

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

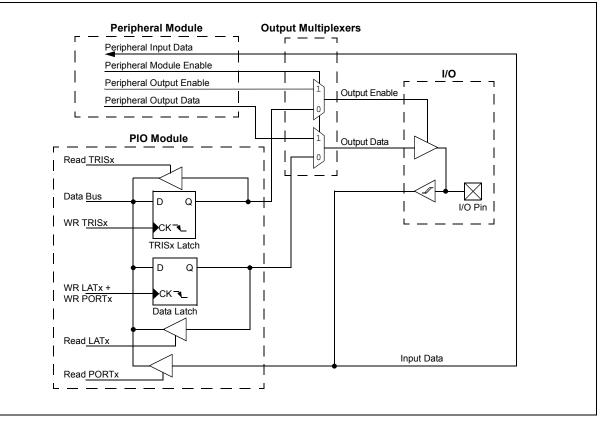
Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K × 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp206-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	—	—	—	CAN	NAE
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
	_	—	DOOVR	—	—	—	APLL
bit 7							bit 0

REGISTER 3-20: INTCON3: INTERRUPT CONTROL REGISTER 3

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-10	Unimplemented: Read as '0'
bit 9	CAN: CAN Address Error Soft Trap Status bit
	 1 = CAN address error soft trap has occurred 0 = CAN address error soft trap has not occurred
bit 8	NAE: NVM Address Error Soft Trap Status bit
	 1 = NVM address error soft trap has occurred 0 = NVM address error soft trap has not occurred
bit 7-5	Unimplemented: Read as '0'
bit 4	DOOVR: DO Stack Overflow Soft Trap Status bit
	 1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred
bit 3-1	Unimplemented: Read as '0'
bit 0	APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit 1 = APLL lock soft trap has occurred 0 = APLL lock soft trap has not occurred

FIGURE 3-19: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

REGISTER 3-24: TRISX: OUTPUT ENABLE FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	Sx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **TRISx<15:0**: Output Enable for PORTx bits 1 = LATx[n] is not driven on the PORTx[n] pin

0 = LATx[n] is driven on the PORTx[n] pin

REGISTER 3-25: PORTX: INPUT DATA FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
1.7.4.4	10.00-1	10/00-1		x<7:0>	10/00-1	10/00-1	10/00-1
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is se		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

Input Name ⁽¹⁾	Function Name	Register	Register Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
External Interrupt 3	INT3	RPINR1	INT3R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CK<7:0>
SCCP Timer1	TCKI1	RPINR3	TCKI1R<7:0>
SCCP Capture 1	ICM1	RPINR3	ICM1R<7:0>
SCCP Timer2	TCKI2	RPINR4	TCKI2R<7:0>
SCCP Capture 2	ICM2	RPINR4	ICM2R<7:0>
SCCP Timer3	TCKI3	RPINR5	TCKI3R<7:0>
SCCP Capture 3	ICM3	RPINR5	ICM3R<7:0>
SCCP Timer4	TCKI4	RPINR6	TCKI4R<7:0>
SCCP Capture 4	ICM4	RPINR6	ICM4R<7:0>
SCCP Timer5	TCKI5	RPINR7	TCKI5R<7:0>
SCCP Capture 5	ICM5	RPINR7	ICM5R<7:0>
SCCP Timer6	TCKI6	RPINR8	TCKI6R<7:0>
SCCP Capture 6	ICM6	RPINR8	ICM6R<7:0>
SCCP Timer7	TCKI7	RPINR9	TCKI7R<7:0>
SCCP Capture 7	ICM7	RPINR9	ICM7R<7:0>
SCCP Timer8	TCKI8	RPINR10	TCKI8R<7:0>
SCCP Capture 8	ICM8	RPINR10	ICM8R<7:0>
SCCP Fault A	OCFA	RPINR11	OCFAR<7:0>
SCCP Fault B	OCFB	RPINR11	OCFBR<7:0>
PWM Input 8	PCI8	RPINR12	PCI8R<7:0>
PWM Input 9	PCI9	RPINR12	PCI9R<7:0>
PWM Input 10	PCI10	RPINR13	PCI10R<7:0>
PWM Input 11	PCI11	RPINR13	PCI11R<7:0>
QEI Input A	QEIA1	RPINR14	QEIA1R<7:0>
QEI Input B	QEIB1	RPINR14	QEIB1R<7:0>
QEI Index 1 Input	QEINDX1	RPINR15	QEINDX1R<7:0>
QEI Home 1 Input	QEIHOM1	RPINR15	QEIHOM1R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Data-Set-Ready	U1DSR	RPINR18	U1DSRR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
UART2 Data-Set-Ready	U2DSR	RPINR19	U2DSRR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
Reference Clock Input	REFOI	RPINR21	REFOIR<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
UART1 Clear-to-Send	U1CTS	RPINR23	U1CTSR<7:0>

TABLE 3-31:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

3.6.16 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.16.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 3-134: C1FIFOCONLx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) LOW (CONTINUED)

bit 2	TFERFFIE: Transmit/Receive FIFO Empty/Full Interrupt Enable bit <u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Empty Interrupt Enable 1 = Interrupt is enabled for FIFO empty 0 = Interrupt is disabled for FIFO empty
	<u>TXEN = 0 (FIFO configured as a receive FIFO):</u> Receive FIFO Full Interrupt Enable 1 = Interrupt is enabled for FIFO full 0 = Interrupt is disabled for FIFO full
bit 1	TFHRFHIE: Transmit/Receive FIFO Half Empty/Half Full Interrupt Enable bit <u>TXEN = 1 (FIFO configured as a transmit FIFO):</u> Transmit FIFO Half Empty Interrupt Enable 1 = Interrupt is enabled for FIFO half empty 0 = Interrupt is disabled for FIFO half empty <u>TXEN = 0 (FIFO configured as a receive FIFO):</u> Receive FIFO Half Full Interrupt Enable
	1 = Interrupt is enabled for FIFO half full0 = Interrupt is disabled for FIFO half full
bit 0	TFNRFNIE: Transmit/Receive FIFO Not Full/Not Empty Interrupt Enable bit <u>TXEN = 1 (FIFO configured as a transmit FIFO)</u> : Transmit FIFO Not Full Interrupt Enable 1 = Interrupt is enabled for FIFO not full 0 = Interrupt is disabled for FIFO not full <u>TXEN = 0 (FIFO configured as a receive FIFO)</u> : Receive FIFO Not Empty Interrupt Enable 1 = Interrupt is enabled for FIFO not empty 0 = Interrupt is disabled for FIFO not empty

Note 1: This bit can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-193: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGAI	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	e bit U = Unimplemented bit, read as '0'				

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds the user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGADD command.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 3-194: PTGL0: PTG LITERAL 0 REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGL0<15:8>							
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGL0<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 6-bit value to be written to the CNVCHSEL<5:0> bits (ADCON3L<5:0>) with the PTGCTRL Step command.

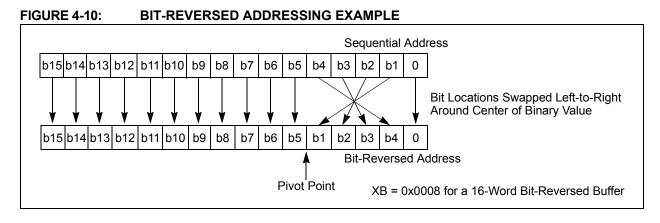
- Note 1: These bits are read-only when the module is executing Step commands.
 - 2: The PTG strobe output is typically connected to the ADC Channel Select register. This allows the PTG to directly control ADC channel switching. See the specific device data sheet for connections of the PTG output.

bit 7

bit 0

VAR				R/W-0	-	R-0	
.,	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
DAMA			DAA/ O	D/0.0	D 0	DAMA	DAMO
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15	1 = Variable e	e Exception Pro exception proce	essing is enab	led			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits			
	 11 = Reserved 10 = DSP engine multiplies are mixed sign 01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed 						
bit 11	EDT: Early DO	Loop Termina	ation Control b	it ⁽¹⁾			
	1 = Terminate 0 = No effect	es executing DO	loop at the e	nd of the curre	ent loop iteration	n	
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	 001 = One DO	DO loops are a					
		o loops are act					
bit 7	1 = Accumula	Saturation En ator A saturatio ator A saturatio	n is enabled				
bit 6	SATB: ACCB	Saturation En	able bit				
		ntor B saturatio Itor B saturatio					
bit 5	SATDW: Data	a Space Write t	from DSP Eng	ine Saturation	Enable bit		
	 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled 						
bit 4	1 = 9.31 satu	cumulator Satu ration (super s ration (normal	aturation)	Select bit			
bit 3	IPL3: CPU Int	terrupt Priority					

REGISTER 4-2: CORCON: CORE CONTROL REGISTER


2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports	I/O Ports		RPINR23	D32	111111111111111111	RPOR8	D90	000000000000
RPCON	D00	0	RPINR37	D4E	11111111	RPOR9	D92	000000000000
RPINR0	D04	11111111	RPINR38	D50	111111111	RPOR10	D94	000000000000
RPINR1	D06	111111111111111111	RPINR42	D58	111111111111111111	RPOR11	D96	000000000000
RPINR2	D08	11111111	RPINR43	D5A	111111111111111111	RPOR12	D98	000000000000
RPINR3	D0A	111111111111111111	RPINR44	D5C	111111111111111111	RPOR13	D9A	000000000000
RPINR4	D0C	111111111111111111	RPINR45	D5E	111111111111111111	RPOR14	D9C	000000000000
RPINR5	D0E	111111111111111111	RPINR46	D60	111111111111111111	RPOR15	D9E	000000000000
RPINR6	D10	111111111111111111	RPINR47	D62	111111111111111111	RPOR16	DA0	000000000000
RPINR11	D1A	111111111111111111	RPOR0	D80	000000000000	RPOR17	DA2	000000000000
RPINR12	D1C	111111111111111111	RPOR1	D82	000000000000	RPOR18	DA4	000000000000
RPINR13	D1E	111111111111111111	RPOR2	D84	000000000000	RPOR19	DA6	000000000000
RPINR14	D20	111111111111111111	RPOR3	D86	000000000000	RPOR20	DA8	000000000000
RPINR15	D22	111111111111111111	RPOR4	D88	000000000000	RPOR21	DAA	000000000000
RPINR18	D28	111111111111111111	RPOR5	D8A	000000000000	RPOR22	DAC	000000000000
RPINR20	D2C	111111111111111111	RPOR6	D8C	000000000000			
RPINR21	D2E	111111111111111111	RPOR7	D8E	000000000000			

TABLE 4-13: SLAVE SFR BLOCK D00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

dsPIC33CH128MP508 FAMILY

TABLE 4-18: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	s	Bit-Reversed Ad				ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

Function	RPnR<5:0>	Output Name
Default PORT	000000	S1RPn tied to Default Pin
S1U1TX	000001	S1RPn tied to UART1 Transmit
S1U1RTS	000010	S1RPn tied to UART1 Request-to-Send
S1SDO1	000101	S1RPn tied to SPI1 Data Output
S1SCK1OUT	000110	S1RPn tied to SPI1 Clock Output
S1SS1OUT	000111	S1RPn tied to SPI1 Slave Select
S1REFCLKO	001110	S1RPn tied to Reference Clock Output
S10CM1	001111	S1RPn tied to SCCP1 Output
S1OCM2	010000	S1RPn tied to SCCP2 Output
S1OCM3	010001	S1RPn tied to SCCP3 Output
S1OCM4	010010	S1RPn tied to SCCP4 Output
S1CMP1	010111	S1RPn tied to Comparator 1 Output
S1CMP2	011000	S1RPn tied to Comparator 2 Output
S1CMP3	011001	S1RPn tied to Comparator 3 Output
S1PWMH4	100010	S1RPn tied to PWM4H Output
S1PWML4	100011	S1RPn tied to PWM4L Output
S1PWMEA	100100	S1RPn tied to PWM Event A Output
S1PWMEB	100101	S1RPn tied to PWM Event B Output
S1QEICMP1	100110	S1RPn tied to QEI Comparator Output
S1CLC1OUT	101000	S1RPn tied to CLC1 Output
S1CLC2OUT	101001	S1RPn tied to CLC2 Output
S1PWMEC	101100	S1RPn tied to PWM Event C Output
S1PWMED	101101	S1RPn tied to PWM Event D Output
MPTGTRG1	101110	Master PTG24 Output
MPTGTRG2	101111	Master PTG25 Output
S1CLC3OUT	110010	S1RPn tied to CLC3 Output

TABLE 4-31: OUTPUT SELECTION FOR REMAPPABLE PINS (S1RPn)

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

4.6.7 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.6.7.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0
Legend:							
						(a)	

REGISTER 4-64: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP41R<5:0>: Peripheral Output Function is Assigned to S1RP41 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP40R<5:0>: Peripheral Output Function is Assigned to S1RP40 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-65: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43	RP43	RP43	RP43	RP43	RP43
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to S1RP43 Output Pin bits (see Table 4-31 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to S1RP42 Output Pin bits (see Table 4-31 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

REGISTER 4-74: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to S1RP61 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to S1RP60 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-75: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	– RP63R5 RP63R4		RP63R3	RP63R2	RP63R1	RP63R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— RP62R5 RP6		RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to S1RP63 Output Pin bits (see Table 4-31 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to S1RP62 Output Pin bits (see Table 4-31 for peripheral function numbers)

x = Bit is unknown

'1' = Bit is set

HS/R/W-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/W-0
CSHRRDY	_	—	—	—	—	CSHREN	CSHRRUN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit	r = Reserved	bit		
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			

'0' = Bit is cleared

bit 15	CSHRRDY: Shared ADC Core Calibration Status Flag bit
	1 = Shared ADC core calibration is finished
	0 = Shared ADC core calibration is in progress
bit 14-11	Unimplemented: Read as '0'
bit 10	Reserved: Maintain as '0'
bit 9	CSHREN: Shared ADC Core Calibration Enable bit
	1 = Shared ADC core calibration bits (CSHRRDY and CSHRRUN) can be accessed by software
	0 = Shared ADC core calibration bits are disabled
bit 8	CSHRRUN: Shared ADC Core Calibration Start bit
	1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared
	automatically by hardware
	0 = Software can start the next calibration cycle
bit 7-0	Unimplemented: Read as '0'

-n = Value at POR

REGISTER 5-5: MSI1MBXnD: MSI1 MASTER MAILBOX n DATA REGISTER (n = 0 to 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MSIMBX	nD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MSIMB)	(nD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-0
MSIMBXnD<15:0>: MSI1 Mailbox n Data bits
When Configuration bit, MBXMx = 1 (programmed):
Mailbox Data Direction: Master read, Slave write; Master MSIMBXnD<15:0> bits become R-0 (a Master
write to MSIMBXnD<15:0> will have no effect).
When Configuration bit, MBXMx = 0 (programmed):
Mailbox Data Direction: Master write, Slave read; Master MSIMBXnD<15:0> bits become R/W-0.

15.4 I²C Control/Status Registers

REGISTER 15-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	HC/R/W-0	R/W-1	R/W-0				
	0-0		SCLREL ⁽¹⁾	-	R/W-0	R/W-0	R/W-0	
I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7	-			-			bit	
Legend:		HC = Hardware	e Clearable bit					
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15 bit 14	1 = Enables f 0 = Disables	Enable bit (writa the I2Cx module the I2Cx module nted: Read as '0	e, and configure e; all I ² C pins a	s the SDAx and		serial port pins	3	
	-							
bit 13		Cx Stop in Idle M		vice enters Idle	mode			
		s module operat CLx Release Cor						
bit 11	0 = Holds the <u>If STREN = 1</u> User software at the beginn address byte <u>If STREN = 0</u> User software data byte tran STRICT : I2C2	e may write '0' to ning of every Sla reception. Hard <u>):</u> e may only write nsmission. Hard x Strict Reserve	 (clock stretch) initiate a clock ave data byte t ware clears at t '1' to release t ware clears at t d Address Rule 	stretch and wri ransmission. H the end of every he clock. Hardv he end of every Enable bit	ardware clears y Slave data by vare clears at t y Slave addres	s at the end of /te reception. he beginning o s byte reception	[:] every Slav f every Slav	
	 STRICT: I2Cx Strict Reserved Address Rule Enable bit 1 = Strict Reserved Addressing is enforced; for reserved addresses, refer to Table 15-2. (In Slave Mode) – The device doesn't respond to reserved address space and addresses falling in that category are NACKed. (In Master Mode) – The device is allowed to generate addresses with reserved address space. 0 = Reserved Addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. 0 = Reserved Addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. (In Master Mode) – Reserved. 							
bit 10		t Slave Address	-					
	-) is a 10-bit Slav) is a 7-bit Slave						
oit 9	DISSLW: Sle	w Rate Control	Disable bit					
		e control is disab e control is enab				disabled for 1	MHz mode)	
		ared to '0' at the	•			ally cleared to '	0' at the end	

2: Automatically cleared to '0' at the beginning of Slave transmission.

REGISTER 21-4: FOSCSEL CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	_	—		_		—	_			
bit 23		·		·		•	bit 16			
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	—	—	—	—	_	—	—			
bit 15							bit 8			
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1			
IESO	—	—	_	—	FNOSC2	FNOSC1	FNOSC0			
bit 7							bit 0			
Legend:		PO = Program	n Once bit							
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 23-8	Unimplemen	ted: Read as '1	,							
bit 7	IESO: Interna	I External Swite	chover bit							
				nabled (Two-Sp isabled (Two-Sp						
bit 6-3		ted: Read as '1			·	,				
bit 2-0	-	: Initial Oscillat		ection bits						
	111 = Interna	I Fast RC (FRC) Oscillator wi	ith Postscaler						
	111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Backup Fast RC (BFRC)									
		101 = LPRC Oscillator								
		100 = Reserved								
				HSPLL, ECPL	L)					
		y (XT, HS, EC) LEast RC Oscil								
	001 = Internal Fast RC Oscillator with PLL (FRCPLL) 000 = Fast RC (FRC) Oscillator									

000 = Fast RC (FRC) Oscillator

REGISTER 21-14: FDEVOPT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
_	—	—		—	—		—				
bit 23							bit 16				
·											
U-1	U-1	R/PO-1	U-1	U-1	R/PO-1	r-1	r-1				
	—	SPI2PIN ⁽¹⁾			SMBEN		_				
bit 15		bit 8									
r-1	U-1	U-1	R/PO-1	R/PO-1	r-1	U-1	U-1				
	—	—	ALTI2C2	ALTI2C1	—	—	—				
bit 7							bit 0				
							1				
Legend:		PO = Prograr	n Once bit	r = Reserved							
R = Readal	ole bit	W = Writable	bit	•	nented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 23-14	•	ented: Read as									
bit 13		laster SPI #2 Fa									
		SPI2 uses PPS SPI2 uses direc				e pins					
bit 12-11	Unimpleme	ented: Read as	'1'								
bit 10	SMBEN: Se	elect Input Voltag	ge Threshold f	or I ² C Pads to	be SMBus 3.0	Compliant bit					
	1 = Enables 0 = I ² C pad	SMBus 3.0 inp input buffer ope	ut threshold vo eration	oltage							
bit 9-7	Reserved:	Maintain as '1'									
bit 6-5	Unimpleme	ented: Read as	'1'								
bit 4	ALTI2C2: A	lternate I2C2 Pi	n Mapping bit								
	1 = Default location for SCL2/SDA2 pins 0 = Alternate location for SCL2/SDA2 pins (ASCL2/ASDA2)										
bit 3		ALTI2C1: Alternate I2C1 Pin Mapping bit									
		1 = Default location for SCL1/SDA1 pins									
		e location for SO	CL1/SDA1 pins	s (ASCL1/ASDA	41)						
bit 2	Reserved:	Maintain as '1'									
bit 1-0	Unimpleme	ented: Read as	'1'								

Note 1: Fixed pin option is only available for higher pin packages (48-pin, 64-pin and 80-pin).

TABLE 24-11: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS	Master Sleep + Slave Sleep		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
Power-Down Current (IPD) ⁽¹⁾							
DC60	3.2	4.8	mA	-40°C			
	3.4	8.2	mA	+25°C	3.3V		
	3.7	14.3	mA	+85°C	3.3V		
	7.6	21.5	mA	+125°C			

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and External Clock is active; OSCI is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled

TABLE 24-12: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (\(\triangle WDT\))^{(1)}

DC CHARACTERISTICS	Master and Slave		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$		
Parameter No.	Тур.	Max.	Units	Conditions	
DC61d	2.9		μA	-40°C	3.3V
DC61a	2.7	_	μA	+25°C	
DC61b	3.9	—	μA	+85°C	
DC61c	5.5	_	μA	+125°C	

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.