

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	152KB (152K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch128mp508t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

51 Vac Vac 52 RP71/RD7 S1RP71/S1PVM8H/S1RD7 53 RP70/RD6 S1RP70/S1PVM6H/S1RD6 54 RP59/RD5 S1RP69/S1PVM6H/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP36/SCL2/RB6 S1PCG3/S1RP36/S1RD6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MOLR1/S1AN6/S1RP39/S1PVM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1AN7/S1RP40/S1SCL1/S1RB3 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PVM12/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PVM14/L/S1RC10 66 RP59/RC10 S1RP58/S1PVM14/L/S1RC10 67 RP59/RC11 S1RP66/S1PVM34/L/S1RD1 68 RP67/RD3 S1RP65/S1PVM44/L/S1RD1 69 RP57/RD3 S1RP66/S1PVM44/L/S1RD1 70 Vss Vss </th <th>Pin #</th> <th>Master Core</th> <th>Slave Core</th>	Pin #	Master Core	Slave Core
52 RP71/RD7 \$1RP71/S1PWM8H/S1RD7 53 RP20/RD6 \$1RP70/S1PVM6H/S1RD6 54 RP69/RD5 \$1RP60/S1PVM6H/S1RD6 54 RP69/R93/SD42/RB5 \$1P60J/S1RP3/S1RB5 56 PGC3/RP38/SCL2/RB6 \$1PC0J/S1RP38/S1RB6 57 RE10 \$1RE10 58 TD0/AN9/RP39/RB7 \$1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 \$1RE11 \$11RE11 60 PGD1/AN10/RP40/SCL1//S1RB \$1PGC1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 \$1PGC1/S1RP41/S1SDA1/S1RB8 62 ASCL2/RE12 \$1RE12 63 RP52/RC4 \$1RP52/S1PVM2L/S1RC4 64 ASDA2/RE13 \$1RE13 67 RF58/RC10 \$1RP59/S1PVM1/LS1RC1 67 RP59/RC11 \$1RP59/S1PVM1/LS1RC5 68 RP58/RC10 \$1RP59/S1PVM1/LS1RC1 69 RP59/RC11 \$1RP59/S1PVM4L/S1RC1 69 RP66/RD2 \$1RP66/S1PVM48/LS1RD1	51	Vdd	VDD
53 RP70/RD6 S1RP70/S1PWM6H/S1RD6 54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP39/S1RB6 57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1INCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SLCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RD4 69 RP67/RD3 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 61 RP66/RD0 S1RP66/S1PWM3L/S1RD3 70 Vs5 Vs5 71 VoD VoD	52	RP71 /RD7	S1RP71/S1PWM8H/S1RD7
54 RP69/RD5 S1RP69/S1PWM6L/S1RD5 55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TDD/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PW/M5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP40/SCL1/RB8 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PW/M2L/S1RC4 64 ASDA2/RE13 S1RE73 66 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 67 RP58/RC10 S1RP58/S1PW/M1L/S1RC10 68 RP68/RD4 S1RP58/S1PW/M1L/S1RC10 69 RP67/RD3 S1RP67/S1PW/M1L/S1RC10 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PW/M8L/S1RD2 <td>53</td> <td>RP70/RD6</td> <td>S1RP70/S1PWM6H/S1RD6</td>	53	RP70/RD6	S1RP70/S1PWM6H/S1RD6
55 PGD3/RP37/SDA2/RB5 S1PGD3/S1RP37/S1RB5 56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1MCLR1/S1AN6/S1RP39/S1RB6 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP58/S1PWM2L/S1RC4 66 RP56/RC10 S1RP58/S1PWM1L/S1RC10 67 RP59/RC11 S1RP58/S1PWM1L/S1RC11 68 RP66/RD4 S1RP68/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD1 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP66/RD2 S1RP66/S1PWM	54	RP69/RD5	S1RP69/S1PWM6L/S1RD5
56 PGC3/RP38/SCL2/RB6 S1PGC3/S1RP38/S1RB6 57 RE10 S1RE10 58 TD0/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA/2RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP53/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP63/RD4 S1RP66/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VbD 72 RP66/RD2 S1RP66/S1PWM4L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3L/RB10 S1RP64/S1PWM4L/S1RD1	55	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
57 RE10 S1RE10 58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP68/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 74 RP66/RD2 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB10 S1RP43/S1RB12 <t< td=""><td>56</td><td>PGC3/RP38/SCL2/RB6</td><td>S1PGC3/S1RP38/S1RB6</td></t<>	56	PGC3/ RP38 /SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
58 TDO/AN9/RP39/RB7 S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7 59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP40/S1SCL1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE53 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP59/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP66/RD4 S1RP66/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD4 69 RP66/RD2 S1RP66/S1PWM8L/S1RD2 71 VoD VoD 72 RP66/RD1 S1RP66/S1PWM8L/S1RD1 74 RP66/RD2 S1RP66/S1PWM8L/S1RD1 75 TMS/RP42/PVM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PM3L/RB10 S1RP43/S1RB11 77 RE15	57	RE10	S1RE10
59 RE11 S1RE11 60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP58/RC10 S1RP58/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP66/S1PWM3L/S1RD3 70 Vss Vss 71 VoD VoD 72 RP66/RD2 S1RP66/S1PVM8L/S1RD2 73 RP66/RD2 S1RP66/S1PVM4L/S1RD1 74 RP64/RD0 S1RP64/S1PVM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78	58	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
60 PGD1/AN10/RP40/SCL1/RB8 S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8 61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP59/RC10 S1RP53/S1PWM1L/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC10 68 RP68/RD4 S1RP59/S1PWM3L/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD4 69 RP67/RD3 S1RP66/S1PWM8L/S1RD2 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP42/S1RB10 75 TMS/RP44/PWM3H/RB10 S1RP43/S1RB1 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP45/S1RB12	59	RE11	S1RE11
61 PGC1/AN11/RP41/SDA1/RB9 S1PGC1/S1RP41/S1SDA1/S1RB9 62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP53/S1PWM2L/S1RC5 67 RP59/RC11 S1RP58/S1PWM1H/S1RC10 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TD//RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	60	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/ S1RP40 /S1SCL1/S1RB8
62 ASCL2/RE12 S1RE12 63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP66/RD2 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	61	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
63 RP52/RC4 S1RP52/S1PWM2H/S1RC4 64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	62	ASCL2/RE12	S1RE12
64 ASDA2/RE13 S1RE13 65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	63	RP52/RC4	S1RP52/S1PWM2H/S1RC4
65 RP53/RC5 S1RP53/S1PWM2L/S1RC5 66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD2 74 RP64/RD0 S1RP66/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB11 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	64	ASDA2/RE13	S1RE13
66 RP58/RC10 S1RP58/S1PWM1H/S1RC10 67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP43/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	65	RP53/RC5	S1RP53/S1PWM2L/S1RC5
67 RP59/RC11 S1RP59/S1PWM1L/S1RC11 68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vob Vob 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP43/S1RB11 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	66	RP58/RC10	S1RP58/S1PWM1H/S1RC10
68 RP68/RD4 S1RP68/S1PWM3H/S1RD4 69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	67	RP59/RC11	S1RP59/S1PWM1L/S1RC11
69 RP67/RD3 S1RP67/S1PWM3L/S1RD3 70 Vss Vss 71 Vdd Vdd 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP66/S1PWM8L/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD1 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	68	RP68/RD4	S1RP68/S1PWM3H/S1RD4
70 Vss Vss 71 VDD VDD 72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	69	RP67/RD3	S1RP67/S1PWM3L/S1RD3
71 VDD VDD 72 RP66/RD2 \$1RP66/S1PWM8L/S1RD2 73 RP65/RD1 \$1RP65/S1PWM4H/S1RD1 74 RP64/RD0 \$1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 \$1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/S1RB11 77 RE14 \$1RP44/PWM2H/RB12 78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RP45/S1RB13	70	Vss	Vss
72 RP66/RD2 S1RP66/S1PWM8L/S1RD2 73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	71	Vdd	Vdd
73 RP65/RD1 S1RP65/S1PWM4H/S1RD1 74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP44/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	72	RP66/RD2	S1RP66/S1PWM8L/S1RD2
74 RP64/RD0 S1RP64/S1PWM4L/S1RD0 75 TMS/RP42/PWM3H/RB10 S1RP42/S1RB10 76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RP14/S1RB12 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	73	RP65/RD1	S1RP65/S1PWM4H/S1RD1
75 TMS/RP42/PWM3H/RB10 \$1RP42/\$1RB10 76 TCK/RP43/PWM3L/RB11 \$1RP43/\$1RB11 77 RE14 \$1RE14 78 TDI/RP44/PWM2H/RB12 \$1RP44/\$1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/\$1RB13	74	RP64/RD0	S1RP64/S1PWM4L/S1RD0
76 TCK/RP43/PWM3L/RB11 S1RP43/S1RB11 77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	75	TMS/ RP42 /PWM3H/RB10	S1RP42 /S1RB10
77 RE14 S1RE14 78 TDI/RP44/PWM2H/RB12 S1RP44/S1RB12 79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	76	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
78 TDI/RP44/PWM2H/RB12 \$1RP44/S1RB12 79 RE15 \$1RE15 80 RP45/PWM2L/RB13 \$1RP45/S1RB13	77	RE14	S1RE14
79 RE15 S1RE15 80 RP45/PWM2L/RB13 S1RP45/S1RB13	78	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
80 RP45/PWM2L/RB13 S1RP45/S1RB13	79	RE15	S1RE15
	80	RP45/PWM2L/RB13	S1RP45/S1RB13

TABLE 9: 80-PIN TQFP (CONTINUED)

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports		<u> </u>	RPINR19	D2A	11111111111111111	RPOR4	D88	000000000000
RPCON	D00	0	RPINR20	D2C	11111111111111111	RPOR5	D8A	000000000000
RPINR0	D04	11111111	RPINR21	D2E	11111111111111111	RPOR6	D8C	000000000000
RPINR1	D06	11111111111111111	RPINR22	D30	11111111111111111	RPOR7	D8E	000000000000
RPINR2	D08	11111111	RPINR23	D32	11111111111111111	RPOR8	D90	000000000000
RPINR3	D0A	11111111111111111	RPINR26	D38	111111111	RPOR9	D92	000000000000
RPINR4	D0C	11111111111111111	RPINR30	D40	11111111	RPOR10	D94	000000000000
RPINR5	D0E	11111111111111111	RPINR37	D4E	11111111	RPOR11	D96	000000000000
RPINR6	D10	11111111111111111	RPINR38	D50	111111111	RPOR12	D98	000000000000
RPINR7	D12	11111111111111111	RPINR42	D58	11111111111111111	RPOR13	D9A	000000000000
RPINR8	D14	11111111111111111	RPINR43	D5A	11111111111111111	RPOR14	D9C	000000000000
RPINR9	D16	11111111111111111	RPINR44	D5C	11111111111111111	RPOR15	D9E	000000000000
RPINR10	D18	11111111111111111	RPINR45	D5E	11111111111111111	RPOR16	DA0	000000000000
RPINR11	D1A	11111111111111111	RPINR46	D60	11111111111111111	RPOR17	DA2	000000000000
RPINR12	D1C	11111111111111111	RPINR47	D62	11111111111111111	RPOR18	DA4	000000000000
RPINR13	D1E	11111111111111111	RPOR0	D80	000000000000	RPOR19	DA6	000000000000
RPINR14	D20	11111111111111111	RPOR1	D82	000000000000	RPOR20	DA8	000000000000
RPINR15	D22	111111111111111111	RPOR2	D84	000000000000	RPOR21	DAA	000000000000
RPINR18	D28	11111111111111111	RPOR3	D86	000000000000	RPOR22	DAC	000000000000

TABLE 3-16: MASTER SFR BLOCK D00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM1R7 | ICM1R6 | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-39: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI1R7 | TCKI1R6 | TCKI1R5 | TCKI1R4 | TCKI1R3 | TCKI1R2 | TCKI1R1 | TCKI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 ICM1R<7:0>: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI1<7:0>:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-40: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 ICM2R<7:0>: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI2R<7:0>:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 3-30.

3.7 Deadman Timer (DMT) (Master Only)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The Slave core does not have any DMT module; only the Master has the DMT.

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

FIGURE 3-22: DEADMAN TIMER BLOCK DIAGRAM

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected. Table 3-41 shows an overview of the DMT module.

TABLE 3-41:	DMT MODULE OVERVIEW
-------------	---------------------

	No. of DMT Modules	Identical (Modules)		
Master Core	1	No		
Slave Core	None	NA		

Figure 3-22 shows a block diagram of the Deadman Timer module.

dsPIC33CH128MP508 FAMILY

REGISTER 3-138: C1TEFSTA: CAN TRANSMIT EVENT FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	S/HC-0	R-0	R-0	R-0
	—	—	—	TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	S = Settable by '1' bit			
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
hit 15.4							

DIT 15-4	Unimplemented: Read as 0
bit 3	TEFOVIF: Transmit Event FIFO Overflow Interrupt Flag bit
	1 = Overflow event has occurred
	0 = No overflow event has occurred
bit 2	TEFFIF: Transmit Event FIFO Full Interrupt Flag bit ⁽¹⁾
	1 = FIFO is full
	0 = FIFO is not full
bit 1	TEFHIF: Transmit Event FIFO Half Full Interrupt Flag bit ⁽¹⁾
	1 = FIFO is \geq half full
	0 = FIFO is < half full
bit 0	TEFNEIF: Transmit Event FIFO Not Empty Interrupt Flag bit ⁽¹⁾
	1 = FIFO is not empty
	0 = FIFO is empty

Note 1: These bits are read-only and reflect the status of the FIFO.

REGISTER 3-173:	ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW
-----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	_	-	—	—	—	—	SIGN20	
bit 15							bit 8	
r							-	
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	
	SIGN19		SIGN18	—	SIGN17		SIGN16	
bit 7							bit 0	
Logondy								
R – Readable k	vit	W – Writable	hit	II – Unimpler	nented hit rea	d as '0'		
-n = Value at P	OR	'1' = Rit is set	UIL	0' = Bit is cle	ared	x = Ritis unk	nown	
					arca			
bit 15-9	Unimplement	ted: Read as 'd)'					
bit 8	SIGN20: Outp	out Data Sign fo	or Correspondi	ing Analog Inpu	ut bits			
	1 = Channel o	output data is si	igned					
	0 = Channel o	output data is u	nsigned					
bit 7	Unimplement	ted: Read as 'd)'					
bit 6	SIGN19: Outp	out Data Sign fo	or Correspondi	ing Analog Inpu	ut bits			
	1 = Channel o	output data is si	igned					
	0 = Channel o	output data is u	nsigned					
bit 5	Unimplement	ted: Read as ')'					
bit 4	SIGN18: Outp	out Data Sign fo	or Correspond	ing Analog Inpl	ut bits			
	1 = Channel o 0 = Channel o	output data is si output data is u	ignea nsianed					
hit 3		ted: Read as '	ווסופווופע ז'					
bit 2	SIGN17: Outr	ut Data Sign f	or Correspondi	ina Analoa Inni	it hits			
Sit 2	- Channel output data is signed							
	0 = Channel output data is unsigned							
bit 1	Unimplement	ted: Read as 'd)'					
bit 0	SIGN16: Outp	out Data Sign fo	or Correspondi	ing Analog Inpu	ut bits			
	1 = Channel o	output data is si	igned .					
	0 = Channel o	output data is u	nsigned					

4.1.3 DATA SPACE ADDRESSING

The base Data Space can be addressed as up to 4K words or 8 Kbytes, and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to **"Data Memory"** (DS70595) in the *"dsPlC33/PlC24 Family Reference Manual"* for more details on PSV and table accesses.

On dsPIC33CH128MP508S1 family devices, overheadfree circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

4.1.4 ADDRESSING MODES

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

4.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508S1 family is shown in Figure 4-2. All registers in the programmer's model are memorymapped and can be manipulated directly by instructions. Table 4-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508S1 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 4-3.

TABLE 4-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate 1 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 2 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 3 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 4 Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

EXAMPLE 4-2: SLAVE PRAM LOAD AND VERIFY ROUTINE

```
#include <libpic30.h>
//_program_slave(core#, verify, &slave_image)
if (__program_slave(1, 0, &slave) == 0)
{
    /* now verify */
    if (__program_slave(1, 1, &slave) ==
    ESLV_VERIFY_FAIL)
    {
        asm("reset"); // try again
    }
}
```

The __program_slave(core#, verify, &slave_image) routine only supports Slave images created with a compatible Microchip language tools format. Slave PRAM images not following this format will require a custom routine that follows all requirements for the PRAM Master to Slave image loading process described in this chapter.

4.3.4 PRAM DUAL PARTITION CONSIDERATIONS

For dsPIC33CH128MP508S1 family devices operating in Dual Partition PRAM Program Memory modes, both partitions would be loaded using the Master to Slave image loading process. The Master can load the active partition of the PRAM only when SLVEN = 0 (Slave is not running). The Master can load the PRAM Inactive Partition any time. To support LiveUpdate, the Master would load the PRAM Inactive Partition while the Slave is running and then the Slave would execute the BOOTSWP instruction to swap partitions.

4.3.4.1 PRAM Partition Swapping

At device Reset, the default PRAM partition is Partition 1. The BOOTSWP instruction provides the means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition. It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence, and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain their state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap.

For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

4.3.4.2 Dual Partition Modes

While operating in Dual Partition mode, the dsPIC33CH128MP508S1 family devices have the option for both partitions to have their own defined security segments, as shown in Figure .

Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

TABLE 4-20: SLAVE INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Interrupt Bit Location		
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
CND – Change Notice Interrupt D	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
CNE – Change Notice Interrupt E	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>
Reserved	85	77	—	_	—	—
CMP1 – Slave Comparator 1 Interrupt	86	78	0x0000B0	IFS4<14>	IEC4<14>	IPC19<10:8>
CMP2 – Slave Comparator 2 Interrupt	87	79	0x0000B2	IFS4<15>	IEC4<15>	IPC19<14:12>
CMP3 – Slave Comparator 3 Interrupt	88	80	0x0000B4	IFS5<0>	IEC5<0>	IPC20<2:0>
Reserved	89	81	0x0000B6		_	_
PTG0 – PTG Int. Trigger Master 0	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
PTG1 – PTG Int. Trigger Master 1	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
PTG2 – PTG Int. Trigger Master 2	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>
PTG3 – PTG Int. Trigger Master 3	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>
Reserved	94-97	86-89	0x0000C0	—	—	—
ADC – ADC Global Interrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
ADCAN0 – ADC AN0 Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
ADCAN1 – ADC AN1 Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
ADCAN2 – ADC AN2 Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
ADCAN3 – ADC AN3 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
ADCAN4 – ADC AN4 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
ADCAN5 – ADC AN5 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
ADCAN6 – ADC AN6 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
ADCAN7 – ADC AN7 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
ADCAN8 – ADC AN8 Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
ADCAN9 – ADC AN9 Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
ADCAN10 – ADC AN10 Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>
ADCAN11 – ADC AN11 Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>
ADCAN12 – ADC AN12 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
ADCAN13 – ADC AN13 Interrupt	112	104	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
ADCAN14 – ADC AN14 Interrupt	113	105	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
ADCAN15 – ADC AN15 Interrupt	114	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>
ADCAN16 – ADC AN16 Interrupt	115	107	0x0000EA	IFS6<11>	IEC6<11>	IPC26<14:12>
ADCAN17 – ADC AN17 Interrupt	116	108	0x0000EC	IFS6<12>	IEC6<12>	IPC27<2:0>
ADCAN18 – ADC AN18 Interrupt	117	109	0x0000EE	IFS6<13>	IEC6<13>	IPC27<6:4>
ADCAN19 – ADC AN19 Interrupt	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
ADCAN20 – ADC AN20 Interrupt	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
Reserved	120-122	112-114	0x0000F4-0x0000F8	—	—	—
ADFLT – ADC Fault	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
ADCMP0 – ADC Digital Comparator 0	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
ADCMP1 – ADC Digital Comparator 1	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>
ADCMP2 – ADC Digital Comparator 2	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>
ADCMP3 – ADC Digital Comparator 3	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12>
ADFLTR0 – ADC Oversample Filter 0	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>
ADFLTR1 – ADC Oversample Filter 1	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>
ADFLTR2 – ADC Oversample Filter 2	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>
ADFLTR3 – ADC Oversample Filter 3	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12>
CLC1P – CLC1 Positive Edge	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>
CLC2P – CLC2 Positive Edge	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

REGISTER 4-74: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:				
R = Readable bit	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to S1RP61 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to S1RP60 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-75: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to S1RP63 Output Pin bits (see Table 4-31 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to S1RP62 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-106: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		-	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC(x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits (TRGSRC1 to TRGSRC19 – Odd) 11111 = ADTRG31 (PPS input) 11110 = Master PTG 11101 = Slave CLC1 11100 = Master CLC1 11011 = Reserved 11010 = Reserved 11001 = Master PWM3 Trigger 2 11000 = Master PWM1 Trigger 2 10111 = Slave SCCP4 PWM/IC interrupt 10110 = Slave SCCP3 PWM/IC interrupt 10101 = Slave SCCP2 PWM/IC interrupt 10100 = Slave SCCP1 PWM/IC interrupt 10011 = Reserved 10010 = Reserved 10001 = Reserved 10000 = Reserved 01111 = Slave PWM8 Trigger 1 01110 = Slave PWM7 Trigger 1 01101 = Slave PWM6 Trigger 1 01100 = Slave PWM5 Trigger 1 01011 = Slave PWM4 Trigger 2 01010 = Slave PWM4 Trigger 1 01001 = Slave PWM3 Trigger 2 01000 = Slave PWM3 Trigger 1 00111 = Slave PWM2 Trigger 2 00110 = Slave PWM2 Trigger 1 00101 = Slave PWM1 Trigger 2 00100 = Slave PWM1 Trigger 1 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger 00000 = No trigger is enabled

bit 7-5 Unimplemented: Read as '0'

					,					
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0			
bit 15 bit 8										
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0			
	<u> </u>		—	PLLPRE3 ⁽⁴⁾	PLLPRE2 ⁽⁴⁾	PLLPRE1 ⁽⁴⁾	PLLPRE0 ⁽⁴⁾			
bit 7							bit 0			
Legend:		r = Reserved	bit							
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ROI: Recove	r on Interrupt bi	t							
	1 = Interrupt 0 = Interrupt	s will clear the D s have no effec	OZEN bit and to the DOZE	the processor clo N bit	ock, and the pe	ripheral clock ra	atio is set to 1:1			
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction S	Select bits ⁽¹⁾						
	111 = F P div	ided by 128								
	110 = FP divi	ided by 64								
	101 = FP divi	ided by 32								
	011 = F P div	ided by 8 (defau	ult)							
	010 = FP div	ided by 4								
	001 = FP div	ided by 2 ided by 1								
bit 11	DOZEN: Doz	re Mode Enable	hit(2,3)							
51(11)	1 = DOZE<2 0 = Processo	:0> field specifie	es the ratio be	tween the periplation is forced to	heral clocks an 1:1	d the processo	or clocks			
bit 10-8	FRCDIV<2:0	>: Internal Fast	RC Oscillator	Postscaler bits						
	111 = FRC d	livided by 256								
	110 = FRC d	livided by 64								
	101 = FRC d	livided by 32								
	100 = FRC d	livided by 16								
	011 = FRC d	livided by 8								
	001 = FRC divided by 2									
	000 = FRC divided by 1 (default)									
bit 7-6	Unimplemer	Unimplemented: Read as '0'								
bit 5-4	Reserved: R	ead as '0'								
Note 1:	The DOZE<2:0> DOZE<2:0> are	bits can only be ignored.	e written to wh	en the DOZEN	bit is clear. If D	OZEN = 1, any	y writes to			
2:	This bit is cleared	d when the ROI	bit is set and	an interrupt occ	urs.					
3:	The DOZEN bit of set the DOZEN b	annot be set if l bit is ignored.	DOZE<2:0> =	000. If DOZE<2	2:0> = 000, any	y attempt by us	er software to			

REGISTER 6-13: CLKDIV: CLOCK DIVIDER REGISTER (SLAVE)

4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

REGISTER 7-12: PMD4: SLAVE PERIPHERAL MODULE DISABLE 4 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	—	—	_	REFOMD	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-4 Unimplemented: Read as '0'

- bit 3 **REFOMD:** Reference Clock Module Disable bit
 - 1 = Reference clock module is disabled
 - 0 = Reference clock module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
—	—	—	—	—	—	DMA1MD	DMA0MD		
bit 15		- -			-	-	bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-10	Unimplemen	ted: Read as '	0'						
bit 9	DMA1MD: DMA1 Module Disable bit								
	1 = DMA1 mo	odule is disable	d						
	0 = DMA1 mc	odule is enable	d						
bit 8	DMA0MD: DI	MA0 Module Di	sable bit						
	1 = DMA0 mc	dule is disable	d						

REGISTER 7-13: PMD6: SLAVE PERIPHERAL MODULE DISABLE 6 CONTROL REGISTER HIGH

bit 7-0	Unimplemented:	Read	as	'0'

0 = DMA0 module is enabled

REGISTER 10-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 3-0 MOD<3:0>: CCPx Mode Select bits

For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled
- Note 1: Clock selection is the same for the Master and the Slave.

REGISTER 13-2: UxMODEH: UARTx CONFIGURATION REGISTER HIGH (CONTINUED)

- bit 2 UTXINV: UART Transmit Polarity bit
 - 1 = Inverts TX polarity; TX is low in Idle state
 - 0 = Output data is not inverted; TX output is high in Idle state
- bit 1-0 **FLO<1:0>:** Flow Control Enable bits (only valid when MOD<3:0> = 0xxx)

11 = Reserved

- 10 = RTS-DSR (for TX side)/CTS-DTR (for RX side) hardware flow control
- 01 = XON/XOFF software flow control
- 00 = Flow control off

15.4 I²C Control/Status Registers

REGISTER 15-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

P/M/_0	11-0		D/\\/_1	P/M/_0	P/M/-0	P/\\/_0	P/M_0			
	0-0				A10M		SMEN			
hit 15		IZCOIDE	JOLINEL	311(101	ATOM	DISSEW	bit 8			
							bit o			
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	1	I					bit 0			
Legend:	Legend: HC = Hardware Clearable bit									
R = Readab	ole bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15 I2CEN: I2Cx Enable bit (writable from software only) 1 = Enables the I2Cx module, and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I ² C pins are controlled by port functions										
bit 13		x Ston in Idle M	ode bit							
bit 10	1 = Discontinu 0 = Continues	ues module operat	ration when de ion in Idle mod	vice enters Idle	e mode					
DIT 12	bit 12 SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾ 1 = Releases the SCLx clock 0 = Holds the SCLx clock low (clock stretch) <u>If STREN = 1:</u> ⁽²⁾ User software may write '0' to initiate a clock stretch and write '1' to release the clock. Hardware clears at the beginning of every Slave data byte transmission. Hardware clears at the end of every Slave address byte reception. Hardware clears at the end of every Slave data byte reception. <u>If STREN = 0:</u> User software may only write '1' to release the clock. Hardware clears at the beginning of every Slave									
bit 11	STRICT: 12Cx	Strict Reserve	d Address Rule	Enable bit	,	<i></i>				
	 1 = Strict Reserved Addressing is enforced; for reserved addresses, refer to Table 15-2. (In Slave Mode) – The device doesn't respond to reserved address space and addresses falling in that category are NACKed. (In Master Mode) – The device is allowed to generate addresses with reserved address space. 0 = Reserved Addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. 0 = Reserved Addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. (In Master Mode) – Reserved 									
bit 10	A10M: 10-Bit	Slave Address	Flag bit							
	1 = I2CxADD 0 = I2CxADD	is a 10-bit Slav is a 7-bit Slave	e address address							
bit 9	DISSLW: Slev	w Rate Control	Disable bit							
	1 = Slew rate 0 = Slew rate	control is disab control is enabl	led for Standar led for High-Spo	d Speed mode eed mode (400	(100 kHz, also kHz)	disabled for 1 l	MHz mode)			
Note 1: A	 Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception. 									

2: Automatically cleared to '0' at the beginning of Slave transmission.

dsPIC33CH128MP508 FAMILY

FIGURE 24-5: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-6: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-33: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	_		ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	—	—	_	ns	See Parameter DO31
MP20	TFD	Fault Input ↓ to PWMx I/O Change	_	_	26	ns	PCI Inputs 19 through 22
MP30	Tfh	Fault Input Pulse Width	8	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.