

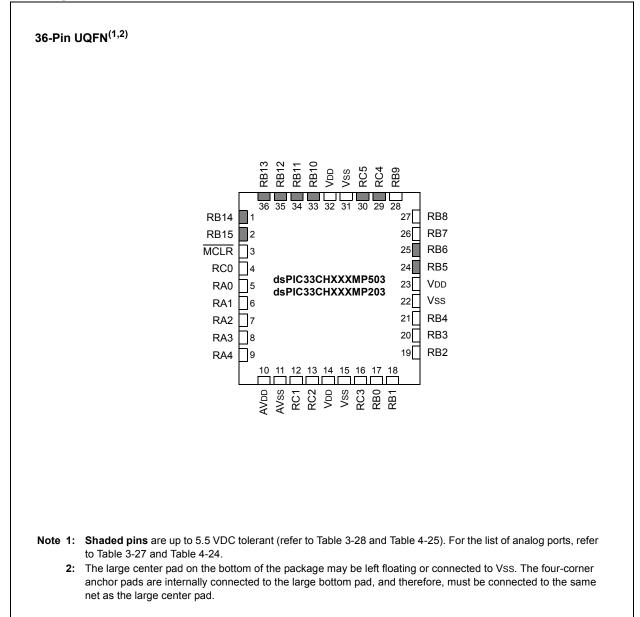
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp202-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33CH128MP508 FAMILY

Pin Diagrams (Continued)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

REGISTER 3-17: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

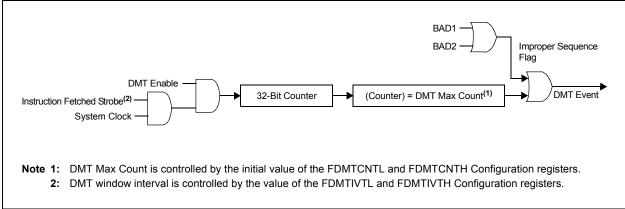
1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.


2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.7 Deadman Timer (DMT) (Master Only)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (DS70005155) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The Slave core does not have any DMT module; only the Master has the DMT.

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

FIGURE 3-22: DEADMAN TIMER BLOCK DIAGRAM

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected. Table 3-41 shows an overview of the DMT module.

TABLE 3-41:	DMT MODULE OVERVIEW
-------------	---------------------

	No. of DMT Modules	Identical (Modules)
Master Core	1	No
Slave Core	None	NA

Figure 3-22 shows a block diagram of the Deadman Timer module.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	-	—	—	—
bit 15							bit 8

HC/R-0	HC/R-0	HC/R-0	U-0	U-0	U-0	U-0	R-0
BAD1	BAD2	DMTEVENT	—	—	—	—	WINOPN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	BAD1: Deadman Timer Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected 0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Deadman Timer Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected 0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	 1 = Deadman Timer event was detected (counter expired, or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment) 0 = Deadman Timer event was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman Timer clear window is open
	0 = Deadman Timer clear window is not open

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	EXIDE	SID11	EID17	EID16	EID15	EID14	EID13	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EID12	EID11	EID10	EID9	EID8	EID7	EID6	EID5	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	Unimplemented: Read as '0'							
bit 14	EXIDE: Extended Identifier Enable bit							
	<u>If MIDE = 1:</u>							
	1 = Matches only messages with Extended Identifier addresses							
	0 = Matches only messages with Standard Identifier addresses							

REGISTER 3-153: C1FLTOBJxH: CAN FILTER OBJECT REGISTER x HIGH (x = 0 TO 15)

bit 13	SID11: Standard Identifier Filter bit

bit 12-0	EID<17:5>: Extended Identifier Filter bits						
	In DeviceNet [™] mode, these are the filter bits for the first two data bytes.						

REGISTER 3-154: C1FLTOBJxL: CAN FILTER OBJECT REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EID4	EID3	EID2	EID1	EID0	SID10	SID9	SID8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-11 EID<4:0>: Extended Identifier Filter bits

In DeviceNet[™] mode, these are the filter bits for the first two data bytes.

bit 10-0 SID<10:0>: Standard Identifier Filter bits

3.10.2 PTG CONTROL/STATUS REGISTERS

REGISTER 3-183: PTGCST: PTG CONTROL/STATUS LOW REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15						<u> </u>	bit 8
HC/R/W-0	HS/R/W-0	HS/HC/R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTRT	PTGWDTO	PTGBUSY		_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit		
R = Readal	ble bit	W = Writable bit		U = Unimple	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	מאור
		I – Dit is set					50011
bit 15	PTGEN: PTG	· Enable bit					
DIL 15	1 = PTG is er						
	0 = PTG is di						
bit 14		ted: Read as '0'					
bit 13	-	G Freeze in Debu	ua Mode bit				
		G operation when	•				
		ation continues w		dle			
bit 12	PTGTOGL: P	TG Toggle Trigge	r Output bit				
	1 = Toggles s	tate of TRIG output	ut for each exe	cution of PTG	TRIG		
	0 = Generate	s a single TRIG p	ulse for each e	xecution of PI	GTRIG		
bit 11	Unimplemen	ted: Read as '0'					
bit 10	PTGSWT: PT	G Software Trigge	er bit ⁽²⁾				
		tate of TRIG outpu s a single TRIG pu					
bit 9	PTGSSEN: P	TG Single-Step C	ommand bit ⁽³⁾				
		single step when ir					
bit 8		G Counter/Timer \	/isibility bit				
Sit 0		the PTGSDLIM,		PTGTxI IM r	egisters returns	s the current va	alues of their
	correspo	nding Counter/Tim the PTGSDLIM, P	ner registers (F	TGSDLIM, P	GCxLIM and P	TGTxLIM)	
bit 7	-	TG Start Sequenc		0			0
		sequentially execu		nds (Continuo	us mode)		
		ecuting the comma			,		
bit 6	PTGWDTO: PTG Watchdog Timer Time-out Status bit						
1 = PTG Watchdog Timer has timed out							
	0 = PTG Wate	chdog Timer has r	ot timed out				
bit 5	PTGBUSY: P	TG State Machine	e Busy bit				
	1 = PTG is r PTGDIV	running on the se <4:0>	elected clock	source; no SF	R writes are a	allowed to PTG	CLK<2:0> or
	0 = PTG stat	e machine is not r	unning				
bit 4-2	Unimplemen	ted: Read as '0'					
Note 1:	These bits appl	y to the PTGWHI a	nd PTGWLO CC	mmands only.			
		y used with the pmg					

- 2: This bit is only used with the PTGCTRL Step command software trigger option.
 - 3: The PTGSSEN bit may only be written when in Debug mode.

4.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508S1 family is shown in Figure 4-2. All registers in the programmer's model are memorymapped and can be manipulated directly by instructions. Table 4-1 lists a description of each register. In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508S1 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 4-3.

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate 1 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 2 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 3 Working Register Array
W0 through W14 ⁽¹⁾	Alternate 4 Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

TABLE 4-23:	SLAVE INTERRUPT PRIORITY REGISTERS (CONTINUED)
-------------	--

	-															
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC36	_	-	—	—		_	-	—	—	MSTBRKIP2	MSTBRKIP1	MSTBRKIP0	_	—	-	—
IPC37	_	—	_	_	_	_	_	—	—	—	—	—	_	—	—	_
IPC38	-	_	_	_	_	_	_	_	_	_	_	_		_	_	_
IPC39	_		_	_	-	_	_	_	—	_	—	—		MCLKFIP2	MCLKFIP1	MCLKFIP0
IPC40	_		_	_	-	_	_	_	—	ADC1IP2	ADC1IP1	ADC1IP0	-	ADC0IP2	ADC0IP1	ADC0IP0
IPC41	_		—	_		_		—	—	—	—	—	-	—		—
IPC42	_	PEVTCIP2	PEVTCIP1	PEVTCIP0		PEVTBIP2	PEVTBIP1	PEVTBIP0	—	PEVTAIP2	PEVTAIP1	PEVTAIP0	_	ADFIFOIP2	ADFIFOIP1	ADFIFOIP0
IPC43	_	CLC3PIP2	CLC3PIP1	CLC3PIP0		PEVTFIP2	PEVTFIP1	PEVTFIP0	—	PEVTEIP2	PEVTEIP1	PEVTEIP0	_	PEVTDIP2	PEVTDIP1	PEVTDIP0
IPC44	_	CLC3NIP2	CLC3NIP1	CLC3NIP0		CLC2NIP2	CLC2NIP1	CLC2NIP0	—	CLC1NIP2	CLC1NIP1	CLC1NIP0	_	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	_		—	_		_		—	—	—	—	—	-	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC46	_	_	_	_	-	_	_	_	—	_	_	_		_	_	—
IPC47	_		—	_		_		—	—	U1EVTIP2	U1EVTIP1	U1EVTIP0	_	—		—

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
GIE	DISI	SWTRAP		—	_	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
				INT3EP	INT2EP	INT1EP	INT0EP			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
				0 2.1.0 0.0						
bit 15	GIE: Global	Interrupt Enable	bit							
		s and associated								
	0 = Interrupt	ts are disabled, b	ut traps are	still enabled						
bit 14		Instruction Status								
		struction is active struction is not a								
bit 13		Software Trap Sta								
		e trap is enabled								
		e trap is disabled								
bit 12-4	Unimpleme	nted: Read as '0)'							
bit 3	INT3EP: Ext	ternal Interrupt 3	Edge Detec	t Polarity Select	t bit					
		on negative edg								
h # 0	0 = Interrupt on positive edge									
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit									
	 1 = Interrupt on negative edge 0 = Interrupt on positive edge 									
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit									
	1 = Interrupt on negative edge									
	0 = Interrupt on positive edge									
bit 0	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit									
		t on negative edge t on positive edge								
		i on positive edge	-							

REGISTER 4-19: INTCON2: SLAVE INTERRUPT CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP175R5 ⁽¹⁾	RP175R4 ⁽¹⁾	RP175R3 ⁽¹⁾	RP175R2 ⁽¹⁾	RP175R1 ⁽¹⁾	RP175R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP174R5 ⁽¹⁾	RP174R4 ⁽¹⁾	RP174R3 ⁽¹⁾	RP174R2 ⁽¹⁾	RP174R1 ⁽¹⁾	RP174R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP175R<5:0>: Peripheral Output Function is Assigned to S1RP175 Output Pin bits ⁽¹⁾
	(see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP174R<5:0>:** Peripheral Output Function is Assigned to S1RP174 Output Pin bits⁽¹⁾ (see Table 4-31 for peripheral function numbers)

Note 1: These are virtual output ports.

'1' = Bit is set

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	—	EISEL2	EISEL1	EISEL0	RES1	RES2	
bit 15				·		·	bit	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

REGISTER 4-94: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 TO 1)

bit 15-13 Unimplemented: Read as '0'

-n = Value at POR

DIL 10-1	5 Uninplemented. Read as 0
bit 12-1	0 EISEL<2:0>: ADC Core x Early Interrupt Time Selection bits
	111 = Early interrupt is set and an interrupt is generated 8 TADCORE clocks prior to when the data is ready 110 = Early interrupt is set and an interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and an interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 2 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and an interrupt is generated 1 TADCORE clocks prior to when the data is ready 000 = Early interrupt is set and an interrupt is generated 1 TADCORE clocks prior to when the data is ready
bit 9-8	RES<1:0>: ADC Core x Resolution Selection bits
	11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution ⁽¹⁾ 00 = 6-bit resolution ⁽¹⁾
bit 7	Unimplemented: Read as '0'
bit 6-0	ADCS<6:0>: ADC Core x Input Clock Divider bits These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period (TADCORE). 1111111 = 254 Source Clock Periods
	0000011 = 6 Source Clock Periods 0000010 = 4 Source Clock Periods 0000001 = 2 Source Clock Periods 0000000 = 2 Source Clock Periods

Note 1: For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from '100' to '111', are not valid and should not be used. For the 8-bit ADC core resolution (RES<1:0> = 01), the EISEL<2:0> bits settings, '110' and '111', are not valid and should not be used.

x = Bit is unknown

REGISTER 4-99: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

Legend:							
bit 7							bit 0
			EISTA	T<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
							bit 0
bit 15							bit 8
			EISTAT	<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 4-100: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	_	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—		EISTAT<20:16>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EISTAT<20:16>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 4-106: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4)

	—	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15		•				bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

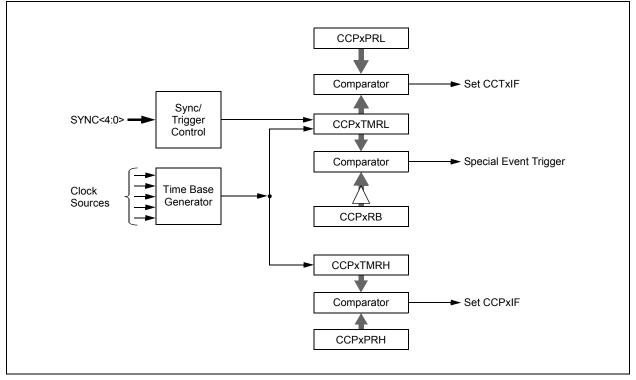
bit 15-13 Unimplemented: Read as '0'

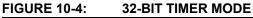
bit 12-8 TRGSRC(x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits (TRGSRC1 to TRGSRC19 – Odd) 11111 = ADTRG31 (PPS input) 11110 = Master PTG 11101 = Slave CLC1 11100 = Master CLC1 11011 = Reserved 11010 = Reserved 11001 = Master PWM3 Trigger 2 11000 = Master PWM1 Trigger 2 10111 = Slave SCCP4 PWM/IC interrupt 10110 = Slave SCCP3 PWM/IC interrupt 10101 = Slave SCCP2 PWM/IC interrupt 10100 = Slave SCCP1 PWM/IC interrupt 10011 = Reserved 10010 = Reserved 10001 = Reserved 10000 = Reserved 01111 = Slave PWM8 Trigger 1 01110 = Slave PWM7 Trigger 1 01101 = Slave PWM6 Trigger 1 01100 = Slave PWM5 Trigger 1 01011 = Slave PWM4 Trigger 2 01010 = Slave PWM4 Trigger 1 01001 = Slave PWM3 Trigger 2 01000 = Slave PWM3 Trigger 1 00111 = Slave PWM2 Trigger 2 00110 = Slave PWM2 Trigger 1 00101 = Slave PWM1 Trigger 2 00100 = Slave PWM1 Trigger 1 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger 00000 = No trigger is enabled

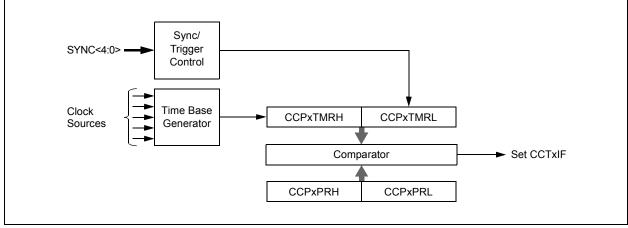
bit 7-5 Unimplemented: Read as '0'

REGISTER 9-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER y⁽²⁾ (CONTINUED)

bit 6	S2yPOL: Combinatorial PWM Logic Source #2 Polarity bit 1 = Input is inverted 0 = Input is positive logic
bit 5-4	<pre>PWMLFy<1:0>: Combinatorial PWM Logic Function Selection bits 11 = Reserved 10 = PWMS1 ^ PWMS2 (XOR) 01 = PWMS1 & PWMS2 (AND) 00 = PWMS1 PWMS2 (OR)</pre>
bit 3	Unimplemented: Read as '0'
bit 2-0	PWMLFyD<2:0>: Combinatorial PWM Logic Destination Selection bits 111 = Logic function is assigned to the PWM8H or PWM8L pin 110 = Logic function is assigned to the PWM7H or PWM7L pin 101 = Logic function is assigned to the PWM6H or PWM6L pin 100 = Logic function is assigned to the PWM5H or PWM5Lpin 011 = Logic function is assigned to the PWM4H or PWM4Lpin 010 = Logic function is assigned to the PWM3H or PWM3Lpin 001 = Logic function is assigned to the PWM2H or PWM3Lpin 000 = No assignment, combinatorial PWM logic function is disabled
N	


- **Note 1:** Logic function input will be connected to '0' if the PWM channel is not present.
 - 2: 'y' denotes a common instance (A-F).


REGISTER 9-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH (CONTINUED)


- bit 6 **TRGMOD:** PWM Generator Trigger Mode Selection bit 1 = PWM Generator operates in Retriggerable mode 0 = PWM Generator operates in Single Trigger mode
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 SOCS<3:0>: Start-of-Cycle Selection bits^(1,2,3) 1111 = TRIG bit or PCI Sync function only (no hardware trigger source is selected) 1110-0101 = Reserved 0100 = PWM4(8) PG1 or PG5 trigger output selected by PGTRGSEL<2:0> (PGxEVT<2:0>) 0011 = PWM3(7) PG1 or PG5 trigger output selected by PGTRGSEL<2:0> (PGxEVT<2:0>) 0010 = PWM2(6) PG1 or PG5 trigger output selected by PGTRGSEL<2:0> (PGxEVT<2:0>) 0001 = PWM1(5) PG1 or PG5 trigger output selected by PGTRGSEL<2:0> (PGxEVT<2:0>) 0001 = PWM1(5) PG1 or PG5 trigger output selected by PGTRGSEL<2:0> (PGxEVT<2:0>) 0000 = Local EOC – PWM Generator is self-triggered
- **Note 1:** The PCI selected Sync signal is always available to be OR'd with the selected SOC signal per the SOCS<3:0> bits if the PCI Sync function is enabled.
 - 2: The source selected by the SOCS<3:0> bits MUST operate from the same clock source as the local PWM Generator. If not, the source must be routed through the PCI Sync logic so the trigger signal may be synchronized to the PWM Generator clock domain.
 - **3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

dsPIC33CH128MP508 FAMILY

FIGURE 10-3: DUAL 16-BIT TIMER MODE

REGISTER 12-19: INDXxHLDL: INDEX x COUNTER HOLD REGISTER LOW

-							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXF	ILD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXI	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15-0 INDXHLD<15:0>: Hold for Reading/Writing Index x Counter Register (INDXCNT) bits

REGISTER 12-20: INDXxHLDH: INDEX x COUNTER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<31:24>			
bit 15							bit 8
	5444.0	D #44.0	5444.0	5444.0	D 444 o	54440	5444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXHLD<31:16>: Hold for Reading/Writing Index x Counter Register (INDXCNT) bits

REGISTER 21-14: FDEVOPT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	—		—	—		—	
bit 23 b							bit 16	
·								
U-1	U-1	R/PO-1	U-1	U-1	R/PO-1	r-1	r-1	
	—	SPI2PIN ⁽¹⁾			SMBEN		_	
bit 15	bit 15 bit							
r-1	U-1	U-1	R/PO-1	R/PO-1	r-1	U-1	U-1	
	—	—	ALTI2C2	ALTI2C1	—	—	—	
bit 7							bit 0	
							1	
Legend:		PO = Prograr	n Once bit	r = Reserved				
R = Readal	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					own			
bit 23-14	•	Unimplemented: Read as '1'						
bit 13		SPI2PIN: Master SPI #2 Fast I/O Pad Disable bit ⁽¹⁾						
	 1 = Master SPI2 uses PPS (I/O remap) to make connections with device pins 0 = Master SPI2 uses direct connections with specified device pins 							
bit 12-11	Unimpleme	Unimplemented: Read as '1'						
bit 10	SMBEN: Se	SMBEN: Select Input Voltage Threshold for I ² C Pads to be SMBus 3.0 Compliant bit						
	1 = Enables SMBus 3.0 input threshold voltage $0 = I^2C$ pad input buffer operation							
bit 9-7	Reserved: Maintain as '1'							
bit 6-5	Unimplemented: Read as '1'							
bit 4	ALTI2C2: Alternate I2C2 Pin Mapping bit							
	1 = Default location for SCL2/SDA2 pins 0 = Alternate location for SCL2/SDA2 pins (ASCL2/ASDA2)							
bit 3	ALTI2C1: Alternate I2C1 Pin Mapping bit							
	1 = Default location for SCL1/SDA1 pins							
	0 = Alternat	e location for SO	CL1/SDA1 pins	s (ASCL1/ASDA	41)			
bit 2	Reserved: Maintain as '1'							
bit 1-0	Unimplemented: Read as '1'							

Note 1: Fixed pin option is only available for higher pin packages (48-pin, 64-pin and 80-pin).

REGISTER 21-21: FCFGPRB0: PORTB CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	_			_	_		_
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
CPRB<15:8>							
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			CPRE	8<7:0>			
bit 7							bit 0
bit 7							bit

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16 Unimplemented: Read as '1'

bit 15-0 CPRB<15:0>: Configure PORTB Ownership bits

1 = Master core owns pin

0 = Slave core owns pin

REGISTER 21-22: FCFGPRC0: PORTC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23		-		- -			bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			CPRC	<15:8>			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			CPRO	C<7:0>			
bit 7							bit 0
Legend:		PO = Program	n Once hit				
R = Readable bit		W = Writable I		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		0° = Bit is cleared x = Bit is unknown			
-ii – vaiue al							
bit 23-16	Unimpleme	nted: Read as '1	,				
bit 15-0	CPRC<15:02	-: Configure PO	RTC Ownersh	ip bits			

1 = Master core owns pin

0 = Slave core owns pin

21.7 Dual Watchdog Timer (WDT)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Watchdog Timer", (DS70005250) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: The WDT is identical for both Master core and Slave core. The x is common for both Master core and Slave core (where the x represents the number of the specific module being addressed). The number of WDT modules available on the Master and Slaves is different and they are located in different SFR locations.
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device.

Table 21-6 shows an overview of the WDT module.

TABLE 21-6:DUAL WDT MODULEOVERVIEW

	Number of WDT Modules	ldentical (Modules)		
Master Core	1	Yes		
Slave Core	1	Yes		

The dsPIC33 dual Watchdog Timer (WDT) is described in this section. Refer to Figure 21-2 for a block diagram of the WDT.

The WDT, when enabled, operates from the internal Low-Power RC (LPRC) Oscillator clock source or a selectable clock source in Run mode. The WDT can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. The WDT can be configured in Windowed mode or Non-Windowed mode. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode (Power Save mode). If the WDT expires and issues a device Reset, the WTDO bit of the RCON register (Register 21-37) will be set.

The following are some of the key features of the WDT modules:

- Configuration or Software Controlled
- Separate User-Configurable Time-out Periods for Run and Sleep/Idle
- Can Wake the Device from Sleep or Idle
- · User-Selectable Clock Source in Run mode
- Operates from LPRC in Sleep/Idle mode

Note: While executing a clock switch, the WDT will not be reset. It is recommended to reset the WDT prior to executing a clock switch instruction.