

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp206-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 6.0 "Oscillator with High-Frequency PLL") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

FIGURE 2-4: INTERLEAVED PFC

2.8 Targeted Applications

- Power Factor Correction (PFC):
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters:
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
- Resonant Converters
- · DC/AC:
 - Half/Full-Bridge Inverter
 - Resonant Inverter
- Motor Control
 - BLDC
 - PMSM
 - SR
 - ACIM

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

3.3.3.1 ECC Fault Injection

To test Fault handling, an EEC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies it prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to it being written into the target Flash and will cause an EEC error on subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load Flash target address into the ECCADDR register.
- Select 1st Fault bit determined by FLT1PTRx (ECCCONH<7:0>). The target bit is inverted to create the Fault.
- If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH<15:8>), otherwise set to all '1's.
- 4. Write the NVMKEY unlock sequence.
- 5. Enable the ECC Fault injection logic by setting the FLTINJ bit (ECCCONL<0>)
- 6. Perform a read or write to the Flash target address.

3.3.4 CONTROL REGISTERS

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADRL/H.

The NVMCON register (Register 3-4) selects the operation to be performed (page erase, word/row program, Inactive Partition erase) and initiates the program or erase cycle.

NVMKEY (Register 3-7) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADR and NVMADRU. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADRL/H register (location of first element in row programming data).

TABLE 3-34: PORTA REGISTER SUMMARY

ANSELA	—				—		—					ANSELA<4:0>		
TRISA	_	—	—	_	—		—	_	_	_	_	TRISA<4:0>		
PORTA	—	—	—	—	—		—	_	_	_	_	RA<4:0>		
LATA	—	—	—	—	—		—	_		_	_	LATA<4:0>		
ODCA	_	—	—	—	—		—	_		_	_	ODCA<4:0>		
CNPUA	—	—	—	—	—		—	_	_	_	_	CNPUA<4:0>		
CNPDA	—	—	—	—	—		—	_		_	_	CNPDA<4:0>		
CNCONA	ON	—	—	—	CNSTYLE		—	_		_	_			
CNEN0A	—	—	—	_	—		—	_		_	_	CNEN0A<4:0>		
CNSTATA	—	—	—	_	—		—	_		_	_	CNSTATA<4:0>		
CNEN1A	_	_	_		_	_	_	_	_	_	_	CNEN1A<4:0>		
CNFA	_	—	_	_	_	_	—	_	_	_	_	CNFA<4:0>		

TABLE 3-35: PORTB REGISTER SUMMARY

ANSELB	_	—	—	_	_	_	A	NSELB<9:7	>	_	_	_		ANSEL	B<3:0>	
TRISB							TR	ISB<15:0>								
PORTB							F	RB<15:0>								
LATB							LA	ATB<15:0>								
ODCB		ODCB<15:0>														
CNPUB	CNPUB<15:0>															
CNPDB							CN	PDB<15:0>								
CNCONB	ON	—	_	_	CNSTYLE	_	_	—	—			_	_	_	_	_
CNEN0B	CNEN0<15:0>															
CNSTATB							CNS	TATB<15:0	>							
CNEN1B							CNE	EN1B<15:0>	•							
CNFB							CN	NFB<15:0>								

Legend:							
bit 7							bit 0
SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
R/W-0							
bit 15							bit 8
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
R/W-0							

REGISTER 3-57: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 3-30.

 bit 7-0
 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-58: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CAN1RXR7 | CAN1RXR6 | CAN1RXR5 | CAN1RXR4 | CAN1RXR3 | CAN1RXR2 | CAN1RXR1 | CAN1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CAN1RXR<7:0>: Assign CAN1 Input (CAN1RX) to the Corresponding RPn Pin bits See Table 3-30.

RP49R5 RP49R4 RP49R3 RP49R2 RP49R1 RP49 bit 15 RV-0 R/W-0	W-0
bit 15 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — RP48R5 RP48R4 RP48R3 RP48R2 RP48R1 RP48 bit 7	19R0
U-0 U-0 R/W-0 R/W	bit 8
U-0 U-0 R/W-0 R/W	
— — RP48R5 RP48R4 RP48R3 RP48R2 RP48R1 RP48 bit 7	W-0
bit 7	48R0
	bit 0
Legend:	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	

REGISTER 3-76: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 3-33 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP48R<5:0>: Peripheral Output Function is Assigned to RP48 Output Pin bits

(see Table 3-33 for peripheral function numbers)

REGISTER 3-77: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP51R<5:0>:** Peripheral Output Function is Assigned to RP51 Output Pin bits (see Table 3-33 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP50R<5:0>:** Peripheral Output Function is Assigned to RP50 Output Pin bits (see Table 3-33 for peripheral function numbers)

REGISTER 3-189: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PTGT1L	.IM<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGT1LIM<7:0>										
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit		U = Unimplem	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is u			nown				

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 3-190: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

'0' = Bit is cleared

Note 1: These bits are read-only when the module is executing Step commands.

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

Row programming is performed by first loading 128 instructions into data RAM and then loading the address of the first instruction in that row into the NVMSRCADRL/H register. Once the write has been initiated, the device will automatically load two instructions into the write latches, and write them to the program space destination address defined by the NVMADR/U registers.

The operation will increment the NVMSRCADRL/H and the NVMADR/U registers until all double instruction words have been programmed.

The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 4-14 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

FIGURE 4-14: UNCOMPRESSED/ COMPRESSED FORMAT

4.3.3 MASTER TO SLAVE IMAGE LOADING (MSIL)

Master to Slave Image Loading allows the Master user application code to transfer the Slave image stored in the Master Flash to the Slave PRAM. This is the only supported method for programming the Slave PRAM in a final user application.

The LDSLV instruction is executed by the Master user application to transfer a single 24-bit instruction from the Master Flash address, defined by Ws<14:0> (DSRPAG), to the Slave PRAM address, defined by Wd<14:0> (DSWPAG).

The LDSLV instruction should be executed in pairs to ensure correct ECC value generation for each double instruction word that is loaded into the Slave PRAM. The Slave image instruction found at a given even address should be loaded first. This will be the lower instruction word of a 48-bit double instruction word. The upper instruction word should then be loaded from the following odd address. After the pair of LDSLV instructions is executed by the Master user application, both 24-bit Slave image instructions and the generated 7-bit ECC value are actually loaded into the PRAM destination address locations.

The VFSLV instruction allows the Master user application to verify that the PRAM has been loaded correctly. The VFSLV instruction compares the 24-bit instruction word stored in the Master Flash address, defined by Ws<14:0> (DSRPAG), to the 24 bit instruction written to the Slave PRAM address, defined by Wd<14:0> (DSWPAG).

The VFSLV instruction should also be executed in pairs. The lower instruction word found on a given even address should be verified first. The upper instruction word found in the following odd address should then be verified. Then, the Slave image instruction pair read from the Master Flash will have a valid generated ECC value. This full double instruction word with ECC is then compared to the 55-bit value that was actually loaded into the PRAM destination locations. The entire Slave image may be loaded into the PRAM first and then subsequently verified. To make this process simpler, the Microchip libpic30.h library has implemented a routine which can be called once to either load or verify the entire Slave image.

The __program_slave(core#, verify, &slave_image) routine uses the "verify" parameter to determine if the routine will run using LDSLV instructions or VFSLV instructions. A '0' will load the entire Slave image to the PRAM and a '1' will verify the entire Slave image in the PRAM. An example of how this routine may be used to load and verify the contents of the Slave PRAM is shown in Example 4-2.

REGISTER 4-13: ECCSTATL: ECC SYSTEM STATUS DISPLAY REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			SECC)UT<7:0>							
bit 15 bit											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SECIN<7:0>										
bit 7							bit 0				
Legend:		C = Clearable	bit	SO = Settable Only bit							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown						iown					

bit 15-8 SECOUT<7:0>: Calculated Single Error Correction Parity Value bits

bit 7-0 SECIN<7:0>: Read Single Error Correction Parity Value bits

Bits are the actual parity value of a PRAM read operation.

REGISTER 4-14: ECCSTATH: ECC SYSTEM STATUS DISPLAY REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
	—	—	_	—	—	DEDOUT	DEDIN				
bit 15 bit 8											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SECSYND<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	= Value at POR '1' = Bit is set		x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 7

bit 9 DEDOUT: Calculated Dual Bit Error Detection Parity bit

bit 8 **DEDIN:** Read Dual Bit Error Detection Parity bit

DEDIN is the actual parity value of a PRAM read operation.

bit 7-0 SECSYND<7:0>: Calculated ECC Syndrome Value bits Indicates the bit location that contains the error. bit 0

REGISTER 4-15: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

TABLE 4-20: SLAVE INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Inte	rrupt Bit Loca	ation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
CND – Change Notice Interrupt D	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
CNE – Change Notice Interrupt E	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>
Reserved	85	77	—	_	—	—
CMP1 – Slave Comparator 1 Interrupt	86	78	0x0000B0	IFS4<14>	IEC4<14>	IPC19<10:8>
CMP2 – Slave Comparator 2 Interrupt	87	79	0x0000B2	IFS4<15>	IEC4<15>	IPC19<14:12>
CMP3 – Slave Comparator 3 Interrupt	88	80	0x0000B4	IFS5<0>	IEC5<0>	IPC20<2:0>
Reserved	89	81	0x0000B6		_	_
PTG0 – PTG Int. Trigger Master 0	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
PTG1 – PTG Int. Trigger Master 1	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
PTG2 – PTG Int. Trigger Master 2	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>
PTG3 – PTG Int. Trigger Master 3	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>
Reserved	94-97	86-89	0x0000C0	—	—	—
ADC – ADC Global Interrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
ADCAN0 – ADC AN0 Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
ADCAN1 – ADC AN1 Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
ADCAN2 – ADC AN2 Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
ADCAN3 – ADC AN3 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
ADCAN4 – ADC AN4 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
ADCAN5 – ADC AN5 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
ADCAN6 – ADC AN6 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
ADCAN7 – ADC AN7 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
ADCAN8 – ADC AN8 Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
ADCAN9 – ADC AN9 Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
ADCAN10 – ADC AN10 Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>
ADCAN11 – ADC AN11 Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>
ADCAN12 – ADC AN12 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
ADCAN13 – ADC AN13 Interrupt	112	104	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
ADCAN14 – ADC AN14 Interrupt	113	105	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
ADCAN15 – ADC AN15 Interrupt	114	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>
ADCAN16 – ADC AN16 Interrupt	115	107	0x0000EA	IFS6<11>	IEC6<11>	IPC26<14:12>
ADCAN17 – ADC AN17 Interrupt	116	108	0x0000EC	IFS6<12>	IEC6<12>	IPC27<2:0>
ADCAN18 – ADC AN18 Interrupt	117	109	0x0000EE	IFS6<13>	IEC6<13>	IPC27<6:4>
ADCAN19 – ADC AN19 Interrupt	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
ADCAN20 – ADC AN20 Interrupt	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
Reserved	120-122	112-114	0x0000F4-0x0000F8	—	—	—
ADFLT – ADC Fault	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
ADCMP0 – ADC Digital Comparator 0	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
ADCMP1 – ADC Digital Comparator 1	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>
ADCMP2 – ADC Digital Comparator 2	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>
ADCMP3 – ADC Digital Comparator 3	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12>
ADFLTR0 – ADC Oversample Filter 0	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>
ADFLTR1 – ADC Oversample Filter 1	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>
ADFLTR2 – ADC Oversample Filter 2	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>
ADFLTR3 – ADC Oversample Filter 3	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12>
CLC1P – CLC1 Positive Edge	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>
CLC2P – CLC2 Positive Edge	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>

REGISTER 4-101: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	_	_	_	_	_				
bit 15		•				•	bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	DIFF1	SIGN1	DIFF0	SIGN0			
bit 7 bit 0										
Legend:										
R = Readable I	oit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15-4	Unimplement	ted: Read as 'o)'							
bit 3 and bit 1	DIFF<1:0>: D	ifferential-Mode	e for Correspor	nding Analog Ir	nputs bits					
(odd)	1 = Channel is	s differential								
	0 = Channel is	s single-ended								
bit 2 and bit 0	SIGN<1:0>: Output Data Sign for Corresponding Analog Inputs bits									
(even)	1 = Channel o	output data is si	igned							
	0 = Channel c	output data is u	nsigned							

REGISTER 4-106: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 19; n = 0 TO 4) (CONTINUED)

- bit 4-0 **TRGSRCx<4:0>:** Common Interrupt Enable for Corresponding Analog Inputs bits (TRGSRC0 to TRGSRC20 – Even) 11111 = ADTRG31 (PPS input)
 - 11110 = Master PTG 11101 = Slave CLC1
 - 11100 = Master CLC1
 - 11011 = Reserved
 - 11010 = Reserved
 - 11001 = Master PWM3 Trigger 2
 - 11000 = Master PWM1 Trigger 2
 - 10111 = Slave SCCP4 PWM/IC interrupt
 - 10110 = Slave SCCP3 PWM/IC interrupt
 - 10101 = Slave SCCP2 PWM/IC interrupt
 - 10100 = Slave SCCP1 PWM/IC interrupt
 - 10011 = Reserved
 - 10010 = Reserved
 - 10001 = Reserved
 - 10000 = Reserved
 - 01111 = Slave PWM8 Trigger 1
 - 01110 = Slave PWM7 Trigger 1
 - 01101 = Slave PWM6 Trigger 1
 - 01100 = Slave PWM5 Trigger 1
 - 01011 = Slave PWM4 Trigger 2
 - 01010 = Slave PWM4 Trigger 1
 - 01001 = Slave PWM3 Trigger 2
 - 01000 = Slave PWM3 Trigger 1
 - 00111 = Slave PWM2 Trigger 2
 - 00110 = Slave PWM2 Trigger 1
 - 00101 = Slave PWM1 Trigger 2
 - 00100 = Slave PWM1 Trigger 1
 - 00011 = Reserved
 - 00010 = Level software trigger
 - 00001 = Common software trigger
 - 00000 = No trigger is enabled

10.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base, upon an event, on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 10-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 10-4.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode					
0000	0	Edge Detect (16-bit capture)					
0000	1	Edge Detect (32-bit capture)					
0001	0	Every Rising (16-bit capture)					
0001	1	Every Rising (32-bit capture)					
0010	0	Every Falling (16-bit capture)					
0010	1	Every Falling (32-bit capture)					
0011	0	Every Rising/Falling (16-bit capture)					
0011	1	Every Rising/Falling (32-bit capture)					
0100	0	Every 4th Rising (16-bit capture)					
0100	1	Every 4th Rising (32-bit capture)					
0101	0	Every 16th Rising (16-bit capture)					
0101	1	Every 16th Rising (32-bit capture)					

TABLE 10-4: INPUT CAPTURE x MODES

REGISTER 14-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

11-0	11_0	11-0	11-0	11-0	11-0	[]_0	U_0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
DIT 15							bit 8
U-0	<u>U-0</u>	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				W	LENGTH<4:0>	(1,2)	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
n = Value at POP (1' = Bit is set				·0' = Bit is clea	ared	x = Bit is unkn	own
					area		own
		ted. Deed ee	601				
DIT 15-5	Unimpleme	nteo: Read as		(1.2)			
bit 4-0	WLENGTH<	4:0>: Variable	Word Length	oits ^(1,2)			
	11111 = 32-	bit data					
	11110 = 31-	bit data					
	11101 = 30	bit data					
	11011 = 28-	bit data					
	11011 = 20	bit data					
	11001 = 26-	bit data					
	11000 = 25-	bit data					
	10111 = 24 -	bit data					
	10110 = 23 -	bit data					
	10101 = 22 -	bit data					
	10100 = 21-	bit data					
	10011 = 20-	bit data					
	10010 = 19-	bit data					
	10001 - 16	bit data					
	01111 = 16-	bit data					
	01110 = 15-	bit data					
	01101 = 14 -	bit data					
	01100 = 13 -	bit data					
	01011 = 12 -	bit data					
	01010 = 11 -	bit data					
	01001 = 10-	bit data					
	01000 = 9-b	it data					
	00111 = 8-0	it data					
	00110 = 7-b	it data					
	00100 = 5-b	it data					
	00011 = 4 -b	it data					
	00010 = 3 -b	it data					
	00001 = 2-b	it data					
	00000 = Se e	e MODE<32.1	6> bits in SPIx	CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FS10SCSEL	—	_	-	_	—	—	—	—	—	S1IESO	—	—	—	_	S1FN	NOSC<2:0>	
FS1OSC	_	_	_	_	_	_	_	_	r(1)	S1FCK	SM<1:0>	_	_	_	S10SCI0FNC	_	_
FS1WDT	_	S1FWDTEN		S18	SWDTPS<4:0)>		S1WDTV	VIN<1:0>	S1WINDIS	S1RCLKS	EL<1:0>		S1	RWDTPS<4:0>		
FS1POR	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
FS1ICD	_	S1NOBTSWP	_	S1ISOLAT	_	_	_	_	_	_۲ (1)	_	_	_	_	_	S1ICS	S<1:0>
FS1DEVOPT	_	S1MSRE	S1SSRE	S1SPI1PIN	_	_	_	_	_	-	_	_	_	S1ALTI2C1	_	_	_
FS1ALTREG	_	_		S1CTXT4<2:0>		_	S	1CTXT3<2:0	>	—	S	1CTXT2<2:0	>	_	S1C	TXT1<2:0>	

Legend: — = unimplemented bit, read as '1'; r = reserved bit.

Note 1: Bit is reserved, maintain as '1'.

REGISTER 21-1: FSEC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
	—		_	—		_	—				
bit 23							bit 16				
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1				
AIVTDIS		—		CSS2	CSS1	CSS0	CWRP				
bit 15							bit 8				
R/PO-1	R/PO-1	R/PO-1	11-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1				
GSS1	GSS0	GWRP	_	BSEN	BSS1	BSS0	BWRP				
bit 7		0			2001		bit 0				
							J				
Legend: PO = Program Once bit											
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 23-16	23-16 Unimplemented: Read as '1'										
bit 15	AIVTDIS: Alternate Interrupt Vector Table Disable bit										
	1 = Disables AIVI 0 = Enables AIVT										
bit 14-12	Unimplemented: Read as '1'										
bit 11-9	CSS<2.0>: Configuration Segment Code Elash Protection Level hits										
	111 = No protection (other than CWRP write protection)										
	110 = Standa	ard security									
	10x = Enhan	ced security									
bit 8	CWRP: Confi	auration Seame	ent Write-Prote	ect bit							
	1 = Configura	ation Segment i	s not write-pro	tected							
	0 = Configura	ation Segment i	s write-protect	ed							
bit 7-6	GSS<1:0>: G	eneral Segmen	t Code Flash I	Protection Leve	el bits						
	11 = No prote	ection (other tha	n GWRP write	e protection)							
	10 = Standard0x = High sec	curity									
bit 5	GWRP: Gene	eral Segment W	rite-Protect bit								
	1 = User prog	gram memory is	not write-prot	tected							
	0 = User prog	gram memory is	s write-protecte	ed							
bit 4	Unimplemen	ted: Read as '1	,								
bit 3	BSEN: Boot S	Segment Contro	ol bit								
	\perp = No Boot Sec	Segment iment size is de	termined by B	SI IM<12·0>							
bit 2-1	BSS<1:0>: B	oot Segment Co	ode Flash Prot	tection Level bit	ts						
	11 = No prote	ection (other tha	n BWRP write	protection)							
	10 = Standard	d security		. ,							
h : h O	0x = High sec		Durate et 1.1								
U JIQ	BWKP: Boot	Segment Write-	Protect bit	acted							
	0 = User prog	gram memory is	s write-protecte	ed							

REGISTER 21-31: FS1ALTREG CONFIGURATION REGISTER (SLAVE) (CONTINUED)

- bit 2-0 S1CTXT1<2:0>: Alternate Working Register Set #1 Interrupt Priority Level Selection bits
 - 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 = Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1

TABLE 24-22: ELECTRICAL CHARACTERISTICS: BOR

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Min. ⁽²⁾ Typ. Max.			Conditions			
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.68	2.96	2.99	V	VDD (Note 2)			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-23: PROGRAM MEMORY

Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions				
		Program Flash Memory								
D130	Ep	Cell Endurance	10,000	—	E/W	-40°C to +125°C				
D131	Vpr	VDD for Read	3.0	3.6	V					
D132b	VPEW	VDD for Self-Timed Write	3.0	3.6	V					
D134	TRETD	Characteristic Retention	20	_	Year	Provided no other specifications are violated, -40°C to +125°C				
D137a	TPE	Page Erase Time	15.3	16.82	ms	TPE = 128,454 FRC cycles (Note 1)				
D138a	Tww	Word Write Time	47.7	52.3	μs	Tww = 400 FRC cycles (Note 1)				
D139a	Trw	Row Write Time	2.0	2.2	ms	TRW = 16,782 FRC cycles (Note 1)				

Note 1: Other conditions: FRC = 8 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 24-29) and the value of the FRC Oscillator Tuning register (see Register 6-4). For complete details on calculating the Minimum and Maximum time, see **Section 3.3.1 "Flash Programming Operations**".

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-385B Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	Α	0.45 0.50		0.55		
Standoff	A1	0.00 0.02		0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.55	4.65	4.75		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.55	4.65	4.75		
Exposed Pad Corner Chamfer	Р	-	0.35	-		
Terminal Width	b	0.25 0.30		0.35		
Corner Anchor Pad	b1	0.35	0.40	0.43		
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25		
Terminal Length	L	0.30 0.40		0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-385B Sheet 2 of 2