bit 15-0 **PGxPHASE<15:0>:** PWM Generator x Phase Register bits

REGISTER 9-24: PGxDC: PWM GENERATOR x DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxI	DC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGx	DC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						own	

bit 15-0 PGxDC<15:0>: PWM Generator x Duty Cycle Register bits

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM		SSDG	_	_	_	
bit 15						-	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	PWMRSEN:	CCPx PWM Re	estart Enable b	it			
	1 = ASEVT b	it clears autom	atically at the I	peginning of the	e next PWM pe	riod, after the s	hutdown input
	nas ende ∩ = ASEVT h	:0 vit must be clea	red in software	to resume PM	/M activity on c	utout nins	
bit 14		Px Auto-Shutdo	wn Gate Mode	e Enable bit	in douvity on e	alpat pillo	
Sit 11	1 = Waits unt	til the next Time	Base Reset of	or rollover for sh	nutdown to occ	ur	
	0 = Shutdow	n event occurs	immediately				
bit 13	Unimplemen	ted: Read as '	כי				
bit 12	SSDG: CCPx	Software Shut	down/Gate Co	ntrol bit			
	1 = Manually	forces auto-sl	nutdown, timei	r clock gate or	input capture	signal gate eve	ent (setting of
	ASDGM	bit still applies)	_				
h:+ 44 0		todule operatio	n ,				
DIT 11-8	Unimplemen	ted: Read as 1		o =			
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	Source Enable	e bits		
	$\perp = ASDGXS$ 0 = ASDGYS	Source n is ena	ulea (see 1201 Ibled	e iu-8 and lab	ie 10-9 for auto	o-snutaown/gati	ng sources)

REGISTER 10-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

REGISTER 12-2: QEIXIOCL: QEIX I/O CONTROL LOW REGISTER (CONTINUED)

bit 6	IDXPOL: INDXx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 5	QEBPOL: QEBx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 4	QEAPOL: QEAx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 3	 HOME: Status of HOMEx Input Pin after Polarity Control bit (read-only) 1 = Pin is at logic '1' if the HOMPOL bit is set to '0'; pin is at logic '0' if the HOMPOL bit is set to '1' 0 = Pin is at logic '0' if the HOMPOL bit is set to '0'; pin is at logic '1' if the HOMPOL bit is set to '1'
bit 2	 INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only) 1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1' 0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'
bit 1	 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1';
bit 0	 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; p

physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'

17.1 Timer1 Control Register

REGISTER 17-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
TON ⁽¹⁾	— SIDL TMWDIS TMWIP PRWIP TE			TECS1	TECS0		
bit 15 bit 8							
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
TGATE	ATE — TCKPS1 TCKPS0 — TSYNC ⁽			TSYNC ⁽¹⁾	TCS ⁽¹⁾	—	
bit 7							bit 0
Legend:	1.11					(O)	
R = Readable		W = Writable bit $U = Unimplemented bit, read as '0'$			as 'U'		
-n = value at i	PUR	I = Bit is set		0 = Bit is cie	ared	x = Bit is unkn	lown
hit 15	TON: Timer1	On hit(1)					
Sit 10	1 = Starts 16-	bit Timer1					
	0 = Stops 16-	bit Timer1					
bit 14	Unimplemen	ted: Read as '	כי				
bit 13	SIDL: Timer1	Stop in Idle Mo	ode bit				
	1 = Discontinu	ues module op	eration when o	device enters I	dle mode		
h:: 40		s module opera		ode			
DIT 12	1 - Timor wri	ynchronous IIn	while a postor	able bit	1 or DD1 is sync	bronized to the	asvachronous
	⊥ – Timer wir clock don	nain	write a posted				asynchionous
	0 = Back-to-t	back writes are	enabled in As	synchronous m	node		
bit 11	TMWIP: Asyn	nchronous Time	er1 Write in Pr	ogress bit			
	1 = Write to th	ne timer in Asyı	nchronous mo	de is pending			
bit 10	0 = Write to tr	ie timer in Asyl	nchronous mo	de is complete	;		
bit 10	1 = Write to th	ne Period regis	ter in Asynchr	onous mode is	spending		
	0 = Write to th	ne Period regis	ter in Asynchr	onous mode is	s complete		
bit 9-8	TECS<1:0>: Timer1 Extended Clock Select bits						
	11 = FRC clo	ck					
	10 = 2 TCY						
	00 = External	Clock comes f	rom the T1CK	Cpin			
bit 7	TGATE: Timer1 Gated Time Accumulation Enable bit						
	When TCS = 1:						
	This bit is igno	ored.					
	<u>When TCS =</u> 1 = Gated times	<u>0:</u> le accumulation	n is enabled				
	0 = Gated tim	e accumulation	is disabled				
bit 6	Unimplemen	ted: Read as '	כי				
Note 1: Wh	nen Timer1 is en	abled in Extern	al Synchrono	us Counter mo	ode (TCS = 1 T	SYNC = $1.TO$	N = 1), any

attempts by user software to write to the TMR1 register are ignored.

19.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The CRC module is available only on the Master.

The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

A simple version of the CRC shift engine is displayed in Figure 19-1. Table 19-1 displays a simplified block diagram of the CRC generator.

	TABLE 19-1:	CRC MODULE OVERVIEW
--	-------------	----------------------------

	Number of CRC Modules	Identical (Modules)		
Master Core	1	Yes		
Slave Core	None	NA		

FIGURE 19-1: CRC MODULE BLOCK DIAGRAM

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	Fin	External CLKI Frequency (External Clocks allowed only in EC and ECPLL modes)	DC	_	64	MHz	EC
		Oscillator Crystal Frequency	3.5		10	MHz	XT
			10		32	MHz	HS
OS20	Tosc	Tosc = 1/Fosc	15.6		DC	ns	
OS25	TCY	Instruction Cycle Time ⁽²⁾	10		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.4	—	ns	
OS41	TckF	CLKO Fall Time ^(3,4)	_	6.4	—	ns	
OS42	Gм	External Oscillator Transconductance ⁽³⁾	2.7	-	4	mA/V	XTCFG<1:0> = 00, XTBST = 0
			4	—	7	mA/V	XTCFG<1:0> = 00, XTBST = 1
			4.5	—	7	mA/V	XTCFG<1:0> = 01, XTBST = 0
			6	—	11.9	mA/V	XTCFG<1:0> = 01, XTBST = 1
			5.9	—	9.7	mA/V	XTCFG<1:0> = 10, XTBST = 0
			6.9	—	15.9	mA/V	XTCFG<1:0> = 10, XTBST = 1
			6.7	-	12	mA/V	XTCFG<1:0> = 11, XTBST = 0
			7.5	_	19	mA/V	XTCFG<1:0> = 11, XTBST = 1

TABLE 24-26: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an External Clock applied to the OSCI pin. When an External Clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin.
- 4: This parameter is characterized but not tested in manufacturing.