

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp202-e-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Master Core	Slave Core
1	RP46/PWM1H/RB14	S1RP46 /S1PWM1H/S1RB14
2	RP47/PWM1L/RB15	S1RP47/S1PWM6H/S1PWM1L/S1RB15
3	MCLR	_
4	AN12/IBIAS3/ RP48 /RC0	S1AN10/ S1RP48 /S1RC0
5	AN0/CMP1A/RA0	S1RA0
6	AN1/RA1	S1AN15/S1RA1
7	AN2/RA2	S1AN16/S1RA2
8	AN3/IBIAS0/RA3	S1AN0/S1CMP1A/S1PGA1P1/S1RA3
9	AN4/IBIAS1/RA4	S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4
10	AVDD	AVdd
11	AVss	AVss
12	AN13/ISRC0/ RP49 /RC1	S1ANA1/ S1RP49 /S1RC1
13	AN14/ISRC1/ RP50 /RC2	S1ANA0/ S1RP50 /S1RC2
14	VDD	VDD
15	Vss	Vss
16	CMP1B/ RP51 /RC3	S1AN8/S1CMP3B/S1RP51/S1RC3
17	OSCI/CLKI/AN5/RP32/RB0	S1AN5/ S1RP32 /S1RB0
18	OSCO/CLKO/AN6/IBIAS2/RP33/RB1	S1AN4/ S1RP33 /S1RB1
19	DACOUT/AN7/CMP1D/RP34/INT0/RB2	S1MCLR2/S1AN3/S1ANC0/S1ANC1/S1CMP1D/S1CMP2D/S1CMP3D/ S1RP34/S1INT0/S1RB2
20	PGD2/AN8/ RP35 /RB3	S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/S1RP35/S1RB3
21	PGC2/ RP36 /RB4	S1PGC2/S1AN9/S1RP36/S1PWM5L/S1RB4
22	Vss	Vss
23	VDD	VDD
24	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
25	PGC3/RP38/SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
26	TDO/AN9/ RP39 /RB7	S1MCLR1/S1AN6/S1RP39/S1PWM5H/S1RB7
27	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/S1RP40/S1SCL1/S1RB8
28	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
29	RP52 /RC4	S1RP52/S1PWM2H/S1RC4
30	RP53/RC5	S1RP53/S1PWM2L/S1RC5
31	Vss	Vss
32	VDD	VDD
33	TMS/ RP42 /PWM3H/RB10	S1RP42/S1PWM3H/S1RB10
34	TCK/ RP43 /PWM3L/RB11	S1RP43/S1PWM8H/S1PWM3L/S1RB11
35	TDI/ RP44 /PWM2H/RB12	S1RP44/S1PWM7L/S1RB12
36	RP45 /PWM2L/RB13	S1RP45 /S1PWM7H/S1RB13

TABLE 6: 36-PIN UQFN

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports (Continued)		CNCONB	E2A	00	LATD	E5A	*****	
ANSELA	E00	11111	CNEN0B	E2C	000000000000000000000000000000000000000	ODCD	E5C	000000000000000000000000000000000000000
TRISA	E02	11111	CNSTATB	E2E	000000000000000000000000000000000000000	CNPUD	E5E	000000000000000000000000000000000000000
PORTA	E04	xxxxx	CNEN1B	E30	000000000000000000000000000000000000000	CNPDD	E60	0000000000000000000
LATA	E06	xxxxx	CNFB	E32	000000000000000000000000000000000000000	CNCOND	E62	00
ODCA	E08	00000	ANSELC	E38	11111	CNEN0D	E64	0000000000000000000
CNPUA	E0A	00000	TRISC	E3A	111111111111111111	CNSTATD	E66	0000000000000000000
CNPDA	E0C	00000	PORTC	E3C	*****	CNEN1D	E68	0000000000000000000
CNCONA	E0E	00	LATC	E3E	*****	CNFD	E6A	0000000000000000000
CNEN0A	E10	00000	ODCC	E40	000000000000000000000000000000000000000	TRISE	E72	111111111111111111
CNSTATA	E12	00000	CNPUC	E42	000000000000000000000000000000000000000	PORTE	E74	*****
CNEN1A	E14	00000	CNPDC	E44	000000000000000000000000000000000000000	LATE	E76	*****
CNFA	E16	00000	CNCONC	E46	00	ODCE	E78	0000000000000000000
ANSELB	E1C	1111111	CNEN0C	E48	000000000000000000000000000000000000000	CNPUE	E7A	0000000000000000000
TRISB	E1E	111111111111111111	CNSTATC	E4A	000000000000000000000000000000000000000	CNPDE	E7C	0000000000000000000
PORTB	E20	*****	CNEN1C	E4C	000000000000000000000000000000000000000	CNCONE	E7E	00
LATB	E22	*****	CNFC	E4E	000000000000000000000000000000000000000	CNEN0E	E80	0000000000000000000
ODCB	E24	000000000000000000000000000000000000000	ANSELD	E54	1	CNSTATE	E82	0000000000000000000
CNPUB	E26	000000000000000000000000000000000000000	TRISD	E56	11111111111111111	CNEN1E	E84	0000000000000000000
CNPDB	E28	000000000000000000000000000000000000000	PORTD	E58	*****	CNFE	E86	000000000000000000000000000000000000000

TABLE 3-17: MASTER SFR BLOCK E00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

3.3.2 RTSP OPERATION

RTSP allows the user application to program one double instruction word or one row at a time. The double instruction word write blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of one double instruction word and 64 double instruction words, respectively.

The basic sequence for RTSP programming is to first load two 24-bit instructions into the NVM write latches found in configuration memory space. Refer to Figure 3-3

through Figure 3-4 for write latch addresses. Then, the WR bit in the NVMCON register is set to initiate the write process. The processor stalls (waits) until the programming operation is finished. The WR bit is automatically cleared when the operation is finished.

Double instruction word writes are performed by manually loading both write latches, using TBLWTL and TBLWTH instructions, and then initiating the NVM write while the NVMOPx bits are set to '0x1'. The program space destination address is defined by the NVMADR/U registers.

```
//Sample code for writing 0x123456 to address locations 0x10000 / 10002
   NVMCON = 0 \times 4001;
   TBLPAG = 0 \times FA;
                                  // write latch upper address
  NVMADR = 0 \times 0000;
                                  // set target write address of general segment
  NVMADRU = 0 \times 0001;
   __builtin_tblwtl(0, 0x3456);
                                  // load write latches
   __builtin_tblwth (0,0x12);
   __builtin_tblwtl(2, 0x3456);
                                  // load write latches
   __builtin_tblwth (2,0x12);
   asm volatile ("disi #5");
   __builtin_write_NVM();
   while(_WR == 1 ) ;
//Sample code to read the Flash content of address 0x10000
// readDataL/ readDataH variables need to defined
   TBLPAG = 0 \times 0001;
   readDataL = __builtin_tblrdl(0x0000);
   readDataH = __builtin_tblrdh(0x0000);
```

3.5.3 INTERRUPT RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.5.3.1 Key Resources

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

3.5.4 INTERRUPT CONTROL AND STATUS REGISTERS

The dsPIC33CH128MP508 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

3.5.4.1 INTCON1 through INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

3.5.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

3.5.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

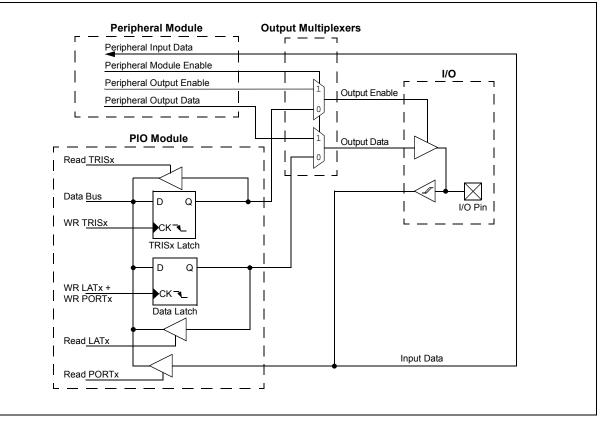
3.5.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

3.5.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 3-23. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).


3.5.4.6 Status/Control Registers

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 3-18 through Register 3-22 in the following pages.

FIGURE 3-19: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM1R7 | ICM1R6 | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-39: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI1R7 | TCKI1R6 | TCKI1R5 | TCKI1R4 | TCKI1R3 | TCKI1R2 | TCKI1R1 | TCKI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM1R<7:0>: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI1<7:0>:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-40: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7 | • | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 ICM2R<7:0>: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI2R<7:0>:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 3-30.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7							bit 0

REGISTER 3-78: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP53<5:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 3-33 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP52R<5:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 3-33 for peripheral function numbers)

REGISTER 3-79: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP55R<5:0>:** Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 3-33 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP54R<5:0>:** Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 3-33 for peripheral function numbers)

REGISTER 3-97: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
						1011 0	
			PSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unk	nown			

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 3-98: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PSCN	T<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	i d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			nown				

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 3-126: C1TXREQH: CAN TRANSMIT REQUEST REGISTER HIGH

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0
			TXREC	(<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	S/HC-0
			TXREC	(<23:16>			
bit 7							bit 0
Legend:		S = Settable bit		HC = Hardwa	are Clearable b	bit	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				

bit 15-0 TXREQ<31:16>: Unimplemented

REGISTER 3-127: C1TXREQL: CAN TRANSMIT REQUEST REGISTER LOW

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0		
			TXREC	ົຊ<15:8>					
bit 15							bit 8		
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0s		
L			TXREQ<7:1>				TXREQ0		
bit 7							bit 0		
Legend:		S = Settable b	it	HC = Hardware Clearable bit					
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, rea	id as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15-8	TXREQ<15	:8>: Unimplemer	nted						
bit 7-1		1>: Message Sen		ts					
		object configured	-						
		bit to '1' requests			will automatica	llv clear when th	ne messade(s)		
	•	ne object is (are) s	•	•		•	• • • •		
	-	object configured	-			ion aboning a t			
	$\frac{1}{1} = 0 (0)$		as a receive						

This bit has no effect.

bit 0 **TXREQ0:** Transmit Queue Message Send Request bit Setting this bit to '1' requests sending a message. The bit will automatically clear when the message(s) queued in the object is (are) successfully sent. This bit can NOT be used for aborting a transmission.

REGISTER 3-139: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-140: C1FIFOUALX: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) $LOW^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	\<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknowr	ı

 bit 15-0
 FIFOUA<15:0>: FIFO User Address bits

 TXEN = 1 (FIFO configured as a transmit buffer):
 A read of this register will return the address where the next message is to be written (FIFO head).

 TXEN = 0 (FIFO configured as a receive buffer):
 A read of this register will return the address where the next message is to be read (FIFO tail).

 A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

REGISTER 3-173:	ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW
-----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	—		_	—	—	_	SIGN20	
bit 15							bita	
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	
_	SIGN19	_	SIGN18	_	SIGN17	_	SIGN16	
bit 7							bit	
Logondi								
Legend: R = Readat	ole hit	W = Writable	hit	II = Unimpler	mented bit, read	1 as 'N'		
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unl	nown	
bit 15-9	Unimplemer	ted: Read as	ʻ0'					
bit 8	SIGN20: Out	put Data Sign	for Correspond	ing Analog Inp	ut bits			
		output data is	•					
	0 = Channel	output data is	unsigned					
bit 7	Unimplemer	ted: Read as	'0'					
bit 6		· •	-	ing Analog Inp	ut bits			
		output data is	0					
L:1 F		output data is	•					
bit 5	•	ted: Read as						
bit 4			•	ing Analog Inp	ut dits			
		output data is : output data is :						
bit 3		ted: Read as	•					
bit 2	•			ing Analog Inp	ut bits			
		SIGN17: Output Data Sign for Corresponding Analog Input bits 1 = Channel output data is signed						
		 Channel output data is signed Channel output data is unsigned 						
bit 1	Unimplemer	ted: Read as	ʻ0'					
	SIGN16: Out	SIGN16: Output Data Sign for Corresponding Analog Input bits						
bit 0								
bit 0		output data is		0 0 1				

PTG Input Number	PTG Input Description
PTG Trigger Input 0	Trigger Input from Master PWM Channel 1
PTG Trigger Input 1	Trigger Input from Master PWM Channel 2
PTG Trigger Input 2	Trigger Input from Master PWM Channel 3
PTG Trigger Input 3	Trigger Input from Master PWM Channel 4
PTG Trigger Input 4	Trigger Input from Slave PWM Channel 1
PTG Trigger Input 5	Trigger Input from Slave PWM Channel 2
PTG Trigger Input 6	Trigger Input from Slave PWM Channel 3
PTG Trigger Input 7	Trigger Input from Master SCCP4
PTG Trigger Input 8	Trigger Input from Slave SCCP4
PTG Trigger Input 9	Trigger Input from Master Comparator 1
PTG Trigger Input 10	Trigger Input from Slave Comparator 1
PTG Trigger Input 11	Trigger Input from Slave Comparator 2
PTG Trigger Input 12	Trigger Input from Slave Comparator 3
PTG Trigger Input 13	Trigger Input Master ADC Done Group Interrupt
PTG Trigger Input 14	Trigger Input Slave ADC Done Group Interrupt
PTG Trigger Input 15	Trigger Input from INT2 PPS

TABLE 3-46: PTG INPUT DESCRIPTIONS

TABLE 3-47: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description					
PTGO0 to PTGO11	Reserved					
PTGO12	Trigger for Master ADC TRGSRC<30>					
PTGO13	Trigger for Slave ADC TRGSRC<30>					
PTGO16 to PTGO23	Reserved					
PTGO24	PPS Master Output RP46					
PTGO25	PPS Master Output RP47					
PTGO26	PPS Master Input RP6					
PTGO27	PPS Master Input RP7					
PTGO28	PPS Slave Output RP46					
PTGO29	PPS Slave Output RP47					
PTGO30	PPS Slave Input RP6					
PTGO31	PPS Slave Input RP7					

TABLE 4-1	TABLE 4-11: SLAVE SFR BLOCK BOON									
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets		
ADC			ADCMP1LO	B44	000000000000000000	ADTRIG2L	B88	00000000000000000		
ADCON1L	B00	000-00000000	ADCMP1HI	B46	000000000000000000	ADTRIG2H	B8A	0000000000000000000		
ADCON1H	B02	011	ADCMP2ENL	B48	000000000000000000	ADTRIG3L	B8C	0000000000000000000		
ADCON2L	B04	00-0-00000000000	ADCMP2ENH	B4A	00000	ADTRIG3H	B8E	000000000000000000000000000000000000000		
ADCON2H	B06	00-0000000000000	ADCMP2LO	B4C	00000000000000000	ADTRIG4L	B90	000000000000000000000000000000000000000		
ADCON3L	B08	00000x000000000	ADCMP2HI	B4E	00000000000000000	ADTRIG4H	B92	000000000000000000000000000000000000000		
ADCON3H	B0A	00000000	ADCMP3ENL	B50	00000000000000000	ADTRIG5L	B94	00000000000		
ADCON4L	B0C	0xx	ADCMP3ENH	B52	00000	ADCMP0CON	BA0	000000000000000000000000000000000000000		
ADCON4H	B0E	000000	ADCMP3LO	B54	00000000000000000	ADCMP1CON	BA4	000000000000000000000000000000000000000		
ADMOD0L	B10	-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	ADCMP3HI	B56	00000000000000000	ADCMP2CON	BA8	000000000000000000000000000000000000000		
ADIEL	B20	*****	ADFL0DAT	B68	00000000000000000	ADCMP3CON	BAC	000000000000000000000000000000000000000		
ADIEH	B22	xxxxx	ADFL0CON	B6A	0xx00000000000000	ADLVLTRGL	BD0	000000000000000000000000000000000000000		
ADCSS1L	B28	00000000000000000	ADFL1DAT	B6C	00000000000000000	ADLVLTRGH	BD2	xxxxx		
ADCSS1H	B2A	000	ADFL1CON	B6E	0xx00000000000000	ADCORE0L	BD4	0000000000000000000		
ADSTATL	B30	00000000000000000	ADFL2DAT	B70	00000000000000000	ADCORE0H	BD6	0000001100000000		
ADSTATH	B32	00000	ADFL2CON	B72	0xx00000000000000	ADCORE1L	BD8	000000000000000000000000000000000000000		
ADCMP0ENL	B38	00000000000000000	ADFL3DAT	B74	00000000000000000	ADCORE1H	BDA	0000001100000000		
ADCMP0ENH	B3A	00000	ADFL3CON	B76	0xx0000000000000	ADEIEL	BF0	*****		
ADCMP0LO	B3C	00000000000000000	ADTRIG0L	B80	00000000000000000	ADEIEH	BF2	xxxxx		
ADCMP0HI	B3E	00000000000000000	ADTRIG0H	B82	00000000000000000	ADEISTATL	BF8	*****		
ADCMP1ENL	B40	00000000000000000	ADTRIG1L	B84	00000000000000000	ADEISTATH	BFA	xxxxx		
ADCMP1ENH	B42	00000	ADTRIG1H	B86	00000000000000000					

TABLE 4-11: SLAVE SFR BLOCK B00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets	
ADC (Continued)			ADCBUF12	C24	000000000000000000000000000000000000000	SLP1CONL	C90	000000000000000000000000000000000000000	
ADCON5L	C00	0	ADCBUF13	C26	000000000000000000	SLP1CONH	C92	0000	
ADCON5H	C02	0xxxx0	ADCBUF14	C28	000000000000000000	SLP1DAT	C94	000000000000000000000000000000000000000	
ADCAL0L	C04	0000000000000000000	ADCBUF15	C2A	000000000000000000	DAC2CONL	C98	0000000x0000000	
ADCAL1H	C0A	00000-00-000	ADCBUF16	C2C	000000000000000000	DAC2CONH	C9A	0000000000	
ADCBUF0	C0C	0000000000000000000	ADCBUF17	C2E	000000000000000000	DAC2DATL	C9C	000000000000000000000000000000000000000	
ADCBUF1	C0E	0000000000000000000	ADCBUF18	C30	000000000000000000	DAC2DATH	C9E	000000000000000000000000000000000000000	
ADCBUF2	C10	0000000000000000000	ADCBUF19	C32	000000000000000000	SLP2CONL	CA0	000000000000000000000000000000000000000	
ADCBUF3	C12	0000000000000000000	DAC			SLP2CONH	CA2	0000	
ADCBUF4	C14	0000000000000000000	DACCTRL1L	C80	0000000-000	SLP2DAT	CA4	000000000000000000000000000000000000000	
ADCBUF5	C16	0000000000000000000	DACCTRL2L	C84	0001010101	DAC3CONL	CA8	0000000x0000000	
ADCBUF6	C18	0000000000000000000	DACCTRL2H	C86	0010001010	DAC3CONH	CAA	0000000000	
ADCBUF7	C1A	0000000000000000000	DAC1CONL	C88	000000x0000000	DAC3DATL	CAC	000000000000000000000000000000000000000	
ADCBUF8	C1C	00000000000000000	ADCBUF12	C24	000000000000000000000000000000000000000	DAC3DATH	CAE	000000000000000000000000000000000000000	
ADCBUF9	C1E	00000000000000000	DAC1CONH	C8A	0000000000	SLP3CONL	CB0	000000000000000000000000000000000000000	
ADCBUF10	C20	000000000000000000000000000000000000000	DAC1DATL	C8C	000000000000000000	SLP3CONH	CB2	0000	
ADCBUF11	C22	000000000000000000000000000000000000000	DAC1DATH	C8E	00000000000000000	SLP3DAT	CB4	000000000000000000000000000000000000000	

TABLE 4-12: SLAVE SFR BLOCK C00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

4.2.8.1 Data Access from Program Memory Using Table Instructions

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper eight bits of a Program Space word as data.

This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to read byte or word-sized (16-bit) data from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, either the upper or lower byte of the upper program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'. When the upper byte is selected, the 'phantom' byte is read as '0'.

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. For these writes, data is written to a set of NVM latches and subsequently copied to the Program Space address using an NVM write operation. The details of their operation are explained in Section 4.3.2 "RTSP Operation".

	şə.	altuan ginana
	- 6×000000 0/020000	23 16 8 0 0000000 0000000 0000000 0000000 000000
		TBLEDELE (\$98<0> > 0) TBLEDELE (\$98<0> > 1) TBLEDLE (\$98<0> > 0) TBLEDLE (\$98<0> > 0) TBLEDLE (\$98<0> > 0)
	9,4800000	The addrate for the table constition is determined by the data EA within the party defined by the TBUAKG register. Only read operations are chosen; write constitutes are also valid in the true democy area.

FIGURE 4-12: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleare			ared	x = Bit is unkr	nown		

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

7.0 POWER-SAVING FEATURES (MASTER AND SLAVE)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The power saving section is only relevant for this device. The WDT has its own family reference manual section.
 - 2: This chapter is applicable to both the Master core and the Slave core. There are registers associated with PMD that are listed separately for Master and Slave at the end of this section. Other features related to power saving that are discussed are applicable to both the Master and Slave core.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where S1 indicates the Slave device.

The dsPIC33CH128MP508 family devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power. dsPIC33CH128MP508 family devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

7.1 Clock Frequency and Clock Switching

The dsPIC33CH128MP508 family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 6.0 "Oscillator with High-Frequency PLL"**.

7.2 Instruction-Based Power-Saving Modes

The dsPIC33CH128MP508 family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 7-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

EXAMPLE 7-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode PWRSAV #IDLE_MODE ; Put the device into Idle mode

7.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) bit.

7.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 7.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON<13>).

7.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—			—			_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
			—	CCP4MD	CCP3MD	CCP2MD	CCP1MD	
bit 7							bit 0	
Legend:								
R = Readabl	R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	d as '0'		
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-4	Unimplemen	ted: Read as ')'					
bit 3	CCP4MD: SC	CP4 Module D	isable bit					
		odule is disabl						
1.11.0		odule is enable						
bit 2		CP3 Module D						
		odule is disabl						
bit 1	CCP2MD: SC	CP2 Module D	isable bit					
1 = SCCP2 module is disabled								
	0 = SCCP2 module is enabled							
bit 0	CCP1MD: SCCP1 Module Disable bit							
		odule is disabl						
	0 = SCCP1 module is enabled							

REGISTER 7-11: PMD2: SLAVE PERIPHERAL MODULE DISABLE 2 CONTROL REGISTER

12.1 QEI Control and Status Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2	PIMOD1	PIMOD0	IMV1	IMV0
bit 15				•	•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0		1				-	
 bit 7	INTDIV2	INTDIV1	INTDIV0	CNTPOL	GATEN	CCM1	CCM0
							DIL
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = QEI modu	drature Encode ule is enabled ule is disabled;			or written		
bit 14	Unimplemen	ted: Read as ')'				
bit 13	QEISIDL: QE	I Stop in Idle M	ode bit				
		ues module ope s module opera			le mode		
bit 12-10	PIMOD<2:0>	: Position Cour	ter Initializatio	n Mode Select	bits		
	101 = Resets 100 = Secon QEIxIC 011 = First Ir registe 010 = Next Ir 001 = Every	d Index event a C register ndex event after er	ounter when th after Home event Home event in t initializes the nt resets the p	e position coun ent initializes th itializes the pos position counter osition counter	ne position cou sition counter w er with the con	QEIxGEC regis unter with the c vith the contents tents of the QE	ontents of the
bit 9-8		dex Match Valu		position count	.01		
	11 = Index m 10 = Index m 01 = Index m 00 = Index m	atch occurs wh atch occurs wh atch occurs wh atch occurs wh	en QEBx = 1 a en QEBx = 1 a en QEBx = 0 a en QEBx = 0 a	and QEAx = 0 and QEAx = 1			
bit 7	-	ted: Read as '					
bit 6-4	velocity count	ter and Index of prescale value rescale value rescale value rescale value escale value escale value escale value				nain timer (pos	ition counter)
bit 3	-	sition, Velocity	and Index Cou	inter/Timer Dire	ection Select bi	t	
		direction is nega					

REGISTER 12-1: QEIXCON: QEIX CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	HCAPEN
bit 7							bit 0
Legend:							
B = Baadable bit $W = Writeble bit$ $U = Unimplemented bit read as '0'$							

REGISTER 12-3: QEIxIOCH: QEIx I/O CONTROL HIGH REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

HCAPEN: Position Counter Input Capture by Home Event Enable bit

1 = HOMEx input event (positive edge) triggers a position capture event

0 = HOMEx input event (positive edge) does not trigger a position capture event