

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 23x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CAN FD (Con	tinued)		C1FLTOBJ15L	6F8	000000000000000000000000000000000000000	C1MASK15H	6FE	-0000000000000000
C1MASK14L	6F4	000000000000000000000000000000000000000	C1FLTOBJ15H	6FA	-0000000000000000			
C1MASK14H	6F6	-0000000000000000	C1MASK15L	6FC	000000000000000000000000000000000000000			

TABLE 3-10: MASTER SFR BLOCK 700h

Legend: x = unknown or indeterminate value; "." = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

TABLE 3-11: MASTER SFR BLOCK 800h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Interrupts			IPC3	846	-100-100-100-100	IPC33	882	-100-100-100-100
IFS0	800	000000000-00000	IPC4	848	-100-100-100-100	IPC34	884	-100-100-100-100
IFS1	802	000000000000000000000000000000000000000	IPC5	84A	-100-100-100-100	IPC35	886	100-100
IFS2	804	00000-00-00000	IPC6	84C	-100-100-100-100	IPC35	886	100-100
IFS3	806	00000000	IPC7	84E	-100-100-100-100	IPC36	888	100
IFS4	808	0000000-00	IPC8	850	-100-100	IPC37	88A	100-100
IFS5	80A	00000000000000000-	IPC9	852	100-100-100	IPC38	88C	100-100
IFS6	80C	000000000000000000000000000000000000000	IPC10	854	-100100-100	IPC39	88E	100
IFS7	80E	0000000000000	IPC11	856	-100-100-100-100	IPC42	894	-100-100-100-100
IFS8	810	0000000000000-	IPC12	858	-100-100-100-100	IPC43	896	-100-100-100-100
IFS9	812	000-000	IPC13	85A	100	IPC44	898	-100-100-100-100
IFS10	814	0000000	IPC15	85E	-100-100-100	IPC45	89A	100
IFS11	816	-0000000	IPC16	860	-100100-100	IPC47	89E	100-100
IEC0	820	000000000-00000	IPC17	862	100-100-100	INTCON1	8C0	0000000000000000-
IEC1	822	000000000000000000000000000000000000000	IPC18	864	-100	INTCON2	8C2	00000000
IEC2	824	00000-00-00000	IPC19	866	100-100	INTCON3	8C4	00
IEC3	826	00000000	IPC20	868	-100-100-100	INTCON4	8C6	00
IEC4	828	0000000-00	IPC21	86A	-100-100-100-100	INTTREG	8C8	000-000000000000
IEC5	82A	00000000000000000-	IPC22	86C	-100-100-100-100	Flash		
IEC6	82C	000000000000000000000000000000000000000	IPC23	86E	-100-100-100-100	NVMCON	8D0	0000000000
IEC7	82E	0000000000000	IPC24	870	-100-100-100-100	NVMADR	8D2	000000000000000000
IEC8	830	0000000000000-	IPC25	872	-100-100-100-100	NVMADRU	8D4	00000000
IEC8	830	0000000000000-	IPC26	874	-100-100-100-100	NVMKEY	8D6	00000000
IEC9	832	000-000	IPC27	876	-100-100-100-100	NVMSRCADRL	8D8	000000000000000000
IEC10	834	000000000	IPC28	878	-100	NVMSRCADRH	8DA	00000000
IEC11	836	-0000000	IPC29	87A	-100-100-100-100	CBG		
IPC0	840	-100-100-100-100	IPC30	87C	-100-100-100-100	BIASCON	8F0	00000
IPC1	842	-100-100100	IPC31	87E	-100-100-100-100	IBIASCONL	8F4	000000000000
IPC2	844	-100-100-100-100	IPC32	880	-100-100-100	IBIASCONH	8F6	000000000000

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

3.4.2 RESET CONTROL REGISTER

REGISTER 3-15: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—	—	—	—	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR
bit 7	own		WBIO	OLLLI	IDEE	Bolt	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
		Deest Flee bit					
bit 15		Reset Flag bit					
		onflict Reset ha		d			
bit 14	•				ess Reset Flag	bit	
					ode or Uninitial		er used as a
	Address	Pointer caused	l a Reset			-	
	•	•		Register Reset	has not occurre	d	
oit 13-10	-	ted: Read as '					
oit 9	•	ation Mismatch	•				
		ration Mismato					
oit 8	VREGS: Volta	age Regulator	Standby Durin	ig Sleep bit			
	•	egulator is acti equlator goes i	•	ep node during Sle	еер		
oit 7	-	al Reset (MCL		3 -	1-		
		Clear (pin) Res Clear (pin) Res					
bit 6		re RESET (Inst					
	1 = A reset i	instruction has instruction has	been execute	ed			
oit 5		ted: Read as '					
oit 4	-	hdog Timer Tin		ŀ			
		e-out has occur		-			
	0 = WDT time	e-out has not o	ccurred				
bit 3	SLEEP: Wake	e-up from Slee	p Flag bit				
		is been in Slee is not been in S	-				
bit 2	IDLE: Wake-u	up from Idle Fla	ag bit				
	1 = Device ha	s been in Idle	mode				
L:1 A		is not been in I					
bit 1		out Reset Flag					
		out Reset has out Reset has					
Note 1: All	of the Reset sta	tue hite can he	set or cleared	t in coffwara. S	etting one of th	oso hite in coft	wara daga na

cause a device Reset.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	
bit 7							bit 0	
Legend:	1.11		1.11			(0)		
R = Readable		W = Writable		•	ented bit, read			
-n = Value at F	VOR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown	
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit					
2.1.10		nesting is disa						
	•	nesting is ena						
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	-lag bit				
			overflow of Ac					
h# 40	-		-	of Accumulator A	A			
bit 13			Overflow Trap I	•				
			overflow of Ac	f Accumulator B	3			
bit 12	-		-	Overflow Trap F				
			•	erflow of Accum	•			
				c overflow of Ac				
bit 11			-	Overflow Trap F	-			
				erflow of Accum				
bit 10	-			c overflow of Ac	cumulator B			
bit 10		erflow of Accur	erflow Trap En					
	1 = Trap over 0 = Trap is d							
bit 9	OVBTE: Acc	cumulator B O	verflow Trap En	able bit				
	1 = Trap ove	OVBTE: Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B						
		0 = Trap is disabled						
bit 8			flow Trap Enal					
			low of Accumu	lator A or B is ei	nabled			
bit 7	0 = Trap is d		lator Error Stat	us hit				
				alid accumulator	shift			
			•	invalid accumul				
		-	-					

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 3-30: CNCONX: CHANGE NOTIFICATION CONTROL FOR PORTX REGISTER

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
ON		—		CNSTYLE	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>	—	<u> </u>	—	<u> </u>	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	red x = Bit is unknown	
bit 15	ON: Change	Notification (CN	I) Control for	PORTx On bit			
	1 = CN is ena 0 = CN is disa						
bit 14-12	Unimplemen	ted: Read as ')'				
bit 11	CNSTYLE: C	hange Notificat	ion Style Sele	ection bit			
	 1 = Edge style (detects edge transitions, CNFx<15:0> bits are used for a Change Notification event) 0 = Mismatch style (detects change from last port read, CNSTATx<15:0> bits are used for a Change Notification event) 						
bit 10-0	Unimplemen	ted: Read as ')'				

REGISTER 3-31: CNEN0x: INTERRUPT CHANGE NOTIFICATION ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN0	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN)x<7:0>			
bit 7							bit 0
Legend:							

=ogona.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **CNEN0x<15:0>:** Interrupt Change Notification Enable for PORTx bits 1 = Interrupt-on-change (from the last read value) is enabled for PORTx[n] 0 = Interrupt-on-change is disabled for PORTx[n]

DS70005319B-page 120

Input Name ⁽¹⁾	Function Name	Register	Register Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
External Interrupt 3	INT3	RPINR1	INT3R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CK<7:0>
SCCP Timer1	TCKI1	RPINR3	TCKI1R<7:0>
SCCP Capture 1	ICM1	RPINR3	ICM1R<7:0>
SCCP Timer2	TCKI2	RPINR4	TCKI2R<7:0>
SCCP Capture 2	ICM2	RPINR4	ICM2R<7:0>
SCCP Timer3	TCKI3	RPINR5	TCKI3R<7:0>
SCCP Capture 3	ICM3	RPINR5	ICM3R<7:0>
SCCP Timer4	TCKI4	RPINR6	TCKI4R<7:0>
SCCP Capture 4	ICM4	RPINR6	ICM4R<7:0>
SCCP Timer5	TCKI5	RPINR7	TCKI5R<7:0>
SCCP Capture 5	ICM5	RPINR7	ICM5R<7:0>
SCCP Timer6	TCKI6	RPINR8	TCKI6R<7:0>
SCCP Capture 6	ICM6	RPINR8	ICM6R<7:0>
SCCP Timer7	TCKI7	RPINR9	TCKI7R<7:0>
SCCP Capture 7	ICM7	RPINR9	ICM7R<7:0>
SCCP Timer8	TCKI8	RPINR10	TCKI8R<7:0>
SCCP Capture 8	ICM8	RPINR10	ICM8R<7:0>
SCCP Fault A	OCFA	RPINR11	OCFAR<7:0>
SCCP Fault B	OCFB	RPINR11	OCFBR<7:0>
PWM Input 8	PCI8	RPINR12	PCI8R<7:0>
PWM Input 9	PCI9	RPINR12	PCI9R<7:0>
PWM Input 10	PCI10	RPINR13	PCI10R<7:0>
PWM Input 11	PCI11	RPINR13	PCI11R<7:0>
QEI Input A	QEIA1	RPINR14	QEIA1R<7:0>
QEI Input B	QEIB1	RPINR14	QEIB1R<7:0>
QEI Index 1 Input	QEINDX1	RPINR15	QEINDX1R<7:0>
QEI Home 1 Input	QEIHOM1	RPINR15	QEIHOM1R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Data-Set-Ready	U1DSR	RPINR18	U1DSRR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
UART2 Data-Set-Ready	U2DSR	RPINR19	U2DSRR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
Reference Clock Input	REFOI	RPINR21	REFOIR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
UART1 Clear-to-Send	U1CTS	RPINR23	U1CTSR<7:0>

TABLE 3-31:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

REGISTER 3-82: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to RP61 Output Pin bits (see Table 3-33 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to RP60 Output Pin bits (see Table 3-33 for peripheral function numbers)

REGISTER 3-83: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0
Legend:							
1							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to RP63 Output Pin bits (see Table 3-33 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to RP62 Output Pin bits (see Table 3-33 for peripheral function numbers)

3.9.3 ADC CONTROL/STATUS REGISTERS

REGISTER 3-157: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15 ADON: ADC Enable bit⁽¹⁾
 - 1 = ADC module is enabled
 - 0 = ADC module is off
- bit 14 Unimplemented: Read as '0'
- bit 13 ADSIDL: ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-0 Unimplemented: Read as '0'
- **Note 1:** Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

REGISTER 4-57: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk				x = Bit is unkr	nown			

bit 15-8 **CLCINAR<7:0>:** Assign CLC Input A (S1CLCINA) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 Unimplemented: Read as '0'

REGISTER 4-58: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (S1CLCINC) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (S1CLCINB) to the Corresponding S1RPn Pin bits See Table 4-27.

REGISTER 4-104: ADSTATL: ADC DATA READY STATUS REGISTER LOW

HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
			AN<15	:8>RDY					
bit 15	bit 15 bit 8								
HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0		
			AN<7:	0>RDY					
bit 7							bit 0		
Legend:		U = Unimplem	nented bit, rea	d as '0'					
R = Readable	R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown			

bit 15-0 AN<15:0>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 4-105: ADSTATH: ADC DATA READY STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 15							bit 8

U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	—		A	\N<20:16>RD	Y	
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 AN<20:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	PGA3MD	—	—	_	PGA2MD	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—
bit 7							bit 0
Legend:							
R = Readab		W = Writable I	oit	•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
6:4 <i>4 E</i>		ted. Deed en fr	, ,				
bit 15	-	ted: Read as '0					
bit 14		GA3 Module Dis Indule is disabled					
		dule is enabled					
bit 13-11		ted: Read as '0					
bit 10	-	GA2 Module Dis					
	1 = PGA2 mo	dule is disabled	ł				
	0 = PGA2 mo	dule is enabled					
bit 9-6	Unimplemen	ted: Read as '0)'				
bit 5	CLC4MD: CL	C4 Module Dis	able bit				
		dule is disabled					
		dule is enabled					
bit 4		C3 Module Dis dule is disabled					
		dule is enabled	-				
bit 3		CLC2MD: CLC2 Module Disable bit					
	1 = CLC2 module is disabled						
	0 = CLC2 module is enabled						
bit 2	CLC1MD: CL	C1 Module Dis	able bit				
		dule is disabled					
		dule is enabled					
bit 1-0	Unimplemen	ted: Read as '0)'				

REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

8.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

8.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

8.3 Peripheral Module Disable

The channels of the DMA Controller can be individually powered down using the Peripheral Module Disable (PMD) registers.

8.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 8-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 8-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 8-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For dsPIC33CH128MP508 devices, there are a total of 34 registers.

REGISTER 9-30: PGxDTL: PWM GENERATOR x DEAD-TIME REGISTER LOW

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			DTL<1	3:8> ⁽¹⁾		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTL	_<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTL<13:0>: PWMxL Dead-Time Delay bits⁽¹⁾

Note 1: DTL<13:11> bits are not available when HREN (PGxCONL<7>) = 0.

REGISTER 9-31: PGxDTH: PWM GENERATOR x DEAD-TIME REGISTER HIGH

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DTH<1	3:8> ⁽¹⁾		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-0 DTH<13:0>: PWMxH Dead-Time Delay bits⁽¹⁾

Note 1: DTH<13:11> bits are not available when HREN (PGxCONL<7>) = 0.

bit 0

R-0							
I V O	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxCA	AP<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxCA	\P<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted hit rea	d as '0'	
			•				
-n = Value at POF	۲	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unki	nown

REGISTER 9-32: PGxCAP: PWM GENERATOR x CAPTURE REGISTER

bit 15-0 **PGxCAP<15:0>:** PGx Time Base Capture bits⁽¹⁾

Note 1: PGxCAP<1:0> will read as '0' in Standard Resolution mode. PGxCAP<4:0> will read as '0' in High-Resolution mode.

REGISTER 14-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (Slave) 0 = Frame Sync pulse output (Master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	 1 = Frame Sync pulse/Slave select is active-high 0 = Frame Sync pulse/Slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 1 = SPIx Slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode) 0 = Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCKx) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved 110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words 010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols) 000 = Generates a Frame Sync pulse on each serial word

Note 1: AUDEN can only be written when the SPIEN bit = 0.

- **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- **3:** URDTEN is only valid when IGNTUR = 1.
- **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 16-3: SENTXDATL: SENTX RECEIVE DATA REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA4<3:0>				DATAS	5<3:0>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATA6	6<3:0>		CRC<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 16-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STAT<3:0>				DATA1<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DATA2<3:0>				DATA3<3:0>				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 **DATA1<3:0>:** Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
40	DIV2.U	DIV2.U	Wm,Wn	Unsigned 16/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV
		DIV2.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV
41	DO	DO	#lit15,Expr	Do Code to PC + Expr, lit15 + 1 Times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 Times	2	2	None
42	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
43	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
44	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
46	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
47	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
48	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
49	FLIM	FLIM	Wb, Ws	Force Data (Upper and Lower) Range Limit without Limit Excess Result	1	1	N,Z,OV
		FLIM.V	Wb, Ws, Wd	Force Data (Upper and Lower) Range Limit with Limit Excess Result	1	1	N,Z,OV
50	GOTO	GOTO	Expr	Go to Address	2	4/2 ⁽²⁾	None
		GOTO	Wn	Go to Indirect	1	4/2 ⁽²⁾	None
		GOTO.L	Wn	Go to Indirect (long address)	1	4/2 ⁽²⁾	None
51	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
52	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
53	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f.IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
54	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		LAC.D	Wso, #Slit4, Acc	Load Accumulator Double	1	2	OA,SA,OB,SB
55	LDSLV	LDSLV	Wso,Wdo,lit2	Move a Single Instruction Word from Master to Slave PRAM	1	1	None
56	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
57	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
58	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
59	MAX	MAX	Acc	Force Data Maximum Range Limit	1	1	N,OV,Z
		MAX.V	Acc, Wnd	Force Data Maximum Range Limit with Result	1	1	N,OV,Z

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. Note 1: 2:

Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

Capture/Compare/PWM/Timer
Auto-Shutdown and Gating Sources (Master) 548
Auto-Shutdown and Gating Sources (Slave)
Auxiliary Output541
Control/Status Registers542
General Purpose Timer
Input Capture Mode
Output Compare Mode
Overview
Synchronization Sources (Master)
Synchronization Sources (Slave)
Time Base Generator
Capture/Compare/PWM/Timer (SCCP)
CLC
Control Registers
Overview
Code Examples
Configuring UART1 Input and Output Functions 125
Flash Write/Read
MSI Enable Operation
MSI Enable Operation in C
Port Write/Read
PRAM Write/Read
PWRSAV Instruction Syntax
Slave PRAM Load and Verify Routine
Using Master or Slave Auxiliary PLL with
Internal FRC438
Using Master PLL (50 MIPS) with POSC 467
Using Master PLL with 8 MHz Internal FRC469
Using Master Primary PLL with 8 MHz
Internal FRC436
Using Slave PLL (60 MIPS) with POSC
Using Slave PLL with 8 MHz Internal FRC 470
Using Slave PLL with 8 MHz Internal FRC 470
Using Slave PLL with 8 MHz Internal FRC470 Using Slave Primary PLL with 8 MHz
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC 470 Using Slave Primary PLL with 8 MHz 436 Code Protection 667 Code Protection, CodeGuard Security (Master Flash) 711 Code Protection, CodeGuard Security (Master Flash) 711 Code Protection, CodeGuard Security (Slave PRAM) 712 CodeGuard Security 667 Comparator/DAC 667 Control Registers 555 Features Overview 553 Overview 553 Configurable Logic Cell (CLC) 647 Configurable Logic Cell See CLC. 647 Configuration Bits 667 Bit Values for Master Clock Selection 440 Bit Values for Slave Clock Selection 441 Controller Area Network (CAN FD) 178 Controller Area Network. See CAN. 662 CRC Control Registers 660 Overview 659 Current Bias Generator 664 Current Bias Generator (CBG) 663
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC
Using Slave PLL with 8 MHz Internal FRC

D

Data Address Space	
Data Audress Space	9
Memory Map for dsPIC33CH128MP508 Devices 50	
Near Data Space	
Organization, Alignment 49	
SFR Space 49	9
Width 49	9
Data Address Space (Slave)	
Memory Map for Slave dsPIC33CH128MP508S1	
	_
Devices	
Near Data Space 274	4
Organization, Alignment 274	4
Resources	
SFR Space	
•	
Width	4
Data Space	
Extended X 69	9
Paged Data Memory Space (figure) 67	7
Paged Memory Scheme	
	0
Data Space (Slave)	_
Extended X 289	
Paged Data Memory Space (figure)	7
Paged Memory Scheme	6
DC Characteristics	-
ADC Delta Current	0
APLL Delta Current737	
Brown-out Reset (BOR)74	1
Comparator + DAC Delta Current	8
Idle Current (IIDLE) (Master Idle/Slave Sleep)	
Idle Current (IDLE) (Master Sleep/Slave Idle)	
Operating Current (IDD) (Master Run/Slave Run) 730	U
Operating Current (IDD)	
(Master Run/Slave Sleep)	2
Operating Current (IDD)	
(Master Clean/Cleve Dun) 723	4
(Master Sleep/Slave Run)	
Operating Current (IIDLE) (Master Idle/Slave Idle) 733	3
	3
Operating Current (IIDLE) (Master Idle/Slave Idle) 733	3 8
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage	3 8 8
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage	3 8 8 6
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737	3 8 8 6 7
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736	3 8 6 7 6
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737	3 8 6 7 6
Operating Current (IIDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736	3 8 6 7 6 0
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177	3 8 6 7 6 0
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177	3 8 6 7 6 0
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 176 Control Registers 177 Deadman Timer. See DMT. Demo/Development Boards, Evaluation and	3 8 6 7 6 0
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Demo/Development Boards, Evaluation and 5tarter Kits	3 8 6 7 6 0 1 6
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Demo/Development Boards, Evaluation and 5tarter Kits Starter Kits 726	3 8 6 7 6 0 1 6 3
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Demo/Development Boards, Evaluation and 5tarter Kits	3 8 6 7 6 0 1 6 3
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Demo/Development Boards, Evaluation and 5tarter Kits Starter Kits 726	3 8 6 7 6 0 1 6 3 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 728 PGA Delta Current 738 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 176 Dewo/Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Development Support 725 Device Calibration 697 Addresses 697	3 8 8 6 7 6 0 1 6 3 7 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 170 Dewo/Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697	3 8 8 6 7 6 0 1 6 3 7 7 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Dewolopment Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27	3 8 8 6 7 6 0 1 6 3 7 7 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 724 PGA Delta Current 733 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Programmer 27	3 8 8 6 7 6 0 1 6 3 7 7 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Dewolopment Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27	3 8 8 6 7 6 0 1 6 3 7 7 7
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 724 PGA Delta Current 733 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Programmer 27	38867601 637771 5
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Programmer 725 Device Variants 698	38867601 637771 5
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Programmer 725 Device Variants 695 Direct Memory Access Controller. See DMA. 695	38867601 637771 5
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 170 Control Registers 177 Deadman Timer. See DMT. 177 Deadman Timer. See DMT. 172 Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 22 Device Programmer 725 MPLAB PM3 725 Device Variants 695 Direct Memory Access Controller. See DMA. 695 DMA 172	38867601 637771 59
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Variants 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498	38867601 637771 59 9
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current. 737 Watchdog Timer Delta Current (ΔIWDT) 737 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Programmer 722 MPLAB PM3 722 Device Variants 699 Direct Memory Access Controller. See DMA. 699 Direct Memory Access Controller. See DMA. 699 DMA Channel Trigger Sources (Master) 499 Channel Trigger Sources (Slave) 500	38867601 637771 59 90
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and Starter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Variants 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498	38867601 637771 59 90
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current. 737 Watchdog Timer Delta Current (ΔIWDT) 737 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 5tarter Kits Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Programmer 722 MPLAB PM3 722 Device Variants 699 Direct Memory Access Controller. See DMA. 699 Direct Memory Access Controller. See DMA. 699 DMA Channel Trigger Sources (Master) 499 Channel Trigger Sources (Slave) 500	38867601 637771 59 906
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 726 PGA Delta Current 736 Power-Down Current (IPD) 736 PWM Delta Current. 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Deadman Timer. See DMT. 172 Development Boards, Evaluation and 172 Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Programmer 172 MPLAB PM3 724 Device Variants 698 Direct Memory Access Controller. See DMA. 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498 Overview 499 500 Control Registers 496 Overview 497	38867601 637771 59 9061
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 724 PGA Delta Current 733 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 514 Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Variants 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498 Control Registers 496 Overview 497 500 Control Registers 496 Overview 497 Peripheral Module Disable (PMD) 498	38867601 637771 59 90615
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 724 PGA Delta Current 733 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 514 Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Variants 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498 Overview 499 500 Control Registers 496 Overview 497 Peripheral Module Disable (PMD) 498 Summary of Operations 493	38867601 637771 59 906153
Operating Current (IDLE) (Master Idle/Slave Idle) 733 Operating MIPS vs. Voltage 724 PGA Delta Current 733 Power-Down Current (IPD) 736 PWM Delta Current 737 Watchdog Timer Delta Current (ΔIWDT) 736 Deadman Timer (DMT) 177 Control Registers 177 Deadman Timer. See DMT. 177 Deadman Timer. See DMT. 177 Development Boards, Evaluation and 514 Starter Kits 726 Device Calibration 697 Addresses 697 and Identification 697 Device Overview 27 Device Variants 698 Direct Memory Access Controller. See DMA. 698 DMA Channel Trigger Sources (Master) 498 Control Registers 496 Overview 497 500 Control Registers 496 Overview 497 Peripheral Module Disable (PMD) 498	38867601 637771 59 9061534

ECCCONH (ECC Fault Injection	
Configuration High)	
ECCCONL (ECC Fault Injection	
Configuration Low)	
ECCSTATH (ECC System Status Display High) 309	
ECCSTATL (ECC System Status Display Low) 309	
FALTREG Configuration	
FBSLIM Configuration	
FCFGPRA0 (PORTA Configuration)	
FCFGPRB0 (PORTB Configuration)	
FCFGPRC0 (PORTC Configuration)	
FCFGPRD0 (PORTD Configuration)	
FCFGPRE0 (PORTE Configuration	
FDEVOPT Configuration	
FDMT Configuration	
FDMTCNTH Configuration	
FDMTCNTL Configuration	
FDMTIVTH Configuration	
FDMTIVTL Configuration	
FICD Configuration	
FMBXHS1 Configuration	
FMBXHS2 Configuration	
FMBXHSEN Configuration	
FMBXM Configuration	
FOSC Configuration	
FOSCSEL Configuration	
FPOR Configuration675	
FS1ALTREG Configuration (Slave) 695	
FS1DEVOPT Configuration (Slave)	
FS1ICD Configuration (Slave)	
FS1OSC Configuration (Slave)	
FS1OSCSEL Configuration (Slave)	
FS1POR Configuration (Slave)	
FS1WDT Configuration (Slave)	
FSCL (Frequency Scale)	
FSCL (Frequency Scale)	
FSEC Configuration	
FSIGN Configuration	
FSMINPER (Frequency Scaling	
Minimum Period)504	
FWDT Configuration674	
I2CxCONH (I2Cx Control High)	
I2CxCONL (I2Cx Control Low)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
IBIASCONH (Current Bias Generator Current	
Source Control High)	
IBIASCONL (Current Bias Generator Current	
Source Control Low)	
INDXxCNTH (Index x Counter High)	
INDXxCNTL (Index x Counter Low)579	
INDXxHLDH (Index x Counter Hold High) 580	
INDXxHLDL (Index x Counter Hold Low)580	
INTCON1 (Interrupt Control 1)106	
INTCON1 (Slave Interrupt Control 1)	
INTCON2 (Interrupt Control 2)108	
INTCON2 (Slave Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	
INTCON3 (Slave Interrupt Control 3)	
INTCONS (Slave Interrupt Control 4)	
INTCON4 (Slave Interrupt Control 4)	
INTTREG (Interrupt Control and Status)	
INTTREG (Slave Interrupt Control and Status)	
INTxTMRH (Interval x Timer High)577	
INTxTMRL (Interval x Timer Low)577	
INTXxHLDH (Index x Counter Hold High)578	

INTXxHLDL (Index x Counter Hold Low)	578
LATx (Output Data for PORTx) 118,	
LFSR (Linear Feedback Shift)	513
LOGCONy (Combinatorial PWM Logic Control y)	
MDC (Master Duty Cycle)	505
MDED (Maatar Daried)	FOG
MPER (Master Period)	
MPHASE (Master Phase)	505
MRSWFDATA (Master Read (Slave Write)	
FIFO Data)	423
MOIAOON (MOIA Master Osatas)	440
MSI1CON (MSI1 Master Control)	418
MSI1FIFOCS (MSI1 Master FIFO	
Control/Status)	422
MSI1KEY (MSI1 Master Interlock Key)	420
MSI1MBXnD (MSI1 Master Mailbox n Data)	421
MSI1MBXS (MSI1 Master Mailbox Data	
Transfer Status)	420
MSI1STAT (MSI1 Master Status)	110
	413
MWSRFDATA (Master Write (Slave Read)	
FIFO Data)	123
NVMADR (Nonvolatile Memory Lower Address)	84
NVMADR (Slave Program Memory	
Lower Address)	305
NVMADRU (Nonvolatile Memory Upper Address)	
	84
NVMADRU (Slave Program Memory	
	005
Upper Address)	
NVMCON (Nonvolatile Memory (NVM) Control)	82
NVMCON (Program Memory Slave Control)	303
NVMKEY (Nonvolatile Memory Key)	85
NVMKEY (Slave Nonvolatile Memory Key)	306
NVMSRCADR (NVM Source Data Address)	85
	05
NVMSRCADR (Slave NVM Source	
Data Address)	306
ODCx (Open-Drain Enable for PORTx) 118,	336
OSCCON (Master Oscillator Control)	
OSCCON (Slave Oscillator Control)	455
OSCTUN (Master FRC Oscillator Tuning)	
PCLKCON (PWM Clock Control)	503
PGAxCAL (PGAx Calibration)	
PGAxCON (PGAx Control)	415
PGxCAP (PWM Generator x Capture)	534
PGxCONH (PWM Generator x Control High)	515
PGxCONL (PWM Generator x Control Low)	514
PGxDC (PWM Generator x Duty Cycle)	530
	000
PGxDCA (PWM Generator x	
Duty Cycle Adjustment)	531
PGxDTH (PWM Generator x Dead-Time High)	533
PGxDTL (PWM Generator x Dead-Time Low)	533
PGxEVTH (PWM Generator x Event High)	527
PGxEVTL (PWM Generator x Event Low)	
	520
PGxIOCONH (PWM Generator x	
	E 2 0
I/O Control High)	520
PGxIOCONL (PWM Generator x	
	F40
I/O Control Low)	519
PGxLEBH (PWM Generator x Leading-Edge	
Blanking High)	529
PGxLEBL (PWM Generator x Leading-Edge	
Blanking Low)	528
PGxPER (PWM Generator x Period)	
PGxPHASE (PWM Generator x Phase)	530
PGxSTAT (PWM Generator x Status)	
PGxTRIGA (PWM Generator x Trigger A)	532
PGxTRIGB (PWM Generator x Trigger B)	
PGxTRIGC (PWM Generator x Trigger C)	532
PGxyPCIH (PWM Generator xy PCI High)	э 2 4
PGxyPCIL (PWM Generator xy PCI Low)	521
, ,	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3175-6