

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.5.2 Extended X Data Space

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

3.2.5.3 Software Stack

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33CH128MP508 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 3-9 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 3-9. During exception processing, the MSB of the PC is concatenated with the lower eight bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

TABLE 3-26: MASTER INTERRUPT PRIORITY REGISTERS (CONTINUED)

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC35	886h	_	-	_	—	_	-	_	—	_	S1SRSTIP2	S1SRSTIP1	S1SRSTIP0	—	MSIFLTIP2	MSIFLTIP1	MSIFLTIP0
IPC36	888h	—	_	-	—	—	S1BRKIP2	S1BRKIP1	S1BRKIP0		-		—	_	—		_
IPC37	88Ah	—	_	-	—	—	CCT7IP2	CCT7IP1	CCT7IP0		CCP7IP2	CCP7IP1	CCP7IP0	_	—		
IPC38	88Ch	—	_	_	_	—	_	_	_	_	CCT8IP2	CCT8IP1	CCT8IP0	_	CCP8IP2	CCP8IP1	CCP8IP0
IPC39	88Eh	—	_	_	_	—	_	_	_	_	S1CLKFIP2	S1CLKFIP1	S1CLKFIP0	_	_	_	_
IPC40	890h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC41	892h	—	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_
IPC42	894h	—	PEVTCIP2	PEVTCIP1	PEVTCIP0	—	PEVTBIP2	PEVTBIP1	PEVTBIP0		PEVTAIP2	PEVTAIP1	PEVTAIP0	_	ADFIFOIP2	ADFIFOIP1	ADFIFOIP0
IPC43	896h	—	CLC3PIP2	CLC3PIP1	CLC3PIP0	—	PEVTFIP2	PEVTFIP1	PEVTFIP0	_	PEVTEIP2	PEVTEIP1	PEVTEIP0	_	PEVTDIP2	PEVTDIP1	PEVTDIP0
IPC44	898h	—	CLC3NIP2	CLC3NIP1	CLC3NIP0	—	CLC2NIP2	CLC2NIP1	CLC2NIP0	_	CLC1NIP2	CLC1NIP1	CLC1NIP0	_	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	89Ah	—	_	_	_	—	_	_	_	_	_	_	_	_	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC46	89Ch	—	_	—	—	_	—	—	—	_	—	—	—	_	—	—	—
IPC47	89Eh	—	_	—	—	_	U2EVTIP2	U2EVTIP1	U2EVTIP0	_	U1EVTIP2	U1EVTIP1	U1EVTIP0	_	—	—	—

Legend: — = Unimplemented.

REGISTER 3-65: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT2R7 | SENT2R6 | SENT2R5 | SENT2R4 | SENT2R3 | SENT2R2 | SENT2R1 | SENT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 3-30.bit 7-0SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-66: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 3-30. Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 3-33 for peripheral function numbers)

(see Table 3-33 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

REGISTER 3-80: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

REGISTER 3-81:	RPOR13: PERIPHERAL	. PIN SELECT OUTPU	FREGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	bit 13-8 RP59R<5:0>: Peripheral Output Function is Assigned to RP59 Output Pin bits (see Table 3-33 for peripheral function numbers)								

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 3-33 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

|--|

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits ⁽¹⁾ (see Table 3-33 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP176R<5:0>:** Peripheral Output Function is Assigned to RP176 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

	REGISTER 3-89:	RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21
--	----------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾ (see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

dsPIC33CH128MP508 FAMILY

TABLE 4-18: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

Normal Address				Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Slave I/O Ports

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **"I/O Ports with Edge Detect"** (DS70005322) in the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: The I/O ports are shared by the Master core and Slave core. All input goes to both the Master and Slave. The I/O ownership is defined by the Configuration bits.
 - 3: The TMS pin function may be active multiple times during ICSP™ device erase, programming and debugging. When the TMS function is active, the integrated pull-up resistor will pull the pin to VDD. Proper care should be taken if there are sensitive circuits connected on the TMS pin during programming/erase and debugging.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The Master and the Slave have the same number of I/O ports and are shared. The Master PORT registers are located in the Master SFR and the Slave PORT registers are located in the Slave SFR, respectively.

All of the input goes to both Master and Slave. For example, a high in RA0 can be read as high on both Master and Slave as long as the TRISA0 bit is maintained as an input of both Master and Slave. The ownership of the output functionality is assigned by the Configuration registers, FCFGPRA0 to FCFGPRE0. Setting the bits in the FCFGPRA0 to FCFGPRE0 registers assigns ownership to the Master or Slave pin.

4.6.1 PARALLEL I/O (PIO) PORTS

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 4-17 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have twelve registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 4-24 shows the pin availability. Table 4-25 shows the 5V input tolerant pins across this device.

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0

REGISTER 4-45: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8PCI11R<7:0>: Assign PWM Input 11 (S1PCI11) to the Corresponding S1RPn Pin bits
See Table 4-27.bit 7-0PCI10R<7:0>: Assign PWM Input 10 (S1PCI10) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-46: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (S1QEIB1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (S1QEIA1) to the Corresponding S1RPn Pin bits See Table 4-27.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0	R/W-0	HSC/R-0
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15				-		•	bit 8
R/W-0	HSC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0
Legend:		U = Unimplen	nented bit, rea	d as '0'			
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	earable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	REFSEL<2:0	>: ADC Refere	nce Voltage S	election bits			
	Value	VREFH	VREFL				
	000	AVDD	AVss				
	001-111 = U	nimplemented	: Do not use				
bit 12	SUSPEND: A	ADC Core Tr	iqqers Disable	bit			
	1 = All new tri	igger events for	all ADC core	s are disabled			
	0 = All ADC c	ores can be trig	ggered				
bit 11	SUSPCIE: Su	uspend All ADC	Cores Comm	ion Interrupt Ena	able bit		
	1 = Common	interrupt will b	e generated w	hen ADC core t	riggers are sus	pended (SUSF	PEND bit = 1)
	0 = Common	interrupt is not	tions are finisr	suspend ADC	Dit becomes se	et)	
bit 10	SUSPRDY: A	II ADC Cores S	Suspended Fla	a bit			
	1 = All ADC c	ores are suspe	nded (SUSPE	ND bit = 1) and	have no conve	ersions in progr	ess
	0 = ADC core	s have previou	s conversions	in progress			
bit 9	SHRSAMP: S	Shared ADC Co	ore Sampling [Direct Control bi	t		
	This bit shoul	d be used with	the individual	channel conver	sion trigger co	ntrolled by the	CNVRTCH bit.
	extending the	e sampling time	e. This bit is n	ot controlled by	/ hardware and	a snared ADC c	red before the
	conversion st	arts (setting CN	IVRTCH to '1').			
	1 = Shared A	DC core sampl	es an analog i	nput specified b	y the CNVCHS	SEL<5:0> bits	
hit 0		is controlled by	/ the shared A		are Ior hit		
DILO	1 = Single trial	ager is generat	ed for an analo	onversion myg	d by the CNVC	HSEL<5:0> hit	s: when the hit
	is set, it i	s automatically	cleared by ha	rdware on the n	ext instruction	cycle	3, which the bit
	0 = Next indi	vidual channel	conversion trig	gger can be gen	erated		
bit 7	SWLCTRG: S	Software Level-	Sensitive Con	nmon Trigger bit	t		
	1 = Triggers	are continuous	ly generated	for all channels	with the softw	vare, level-sens	sitive common
	0 = No softw	are, level-sensi	tive common t	riggers are gen	erated	ers	
bit 6	SWCTRG: So	oftware Commo	on Triager bit				
	1 = Single tri	gger is generat	ed for all chan	nels with the so	ftware; commo	n trigger select	ed as a source
	in the Al	OTRIGnL and	ADTRIGnH re	gisters; when t	he bit is set, i	t is automatica	ally cleared by
	hardware	e on the next in:	struction cycle	ommon triggor			
bit 5-0		5:0>: Channel	Number Sele	ction for Softwar	e Individual Ch	annel Conversi	ion Trigger bite
	These bits de	fine a channel	to be converte	d when the CN	VRTCH bit is se	et.	ion mgger bits

REGISTER 4-87: ADCON3L: ADC CONTROL REGISTER 3 LOW

Equation 6-1 provides the relationship between the PLL Input Frequency (FPLLI) and VCO Output Frequency (FVCO).

EQUATION 6-1: MASTER/SLAVE CORE Fvco CALCULATION

 $FVCO = FPLLI \times \left(\frac{M}{N1}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0>}\right)$

Equation 6-2 provides the relationship between the PLL Input Frequency (FPLLI) and PLL Output Frequency (FPLLO).

EQUATION 6-2: MASTER/SLAVE CORE FPLLO CALCULATION

 $FPLLO = FPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0> \times POST1DIV < 2:0> \times POST2DIV < 2:0>}\right)$

Where:

M = PLLFBDIV<7:0> N1 = PLLPRE<3:0> N2 = POST1DIV<2:0> N3 = POST2DIV<2:0>

Note: The PLL Phase Detector Input Divider Select (PLLPREx) bits and the PLL Feedback Divider (PLLFBDIVx) bits should not be changed when operating in PLL mode. Therefore, the user must start in either a non-PLL mode or clock switch to a non-PLL mode (e.g., internal FRC Oscillator) to make any necessary changes and then clock switch to the desired PLL mode.
 It is not permitted to directly clock switch from one PLL clock source to a different PLL clock source. The user would need to transition between PLL clock sources with a clock switch to a non-PLL clock source.

© 2017-2018 Microchip Technology Inc.

REGISTER 9-17: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

bit 4-0 PSS<4:0>: PCI Source Selection bits For Master: 11111 = Master CLC1 11110 = Slave Comparator 3 output 11101 = Slave Comparator 2 output 11100 = Slave Comparator 1 output 11011 = Master Comparator 1 output 11010 = Slave PWM Event F 11001 = Slave PWM Event E 11000 = Slave PWM Event D 10111 = Slave PWM Event C 10110 = Device pin, PCI<22> 10101 = Device pin, PCI<21> 10100 = Device pin, PCI<20> 10011 = Device pin, PCI<19> 10010 = Master RPn input, Master PCI18R 10001 = Master RPn input, Master PCI17R 10000 = Master RPn input, Master PCI16R 01111 = Master RPn input, Master PCI15R 01110 = Master RPn input, Master PCI14R 01101 = Master RPn input, Master PCI13R 01100 = Master RPn input, Master PCI12R 01011 = Master RPn input, Master PCI11R 01010 = Master RPn input, Master PCI10R 01001 = Master RPn input, Master PCI9R 01000 = Master RPn input, Master PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Internally connected to Combo Trigger B 00010 = Internally connected to Combo Trigger A 00001 = Internally connected to the output of PWMPCI<2:0> MUX 00000 = Tied to '0'

REGISTER 11-5: DACxCONL: DACx CONTROL LOW REGISTER (CONTINUED)

bit 10	 CBE: Comparator Blank Enable bit 1 = Enables the analog comparator output to be blanked (gated off) during the recovery transition following the completion of a slope operation 0 = Disables the blanking signal to the analog comparator; therefore, the analog comparator output is church active.
bit 9	always active DACOEN: DACx Output Buffer Enable bit 1 = DACx analog voltage is connected to the DACOUT pin 0 = DACx analog voltage is not connected to the DACOUT pin
bit 8	 FLTREN: Comparator Digital Filter Enable bit 1 = Digital filter is enabled 0 = Digital filter is disabled
bit 7	CMPSTAT: Comparator Status bits The current state of the comparator output including the CMPPOL selection.
bit 6	CMPPOL: Comparator Output Polarity Control bit 1 = Output is inverted 0 = Output is non-inverted
bit 5-3	INSEL<2:0>: Comparator Input Source Select bits <u>Master</u> 111 = Reserved 110 = Reserved 101 = SPGA2 output 100 = SPGA1 output 011 = CMPxD input pin 010 = SPGA3 output 001 = CMPxB input pin 000 = CMPxA input pin <u>Slave</u> 111 = Reserved 110 = Reserved 101 = SPGA2 output 100 = SPGA1 output 011 = S1CMPxD input pin 010 = SPGA3 output 011 = S1CMPxB input pin 000 = S1CMPxA input pin
bit 2	 HYSPOL: Comparator Hysteresis Polarity Select bit 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 1-0	HYSSEL<1:0>: Comparator Hysteresis Select bits 11 = 45 mv hysteresis 10 = 30 mv hysteresis 01 = 15 mv hysteresis 00 = No hysteresis is selected
Note 1: 2:	Changing these bits during operation may generate a spurious interrupt. The edge selection is a post-polarity selection via the CMPPOL bit.

REGISTER 12-2: QEIXIOCL: QEIX I/O CONTROL LOW REGISTER (CONTINUED)

bit 6	IDXPOL: INDXx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 5	QEBPOL: QEBx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 4	QEAPOL: QEAx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 3	 HOME: Status of HOMEx Input Pin after Polarity Control bit (read-only) 1 = Pin is at logic '1' if the HOMPOL bit is set to '0'; pin is at logic '0' if the HOMPOL bit is set to '1' 0 = Pin is at logic '0' if the HOMPOL bit is set to '0'; pin is at logic '1' if the HOMPOL bit is set to '1'
bit 2	 INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only) 1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1' 0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'
bit 1	 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1';
bit 0	 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; p

physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'

REGISTER 13-7:	UxRXREG: UARTx RECEIVE BUFFER REGISTER
----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15			•				bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			RXREC	G<7:0>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXREG<7:0>:** Received Character Data bits 7-0

REGISTER 13-8: UxTXREG: UARTx TRANSMIT BUFFER REGISTER

W-x	U-0	U-0	U-0	U-0	U-0	U-0	U-0
LAST	—	—	_	—	_	—	—
bit 15							bit 8
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
			TXRE	G<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as			d as '0'				
-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = B			nown	

	-	

bit 14-8 Unimplemented: Read as '0'

bit 7-0 TXREG<7:0>: Transmitted Character Data bits 7-0

If the buffer is full, further writes to the buffer are ignored.

14.1 SPI Control/Status Registers

REGISTER 14-1: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	_	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15				-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	СКР	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
				•			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
-n = Value at bit 15	POR SPIEN: SPIX	'1' = Bit is set On bit		'0' = Bit is clea	ared	x = Bit is unkr	nown
-n = Value at bit 15	POR SPIEN: SPIx 1 = Enables r	'1' = Bit is set On bit nodule		ʻ0' = Bit is clea	ared	x = Bit is unkr	nown
-n = Value at bit 15	POR SPIEN: SPIx (1 = Enables r 0 = Turns off modificati	'1' = Bit is set On bit nodule and resets m ons	odule, disable	'0' = Bit is clea	ared les interrupt ev	x = Bit is unkr rent generation	nown n, allows SFR
-n = Value at bit 15 bit 14	POR SPIEN: SPIx 1 = Enables r 0 = Turns off modificati Unimplement	'1' = Bit is set On bit nodule and resets m ons ted: Read as '0	odule, disable	ʻ0' = Bit is clea	ared les interrupt ev	x = Bit is unkr rent generation	nown n, allows SFR
-n = Value at bit 15 bit 14 bit 13	POR SPIEN: SPIx 1 = Enables r 0 = Turns off modificati Unimplement SPISIDL: SPI	'1' = Bit is set On bit nodule and resets m ons ted: Read as '0 x Stop in Idle M	odule, disable ₀ , /ode bit	'0' = Bit is clea	ared les interrupt ev	x = Bit is unkr vent generation	nown n, allows SFR
-n = Value at bit 15 bit 14 bit 13	POR SPIEN: SPIx (1 = Enables r 0 = Turns off modificati Unimplement SPISIDL: SPI 1 = Halts in C	'1' = Bit is set On bit nodule and resets m ons ted: Read as '0 x Stop in Idle M PU Idle mode	odule, disable o' /lode bit	ʻ0' = Bit is clea	ared les interrupt ev	x = Bit is unkr	nown
-n = Value at bit 15 bit 14 bit 13	POR SPIEN: SPIx of 1 = Enables r 0 = Turns off modificati Unimplement SPISIDL: SPI 1 = Halts in C 0 = Continues	'1' = Bit is set On bit nodule and resets m ons ted: Read as '0 x Stop in Idle M PU Idle mode to operate in 0	odule, disable ₀ , /lode bit CPU Idle mod	'0' = Bit is clea es clocks, disab	ared les interrupt ev	x = Bit is unkr	nown

- 1 = SDOx pin is not used by the module; pin is controlled by port function
- 0 = SDOx pin is controlled by the module

bit 11-10 **MODE32** and **MODE16**: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	x		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1	1	24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0		32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1		16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

bit 9 SMP: SPIx Data Input Sample Phase bit

Master Mode:

1 = Input data is sampled at the end of data output time

0 = Input data is sampled at the middle of data output time

Slave Mode:

Input data is always sampled at the middle of data output time, regardless of the SMP setting.

- bit 8 CKE: SPIx Clock Edge Select bit⁽¹⁾
 - 1 = Transmit happens on transition from active clock state to Idle clock state
 - 0 = Transmit happens on transition from Idle clock state to active clock state

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 14-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

11-0	۱ <i>۱</i> _۱	11-0	11-0	11-0	11-0	[]_0	U_O	
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
DIT 15							bit 8	
U-0	<u> </u>	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				W	LENGTH<4:0>	(1,2)		
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit. read	as '0'		
-n = Value	at POR	'1' = Rit is se	t	·0' = Bit is clea	ared	x = Rit is unkn	own	
					area			
bit 15 5	Unimplome	ated. Dood oo	· • ·					
	Unimplement	nieu: Reau as						
bit 4-0	WLENGIH<	4:0>: Variable	Word Length	Dits(1,2)				
	11111 = 32-	bit data						
	11110 = 31-	bit data						
	11101 = 30-	bit data						
	1100 = 29-	bit data						
	11011 = 27	bit data						
	11001 = 26-	bit data						
	11000 = 25 -	bit data						
	10111 = 24-	bit data						
	10110 = 23 -	bit data						
	10101 = 22-	bit data						
	10100 = 21-	bit data						
	10011 = 20-	bit data						
	10010 = 19-	bit data						
	$10001 = 10^{-1}$	bit data						
	01111 = 16-	bit data						
	01110 = 15 -	bit data						
	01101 = 14 -	bit data						
	01100 = 13 -	bit data						
	01011 = 12 -	bit data						
	01010 = 11-	bit data						
	01001 = 10-	bit data						
	01000 = 9-0	it data						
	00111 - 6-b	it data						
	00110 = 7 = 0 00101 = 6 - b	it data						
	00100 = 5-b	it data						
	00011 = 4-b	it data						
	00010 = 3-b	it data						
	00001 = 2-b	it data						
	00000 = See	e MODE<32,1	6> bits in SPIx	CON1L<11:10>				

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
	—	—	FRMERREN	BUSYEN	—	—	SPITUREN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
SRMTEN	SPIROVEN	SPIRBEN	<u> </u>	SPITBEN	<u> </u>	SPITBFEN	SPIRBFEN			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15-13	Unimplement	ted: Read as '	0'							
bit 12	FRMERREN:	Enable Interru	pt Events via F	RMERR bit						
	1 = Frame err	or generates a	n interrupt ever	nt runt event						
hit 11		able Interrunt F	Events via SPIR							
bit II	1 = SPIBUSY	= SPIRUSY denerates an interrunt event								
	0 = SPIBUSY	does not gene	erate an interrup	ot event						
bit 10-9	Unimplement	ted: Read as '	0'							
bit 8	SPITUREN: E	Enable Interrup	t Events via SP	ITUR bit						
	1 = Transmit l	Jnderrun (TUF	R) generates an	interrupt even	t					
	0 = Transmit l	Jnderrun does	not generate a	n interrupt eve	nt					
bit 7	SRMTEN: En	able Interrupt I	Events via SRM	IT bit						
	1 = Shift Regi	ster Empty (SF ster Empty doe	RMT) generates	interrupt even	its ts					
bit 6	SPIROVEN: F	Enable Interrup	it Events via SE	PIROV bit						
2.00	1 = SPIx Rece	eive Overflow (ROV) generate	es an interrupt e	event					
	0 = SPIx Rece	eive Overflow o	does not genera	ate an interrupt	event					
bit 5	SPIRBEN: Er	able Interrupt	Events via SPI	RBE bit						
	1 = SPIx RX b	ouffer empty ge	enerates an inte	errupt event						
		ouffer empty do	oes not generat	e an interrupt e	event					
DIT 4		ted: Read as								
DIT 3	SPILBEN: EN	able interrupt i	Events via SPI I	BE DIT	ot					
	0 = SPIx trans	smit buffer emp	oty does not ger	nerate an inter	rupt event					
bit 2	Unimplement	ted: Read as '	0'		·					
bit 1	SPITBFEN: E	nable Interrup	t Events via SP	ITBF bit						
	1 = SPIx trans	smit buffer full g	generates an in	terrupt event						
	0 = SPIx trans	smit buffer full o	does not genera	ate an interrup	t event					
bit 0	SPIRBFEN: E	Enable Interrup	t Events via SP	PIRBF bit						
	1 = SPIx rece	ive buffer full g	enerates an int	errupt event	overt					
	U = SPIX rece		ues not genera	ite an interrupt	event					

REGISTER 14-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

IABLE 15-2: I2CX RESERVED ADDRESSES	TABLE 15-2:	I2Cx RESERVED ADDRESSES ⁽¹⁾
-------------------------------------	-------------	--

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	Cbus Address
0000 01x	x	Reserved
0000 1xx	х	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 15-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables input logic so thresholds are compliant with the SMBus specification 0 = Disables SMBus-specific inputs
bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	 1 = Enables Receive mode for I²C; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 I = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception.

2: Automatically cleared to '0' at the beginning of Slave transmission.