

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	27
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-UFQFN Exposed Pad
Supplier Device Package	36-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp203-e-m5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: 36-PIN UQFN

Pin#	Master Core	Slave Core
1	RP46/PWM1H/RB14	S1RP46 /S1PWM1H/S1RB14
2	RP47/PWM1L/RB15	S1RP47/S1PWM6H/S1PWM1L/S1RB15
3	MCLR	_
4	AN12/IBIAS3/ RP48 /RC0	S1AN10/ S1RP48 /S1RC0
5	AN0/CMP1A/RA0	S1RA0
6	AN1/RA1	S1AN15/S1RA1
7	AN2/RA2	S1AN16/S1RA2
8	AN3/IBIAS0/RA3	S1AN0/S1CMP1A/S1PGA1P1/S1RA3
9	AN4/IBIAS1/RA4	S1MCLR3/S1AN1/S1CMP2A/S1PGA2P1/S1PGA3P2/S1RA4
10	AVDD	AVDD
11	AVss	AVss
12	AN13/ISRC0/ RP49 /RC1	S1ANA1/ S1RP49 /S1RC1
13	AN14/ISRC1/ RP50 /RC2	S1ANA0/ S1RP50 /S1RC2
14	VDD	VDD
15	Vss	Vss
16	CMP1B/ RP51 /RC3	S1AN8/S1CMP3B/ S1RP51 /S1RC3
17	OSCI/CLKI/AN5/RP32/RB0	S1AN5/ S1RP32 /S1RB0
18	OSCO/CLKO/AN6/IBIAS2/RP33/RB1	S1AN4/ S1RP33 /S1RB1
19	DACOUT/AN7/CMP1D/ RP34 /INT0/RB2	\$\overline{\text{S1MCLR2}}\s1an3/\s1anc0/\s1anc1/\s1cMP1D/\s1cMP2D/\s1cMP3D/\s1RP34/\s1\into/\s1RB2
20	PGD2/AN8/ RP35 /RB3	S1PGD2/S1AN18/S1CMP3A/S1PGA3P1/ S1RP35 /S1RB3
21	PGC2/RP36/RB4	S1PGC2/S1AN9/ S1RP36 /S1PWM5L/S1RB4
22	Vss	Vss
23	VDD	VDD
24	PGD3/ RP37 /SDA2/RB5	S1PGD3/ S1RP37 /S1RB5
25	PGC3/RP38/SCL2/RB6	S1PGC3/ S1RP38 /S1RB6
26	TDO/AN9/ RP39 /RB7	\$1MCLR1/\$1AN6/ \$1RP39 /\$1PWM5H/\$1RB7
27	PGD1/AN10/ RP40 /SCL1/RB8	S1PGD1/S1AN7/ S1RP40 /S1SCL1/S1RB8
28	PGC1/AN11/ RP41 /SDA1/RB9	S1PGC1/ S1RP41 /S1SDA1/S1RB9
29	RP52/RC4	S1RP52/S1PWM2H/S1RC4
30	RP53/RC5	S1RP53/S1PWM2L/S1RC5
31	Vss	Vss
32	VDD	VDD
33	TMS/ RP42 /PWM3H/RB10	S1RP42 /S1PWM3H/S1RB10
34	TCK/ RP43 /PWM3L/RB11	S1RP43/S1PWM8H/S1PWM3L/S1RB11
35	TDI/ RP44 /PWM2H/RB12	S1RP44/S1PWM7L/S1RB12
36	RP45/PWM2L/RB13	S1RP45 /S1PWM7H/S1RB13

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

3.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-3 and Figure 3-4.

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

^{2:} The DOSTARTH and DOSTARTL registers are read-only.

3.6.15 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 24-18 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.

Note: Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN14/ISRC1/RP50/RC2; this indicates that AN14 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 24.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 25.0 "DC and AC Device Characteristics Graphs" for additional information.

REGISTER 3-88: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits⁽¹⁾

(see Table 3-33 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits⁽¹⁾

(see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 3-89: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾

(see Table 3-33 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾

(see Table 3-33 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 3-152: C1FLTCONxL: CAN FILTER CONTROL REGISTER x LOW (x = 0 TO 3; a = 0, 4, 8, 12; b = 1, 5, 9, 13)

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTENb	_	_	FbBP4	FbBP3	FbBP2	FbBP1	FbBP0
bit 15							bit 8

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTENa	_	_	FaBP4	FaBP3	FaBP2	FaBP1	FaBP0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 FLTENb: Enable Filter b to Accept Messages bit

1 = Filter is enabled0 = Filter is disabled

bit 14-13 **Unimplemented:** Read as '0'

bit 12-8 **FbBP<4:0>:** Pointer to Object When Filter b Hits bits

11111 to 11000 = Reserved

00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6

. **.** .

00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1

00000 = Reserved; Object 0 is the TX Queue and can't receive messages

bit 7 FLTENa: Enable Filter a to Accept Messages bit

1 = Filter is enabled0 = Filter is disabled

bit 6-5 **Unimplemented:** Read as '0'

bit 4-0 **FaBP<4:0>:** Pointer to Object When Filter a Hits bits

11111 to 11000 = Reserved

00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6

. . .

00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1

00000 = Reserved; Object 0 is the TX Queue and can't receive messages

4.2.2.5 X and Y Data Spaces

The dsPIC33CH128MP508S1 family core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.2.3 MEMORY RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.2.3.1 Key Resources

- "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

TABLE 4-27: SLAVE REMAPPABLE PIN INPUTS (CONTINUED)

RPINRx<15:8> or RPINRx<7:0>	Function	Available on Ports			
60	S1RP60	Port Pin RC12			
61	S1RP61	Port Pin RC13			
62	S1RP62	Port Pin RC14			
63	S1RP63	Port Pin RC15			
64	S1RP64	Port Pin RD0			
65	S1RP65	Port Pin RD1			
66	S1RP66	Port Pin RD2			
67	S1RP67	Port Pin RD3			
68	S1RP68	Port Pin RD4			
69	S1RP69	Port Pin RD5			
70	S1RP70	Port Pin RD6			
71	S1RP71	Port Pin RD7			
72-161	S1RP72-S1RP161	Reserved			
162	Slave On Request PWM3	Internal PWM Signal			
163	Slave Off Request PWM3	Internal PWM Signal			
164	Slave On Request PWM2	Internal PWM Signal			
165	Slave Off Request PWM2	Internal PWM Signal			
166	Slave On Request PWM1	Internal PWM Signal			
167	Slave Off Request PWM1	Internal PWM Signal			
168-169	S1RP168-S1RP169	Reserved			
170	S1RP170	Slave Virtual S1RPV0			
171	S1RP171	Slave Virtual S1RPV1			
172	S1RP172	Slave Virtual S1RPV2			
173	S1RP173	Slave Virtual S1RPV3			
174	S1RP174	Slave Virtual S1RPV4			
175	S1RP175	Slave Virtual S1RPV5			
176	S1RP176	Master Virtual RPV0			
177	S1RP177	Master Virtual RPV1			
178	S1RP178	Master Virtual RPV2			
179	S1RP179	Master Virtual RPV3			
180	S1RP180	Master Virtual RPV4			
181	S1RP181	Master Virtual RPV5			

REGISTER 4-47: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX1R7 | QEINDX1R6 | QEINDX1R5 | QEINDX1R4 | QEINDX1R3 | QEINDX1R2 | QEINDX1R1 | QEINDX1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 QEIHOM1R<7:0>: Assign QEI Home 1 Input (S1QEIHOM1) to the Corresponding S1RPn Pin bits

See Table 4-27.

bit 7-0 QEINDX1R<7:0>: Assign QEI Index 1 Input (S1QEINDX1) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-48: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **U1DSRR<7:0>:** Assign UART1 Data-Set-Ready (\$\overline{S1U1DSR}\$) to the Corresponding \$S1RPn Pin bits

See Table 4-27.

bit 7-0 U1RXR<7:0>: Assign UART1 Receive (S1U1RX) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-68: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to S1RP49 Output Pin bits

(see Table 4-31 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP48R<5:0>: Peripheral Output Function is Assigned to S1RP48 Output Pin bits

(see Table 4-31 for peripheral function numbers)

REGISTER 4-69: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP51R<5:0>: Peripheral Output Function is Assigned to S1RP51 Output Pin bits

(see Table 4-31 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP50R<5:0>: Peripheral Output Function is Assigned to S1RP50 Output Pin bits

(see Table 4-31 for peripheral function numbers)

REGISTER 4-101: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	DIFF1	SIGN1	DIFF0	SIGN0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3 and bit 1 DIFF<1:0>: Differential-Mode for Corresponding Analog Inputs bits

(odd) 1 = Channel is differential

0 = Channel is single-ended

bit 2 and bit 0 SIGN<1:0>: Output Data Sign for Corresponding Analog Inputs bits

(even) 1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 6-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER (MASTER)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TUN	<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits

011111 = Maximum frequency deviation of 1.74% (MHz)

011110 = Center frequency + 1.693% (MHz)

. .

000001 = Center frequency + 0.047% (MHz)

000000 = Center frequency (8.00 MHz nominal)

111111 = Center frequency – 0.047% (MHz)

. .

100001 = Center frequency - 1.693% (MHz)

100000 = Minimum frequency deviation of -1.74% (MHz)

Example 6-4 illustrates code for using the PLL (50 MIPS) with the Primary Oscillator.

EXAMPLE 6-4: CODE EXAMPLE FOR USING MASTER PLL (75 MIPS) WITH PRIMARY OSCILLATOR (POSC)

```
//{
m code} example for 70 MIPS system clock using POSC with 10 MHz external crystal
// Select Internal FRC at POR
// Select FRC on POR
#pragma config FNOSC = FRC
                                         // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config IESO = OFF
/// Enable Clock Switching and Configure POSC in XT mode
#pragma config POSCMD = XT
#pragma config FCKSM = CSECMD
       main()
       // Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
       CLKDIVbits.PLLPRE = 1; // N1=1
                                        // M = 100
       PLLFBDbits.PLLFBDIV = 100;
       PLLDIVbits.POST1DIV = 5;
                                        // N2=5
       PLLDIVbits.POST2DIV = 1;
                                         // N3=1
       // Initiate Clock Switch to Primary Oscillator with PLL (NOSC=0b011)
       __builtin_write_OSCCONH(0x03);
       __builtin_write_OSCCONL(OSCCON | 0x01);
       // Wait for Clock switch to occur
       while (OSCCONbits.OSWEN! = 0);
       // Wait for PLL to lock
       while (OSCCONbits.LOCK!= 1);
Note: FPLLO = FPLLI * M/(N1 * N2 * N3); FPLLI = 10; M = 150; N1 = 1; N2 = 5; N3 = 1;
      so FPLLO = 10 * 100/(1 * 5 * 1) = 300 MHz or 75 MIPS.
```

REGISTER 11-8: SLPxCONH: DACx SLOPE CONTROL HIGH REGISTER

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
SLOPEN	_	_	_	HME ⁽¹⁾	TWME ⁽²⁾	PSE	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 15 SLOPEN: Slope Function Enable/On bit

1 = Enables slope function

0 = Disables slope function; slope accumulator is disabled to reduce power consumption

bit 14-12 **Unimplemented:** Read as '0'

bit 11 **HME:** Hysteretic Mode Enable bit⁽¹⁾

1 = Enables Hysteretic mode for DACx0 = Disables Hysteretic mode for DACx

bit 10 **TWME:** Triangle Wave Mode Enable bit⁽²⁾

1 = Enables Triangle Wave mode for DACx0 = Disables Triangle Wave mode for DACx

bit 9 **PSE:** Positive Slope Mode Enable bit

1 = Slope mode is positive (increasing)

0 = Slope mode is negative (decreasing)

bit 8-0 **Unimplemented:** Read as '0'

Note 1: HME mode requires the user to disable the slope function (SLOPEN = 0).

2: TWME mode requires the user to enable the slope function (SLOPEN = 1).

REGISTER 12-2: QEIXIOCL: QEIX I/O CONTROL LOW REGISTER (CONTINUED)

bit 6 IDXPOL: INDXx Input Polarity Select bit

1 = Input is inverted0 = Input is not inverted

bit 5 QEBPOL: QEBx Input Polarity Select bit

1 = Input is inverted0 = Input is not inverted

bit 4 QEAPOL: QEAx Input Polarity Select bit

1 = Input is inverted0 = Input is not inverted

bit 3 **HOME:** Status of HOMEx Input Pin after Polarity Control bit (read-only)

1 = Pin is at logic '1' if the HOMPOL bit is set to '0'; pin is at logic '0' if the HOMPOL bit is set to '1' 0 = Pin is at logic '0' if the HOMPOL bit is set to '0'; pin is at logic '1' if the HOMPOL bit is set to '1'

bit 2 INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only)

1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1' 0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'

bit 1 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)

- 1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'
- 0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'

bit 0 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)

- 1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'
- 0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'

REGISTER 13-16: UxSCINT: UARTX SMART CARD INTERRUPT REGISTER

U-0	U-0	HS/R/W-0	HS/R/W-0	U-0	HS/R/W-0	HS/R/W-0	HS/R/W-0
_	_	RXRPTIF	TXRPTIF	_	BTCIF	WTCIF	GTCIF
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	_	RXRPTIE	TXRPTIE	_	BTCIE	WTCIE	GTCIE
bit 7							bit 0

Legend: HS = Hardware Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13 RXRPTIF: Receive Repeat Interrupt Flag bit

1 = Parity error has persisted after the same character has been received five times (four retransmits)

0 = Flag is cleared

bit 12 TXRPTIF: Transmit Repeat Interrupt Flag bit

1 = Line error has been detected after the last retransmit per TXRPT<1:0>

0 = Flag is cleared

bit 11 Unimplemented: Read as '0'

bit 10 BTCIF: Block Time Counter Interrupt Flag bit

1 = Block Time Counter has reached 0

0 = Block Time Counter has not reached 0

bit 9 WTCIF: Waiting Time Counter Interrupt Flag bit

1 = Waiting Time Counter has reached 0

0 = Waiting Time Counter has not reached 0

bit 8 GTCIF: Guard Time Counter Interrupt Flag bit

1 = Guard Time Counter has reached 0

0 = Guard Time Counter has not reached 0

bit 7-6 **Unimplemented:** Read as '0'

bit 5 RXRPTIE: Receive Repeat Interrupt Enable bit

1 = An interrupt is invoked when a parity error has persisted after the same character has been

received five times (four retransmits)

0 = Interrupt is disabled

bit 4 **TXRPTIE:** Transmit Repeat Interrupt Enable bit

1 = An interrupt is invoked when a line error is detected after the last retransmit per TXRPT<1:0> has

been completed

0 = Interrupt is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2 BTCIE: Block Time Counter Interrupt Enable bit

1 = Block Time Counter interrupt is enabled

0 = Block Time Counter interrupt is disabled

bit 1 WTCIE: Waiting Time Counter Interrupt Enable bit

1 = Waiting Time Counter interrupt is enabled

0 = Waiting Time Counter Interrupt is disabled

bit 0 GTCIE: Guard Time Counter interrupt enable bit

1 = Guard Time Counter interrupt is enabled

0 = Guard Time Counter interrupt is disabled

REGISTER 16-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

bit 4 PS: SENTx Module Clock Prescaler (divider) bits

1 = Divide-by-4
0 = Divide-by-1

bit 3 **Unimplemented:** Read as '0'

bit 2-0 NIBCNT<2:0>: Nibble Count Control bits

111 = Reserved; do not use

110 = Module transmits/receives six data nibbles in a SENT data pocket
101 = Module transmits/receives five data nibbles in a SENT data pocket
100 = Module transmits/receives four data nibbles in a SENT data pocket
011 = Module transmits/receives three data nibbles in a SENT data pocket
010 = Module transmits/receives two data nibbles in a SENT data pocket
001 = Module transmits/receives one data nibble in a SENT data pocket

000 = Reserved; do not use

Note 1: This bit has no function in Receive mode (RCVEN = 1).

2: This bit has no function in Transmit mode (RCVEN = 0).

18.0 CONFIGURABLE LOGIC CELL (CLC)

Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (DS70005298) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

- 2: The CLC is identical for both Master core and Slave core (where the x represents the number of the specific module being addressed in Master or Slave).
- 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device. The Master and Slave are CLC1 and CLC2.

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Table 18-1 shows an overview of the module.

TABLE 18-1: CLC MODULE OVERVIEW

	Number of CLC Modules	ldentical (Modules)		
Master	4	Yes		
Slave	4	Yes		

Figure 18-3 shows the details of the data source multiplexers and Figure 18-2 shows the logic input gate connections.

FIGURE 18-1: CLCx MODULE

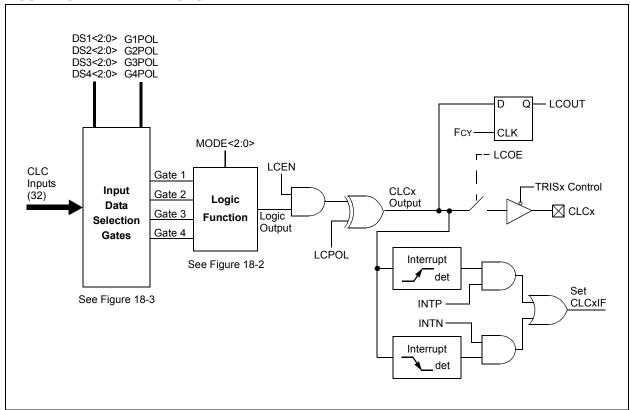


TABLE 24-7: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (MASTER RUN/SLAVE SLEEP)

DC CHARACTERISTICS	Master (Run) + Slave (Sleep)		(unless o	Operating Co therwise stat temperature	•				
Parameter No.	Тур.	Max.	Units Condition			itions			
Operating Current (IDD) ⁽¹⁾									
DC20b	7.9	9.8	mA	-40°C		10 MIPS (N = 1, N2 = 5,			
	8.0	13.4	mA	+25°C	3.3V	N3 = 2, M = 50,			
	8.2	19.5	mA	+85°C	3.3V	Fvco = 400 MHz,			
	12.2	26.3	mA	+125°C		FPLLO = 40 MHz)			
DC21b	10.3	12.4	mA	-40°C		20 MIPS (N = 1, N2 = 5,			
	10.5	16.0	mA	+25°C	3.3V	N3 = 1, M = 50, Fvco = 400 MHz,			
	10.6	22.1	mA	+85°C					
	14.6	28.7	mA	+125°C		FPLLO = 80 MHz)			
DC22b	14.2	16.5	mA	-40°C		40 MIPS (N = 1, N2 = 3,			
	14.4	20.3	mA	+25°C	3.3V	N3 = 1, M = 60,			
	14.5	26.3	mA	+85°C	3.30	Fvco = 480 MHz, Fpllo = 160 MHz)			
	18.4	32.6	mA	+125°C					
DC23b	22.3	25.4	mA	-40°C		70 MIPS (N = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)			
	22.5	29.4	mA	+25°C	3.3V				
	22.4	34.9	mA	+85°C	3.3V				
	26.4	40.7	mA	+125°C					
DC24b	25.6	29.0	mA	-40°C		90 MIPS (N = 1, N2 = 2,			
	25.8	33.1	mA	+25°C	3.3V	N3 = 1, M = 90,			
	25.7	38.2	mA	+85°C	3.30	Fvco = 720 MHz, Fpllo = 360 MHz)			
	29.4	43.8	mA	+125°C					

- **Note 1:** IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:
 - FIN = 8 MHz, FPFD = 8 MHz
 - · CLKO is configured as an I/O input pin in the Configuration Word
 - · All I/O pins are configured as output low
 - MCLR = VDD, WDT and FSCM are disabled
 - · CPU, SRAM, program memory and data memory are operational
 - · No peripheral modules are operating or being clocked (all defined PMDx bits are set)
 - CPU is executing while(1) statement
 - · JTAG is disabled

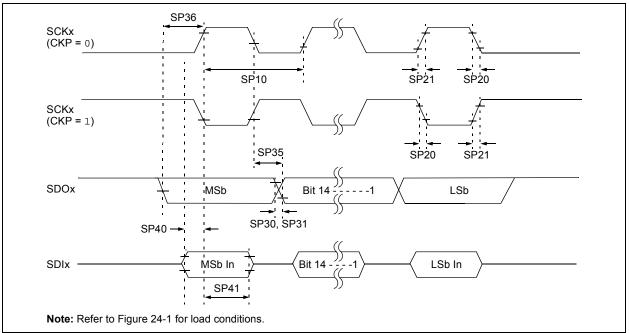
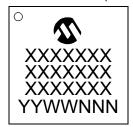


TABLE 24-36: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS

TIMING REGUINEMENTS								
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No. Symbol Characteristic ⁽¹⁾		Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	_	_	15	MHz	Using PPS pins	
			_	_	40	MHz	SPI2 dedicated pins	
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 3)	
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 3)	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 3)	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 3)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns		
SP36	TdoV2sc,	SDOx Data Output Setup	30	_	_	ns	Using PPS pins	
	TdoV2scL	to First SCKx Edge	3	_	_	ns	SPI2 dedicated pins	
SP40	TdiV2scH,	Setup Time of SDIx Data	30			ns	Using PPS pins	
TdiV2scL	TdiV2scL	Input to SCKx Edge	20			ns	SPI2 dedicated pins	
SP41	TscH2diL,	Hold Time of SDIx Data	30	_		ns	Using PPS pins	
	TscL2diL	Input to SCKx Edge	15	_	_	ns	SPI2 dedicated pins	

Note 1: These parameters are characterized but not tested in manufacturing.

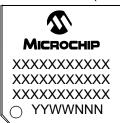
- 2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.
- 3: Assumes 50 pF load on all SPIx pins.


25.1 Package Marking Information (Continued)

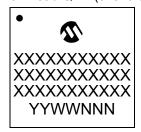
48-Lead TQFP (7x7 mm)

Example

CH64MP 2041810 017


48-Lead UQFN (6x6 mm)

Example


64-Lead TQFP (10x10x1 mm)

Example

64-Lead QFN (9x9x0.9 mm)

Example

80-Lead TQFP (12x12x1 mm)

Example

