

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp206-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-5: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	•			x = Bit is unkr	nown

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

REGISTER 3-6: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	RU<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u		x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

REGISTER 3-18: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 6	DIV0ERR: Divide-by-Zero Error Status bit
	1 = Math error trap was caused by a divide-by-zero
	0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMA Controller Trap Status bit
	1 = DMAC error trap has occurred
	0 = DMAC error trap has not occurred
bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

3.6.17 PERIPHERAL PIN SELECT REGISTERS

REGISTER 3-35: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	—	_	IOLOCK	—	_	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7	÷	•			•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'	

bit 11 **IOLOCK:** Peripheral Remapping Register Lock bit 1 = All Peripheral Remapping registers are locked and cannot be written 0 = All Peripheral Remapping registers are unlocked and can be written

bit 10-0 Unimplemented: Read as '0'

Note 1: Writing to this register needs an unlock sequence.

REGISTER 3-36: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0
Legend:							

U			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 Unimplemented: Read as '0'

REGISTER 3-137: C1TEFCONL: CAN TRANSMIT EVENT FIFO CONTROL REGISTER LOW

U-0	U-0	U-0	U-0	U-0	S/HC-0	U-0	S/HC-0					
_		_		_	FRESET	_	UINC					
bit 15							bit 8					
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	TEFTSEN ⁽¹⁾		TEFOVIE	TEFFIE	TEFHIE	TEFNEIE					
bit 7							bit (
Legend:		S = Settable bit		HC = Hardwa	are Clearable b	it						
R = Readab	le hit	W = Writable bit			mented bit, read							
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	n					
							IOWIT					
bit 15-11	Unimplemer	nted: Read as '0'										
bit 10	FRESET: FIF	O Reset bit										
		I be reset when b			are when FIFO	is reset; the us	ser should poll					
		this bit is clear be	fore taking	any action								
1.1.0	0 = No effec											
bit 9	•	nted: Read as '0'										
bit 8	UINC: Incren		C toil will i	noromont by a c	ingle message							
		s bit is set, the FIF will not increment		ncrement by a s	single message							
bit 7-6	Unimplemer	nted: Read as '0'										
bit 5	TEFTSEN: T	ransmit Event FIF	O Timestar	mp Enable bit ⁽¹⁾	1							
	1 = Timestamps elements in TEF											
	0 = Does not	0 = Does not timestamp elements in TEF										
bit 4	Unimplemer	nted: Read as '0'										
bit 3	TEFOVIE: Tr	ansmit Event FIF	Overflow	Interrupt Enabl	e bit							
	1 = Interrupt is enabled for overflow event											
	•	is disabled for ove										
bit 2		nsmit Event FIFO		pt Enable bit								
	•	 1 = Interrupt is enabled for FIFO full 0 = Interrupt is disabled for FIFO full 										
bit 1	•	nsmit Event FIFO		terrupt Enable I	oit							
		is enabled for FIF										
		is disabled for FIF										
bit 0	TEFNEIE: Tr	ansmit Event FIF	O Not Empt	ty Interrupt Enal	ble bit							
	1 = Interrupt	is enabled for FIF	O not empt	У								
	0 = Interrupt	is disabled for FIF	O not emp	ty								

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-164: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—		WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME
bit 15							bit
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
SHRCIE	<u> </u>	<u> </u>			_		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at	It POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own
bit 11-8		etermine the po		e Power-up Delay y in the number o		rce Clock Perio	ds (Tcoresro
bit 11-8	These bits de for all ADC c 1111 = 3276 1110 = 1638 1101 = 8192 1100 = 4096 1011 = 2048 1010 = 1024 1001 = 5123 1000 = 2563 0111 = 1283 0110 = 64 S 0101 = 32 S 0100 = 16 S	etermine the po	wer-up delay Periods Periods Periods Periods Periods eriods eriods eriods riods riods riods			rce Clock Perio	ds (TCORESRO
bit 11-8 bit 7	These bits da for all ADC o 1111 = 3276 1110 = 1638 1101 = 8192 1100 = 4096 1011 = 2048 1010 = 1024 1001 = 512 = 1000 = 256 = 0111 = 128 = 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sh 1 = Commor	etermine the po fores. 38 Source Clock 34 Source Clock 35 Source Clock 35 Source Clock 35 Source Clock P 35 Source Clock	wer-up delay C Periods Periods Periods Periods Periods Periods eriods eriods eriods riods riods riods riods eredy Corr e generated		f the Core Sou nable bit is powered and		

REGISTER 3-185: PTGBTE: PTG BROADCAST TRIGGER ENABLE LOW REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBTE<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBTE	<7:0>			
bit 7							bit 0
Legend:							
D - Doodoblo hit		\// = \//ritable bit			ontod hit room	1 00 '0'	

Eogona.			
R = Readable bit	W = Writable bit	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGBTE<15:0>:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

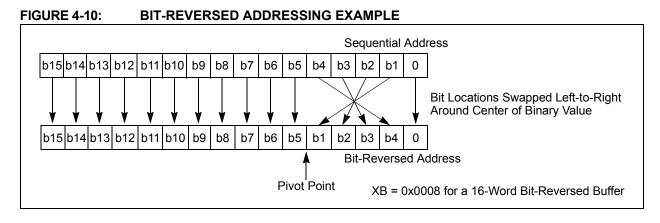
Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 3-186: PTGBTEH: PTG BROADCAST TRIGGER ENABLE HIGH REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0		R/W-0	R/W-0
			PTGBT	E<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-U	R/W-U	R/ W-U	R/W-U	R/W-U	R/W-U	R/W-U	R/ W-U		
PTGBTE<23:16>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-0 PTGBTE<31:16>: PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

dsPIC33CH128MP508 FAMILY

TABLE 4-18: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	s		Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	1	0	0	0	8	
0	0	1	0	2	0	1	0	0	4	
0	0	1	1	3	1	1	0	0	12	
0	1	0	0	4	0	0	1	0	2	
0	1	0	1	5	1	0	1	0	10	
0	1	1	0	6	0	1	1	0	6	
0	1	1	1	7	1	1	1	0	14	
1	0	0	0	8	0	0	0	1	1	
1	0	0	1	9	1	0	0	1	9	
1	0	1	0	10	0	1	0	1	5	
1	0	1	1	11	1	1	0	1	13	
1	1	0	0	12	0	0	1	1	3	
1	1	0	1	13	1	0	1	1	11	
1	1	1	0	14	0	1	1	1	7	
1	1	1	1	15	1	1	1	1	15	

4.5.3 INTERRUPT RESOURCES

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.5.3.1 Key Resources

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.5.4 INTERRUPT CONTROL AND STATUS REGISTERS

The dsPIC33CH128MP508S1 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

4.5.4.1 INTCON1 through INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

4.5.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

4.5.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

4.5.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

4.5.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 4-20. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

4.5.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 4-18 through Register 4-22 on the following pages.

4.6.4 INPUT CHANGE NOTIFICATION (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CH128MP508S1 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 4-26.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

TABLE 4-26: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

Note: Pull-ups and pull-downs on Input Change Notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 4-3: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPOR0	—	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0			RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
RPOR1	—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	—		RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
RPOR2	—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	—		RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
RPOR3	—	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	—		RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
RPOR4	—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	—		RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
RPOR5	—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	—		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
RPOR6	—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	—		RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
RPOR7	—	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	—		RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
RPOR8	—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	—		RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
RPOR9	—	—	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	—		RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
RPOR10	—	—	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	—		RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
RPOR11	—	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	—		RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
RPOR12	—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	—		RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
RPOR13	—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	—		RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
RPOR14	—	—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	—		RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
RPOR15	—	—	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0	—		RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
RPOR16	—	—	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0	—		RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0
RPOR17	_	_	RP67R5	RP67R4	RP67R3	RP67R2	RP67R1	RP67R0	_	_	RP66R5	RP66R4	RP66R3	RP66R2	RP66R1	RP66R0
RPOR18	_	_	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0	_	_	RP68R5	RP68R4	RP68R3	RP68R2	RP68R1	RP68R0
RPOR19	_	_	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0	_	_	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
RPOR20 ⁽¹⁾	—	—	RP171R5	RP171R4	RP171R3	RP177R2	RP171R1	RP171R0	—	_	RP170R5	RP170R4	RP170R3	RP170R2	RP170R1	RP170R0
RPOR21 ⁽¹⁾	—	—	RP173R5	RP173R4	RP173R3	RP173R2	RP173R1	RP173R0	—	_	RP172R5	RP172R4	RP172R3	RP172R2	RP172R1	RP172R0
RPOR22 ⁽¹⁾	_	_	RP175R5	RP175R4	RP175R3	RP175R2	RP175R1	RP175R0	_	_	RP174R5	RP174R4	RP174R3	RP174R2	RP174R1	RP174R0

TABLE 4-32: SLAVE PPS OUTPUT CONTROL REGISTERS

Note 1: The RPOR20, RPOR21 and RPOR22 registers are for virtual output pins.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

REGISTER 4-74: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to S1RP61 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to S1RP60 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-75: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— — RP63R5		RP63R4	RP63R3	RP63R2	RP63R1	RP63R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to S1RP63 Output Pin bits (see Table 4-31 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to S1RP62 Output Pin bits (see Table 4-31 for peripheral function numbers)

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
—	—		—	_	—	—	—
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
	1010 0	1000 0		BDIV<7:0>			10000
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unki	nown
bit 15-12	Unimplemer	nted: Read as '	0'				
bit 11-8	Reserved: N	laintain as '0'					
bit 7-0		<7:0>: APLL F	eedback Divid	er bits			
	11111111 =	Reserved					
	 11001000 =	200 maximum	(1)				
	 10010110 =	150 (default)					
	 00010000 =	16 minimum ⁽¹⁾					
	 00000010 = 00000001 = 00000000 =	Reserved					

REGISTER 6-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER (MASTER)

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

8.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

8.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

8.3 Peripheral Module Disable

The channels of the DMA Controller can be individually powered down using the Peripheral Module Disable (PMD) registers.

8.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 8-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 8-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 8-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For dsPIC33CH128MP508 devices, there are a total of 34 registers.

REGISTER 9-11: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LF	SR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bi	t	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Linear Feedback Shift Register bits

A read of this register will provide a 15-bit pseudorandom value.

REGISTER 15-3: I2CxSTAT: I2Cx STATUS REGISTER

			11.0				
HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0
ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
bit 15							bit 8
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit 0
Legend:		C = Clearable			are Settable/C		
R = Readable		W = Writable	oit		nented bit, reac		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	re Settable bit
bit 15	ACKSTAT: A	cknowledge Sta	itus bit (update	ed in all Master	and Slave mod	les)	
		dge was not re dge was receiv					
bit 14		nsmit Status bit		_	er; applicable to	o Master transr	mit operation)
		ansmit is in prog		-			. ,
		ansmit is not in					
bit 13		knowledge Time	•		• /		
		I ² C bus is in ar knowledge sec					lock
bit 12-11	Unimplemen	ted: Read as 'd)'				
bit 10	BCL: Bus Co	llision Detect bi	t (Master/Slav	e mode; cleare	d when I ² C mo	dule is disabled	d, I2CEN = 0)
		lision has been ollision has bee		ng a Master or S	Slave transmit o	operation	
bit 9		neral Call Statu		after Stop detec	tion)		
	1 = General c	all address was	s received		,		
		all address was		<i></i>			
bit 8		it Address Stat	-	after Stop dete	ction)		
		dress was matc dress was not n					
bit 7		Write Collision					
		pt to write to the		ister failed beca	ause the I ² C mo	dule is busy; m	ust be cleared
	in softwa	re	0			<u>,</u>	
	0 = No collisi						
bit 6		Receive Overflo	-				
	-	as received whi Fransmit mode,		-	I holding the pre	evious byte; I20	COV is a "don't
	0 = No overfl						
bit 5	D/A: Data/Ad	dress bit (when	operating as	l ² C Slave)			
		that the last by	• •	-			
	0 = Indicates	that the last by	te received or	transmitted was	s an address		
bit 4	P: I2Cx Stop				0		
	1 = Indicates	n Start, Reset c that a Stop bit I	nas been dete		hen the I ² C mo	dule is disabled	d, I2CEN = 0.
	0 = Stop bit w	as not detected	l last				

DEVID<7:0>	Device Name	Core
	Devices without CAN FD	
0x00	dsPIC33CH64MP202	Master
0x80	dsPIC33CH64MP202S1	Slave
0x10	dsPIC33CH128MP202	Master
0x90	dsPIC33CH128MP202S1	Slave
0x01	dsPIC33CH64MP203	Master
0x81	dsPIC33CH64MP203S1	Slave
0x11	dsPIC33CH128MP203	Master
0x91	dsPIC33CH128MP203S1	Slave
0x02	dsPIC33CH64MP205	Master
0x82	dsPIC33CH64MP205S1	Slave
0x12	dsPIC33CH128MP205	Master
0x92	dsPIC33CH128MP205S1	Slave
0x03	dsPIC33CH64MP206	Master
0x83	dsPIC33CH64MP206S1	Slave
0x13	dsPIC33CH128MP206	Master
0x93	dsPIC33CH128MP206S1	Slave
0x04	dsPIC33CH64MP208	Master
0x84	dsPIC33CH64MP208S1	Slave
0x14	dsPIC33CH128MP208	Master
0x94	dsPIC33CH128MP208S1	Slave

TABLE 21-5: DEVICE VARIANTS (CONTINUED)

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

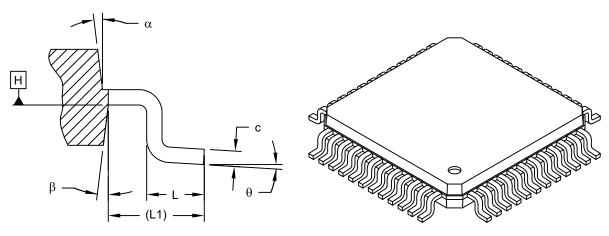
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


23.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

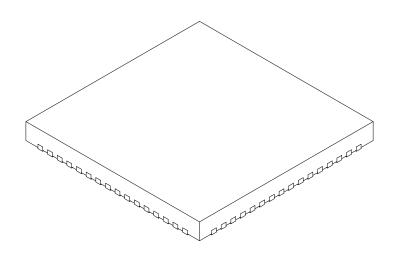
- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	Units	N	IILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	N		48	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		9.00 BSC	
Overall Length	D		9.00 BSC	
Molded Package Width	E1		7.00 BSC	
Molded Package Length	D1		7.00 BSC	
Lead Thickness	С	0.09	-	0.16
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	s
Dimensior	l Limits	MIN	NOM	MAX
Number of Pins	Ν		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

Power-Saving Features	
Clock Frequency and Switching	471
Resources	
Power-Saving Features (Master and Slave)	471
PRAM for Slave dsPIC33CH128MP508S1 Devices	272
Program Address Space	272
Construction	295
Data Access from Program Memory Using	
Table Instructions	296
Program Memory	
Interfacing with Data Memory Spaces	295
Organization	273
Reset Vector	273
Programmable Gain Amplifier (PGA) Slave	412
Control Registers	415
Description	413
Resources	414
Programmable Gain Amplifier. See PGA.	
Programmer's Model	38
Register Descriptions	38
PTG	
Command Options	258
Control/Status Registers	248
Features	246
Input Descriptions	259
Output Descriptions	259
Step Command Format/Description	257

Q

QEI	
Control and Status Registers	
Overview	
Truth Table	
Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources	20
Master Configuration	
Master Interrupt Enable	
Master Interrupt Flag	100
Master Interrupt Priority	
Master PMD	489
Master PPS Input Control	168
Master PPS Output Control	169
PORTA	136, 380
PORTB	. 136, 380
PORTC	. 137, 381
PORTD	. 137, 381
PORTE	. 138, 382
Slave Configuration	669
Slave Interrupt Enable	319
Slave Interrupt Flag	319
Slave Interrupt Priority	320
Slave PMD	
Slave PPS Input Control	
Slave PPS Output Control	352
Registers	
ACLKCON1 (Master Auxiliary Clock Control)	449
ACLKCON1 (Slave Auxiliary Clock Control)	
ADCAL1H (ADC Calibration 1 High)	407
ADCMPxCON (ADC Digital	
Comparator x Control)	.242, 408

ADCMPxENH (ADC Digital Comparator x		
Channel Enable High)	243,	409
ADCMPxENL (ADC Digital Comparator x		
Channel Enable Low)	243,	409
ADCON1H (ADC Control 1 High)		
ADCON1L (ADC Control 1 Low)		
ADCON2H (ADC Control 2 High)		
ADCON2L (ADC Control 2 Low)		
ADCON3H (ADC Control 3 High)		
	230,	392
ADCON3L (ADC Control 3 Low)	229,	391
ADCON4H (ADC Control 4 High)		
ADCON4L (ADC Control 4 Low)		
ADCON5H (ADC Control 5 High)		
ADCON5L (ADC Control 5 Low)	231,	395
ADCORExH (Dedicated ADC Core x		
Control High)		398
ADCORExL (Dedicated ADC Core x		
Control Low)		397
ADEIEH (ADC Early Interrupt Enable High)		
ADEIEL (ADC Early Interrupt Enable Low)		
ADEISTATH (ADC Early Interrupt	204,	400
Status High)	225	401
ADEISTATI (ADC Forly Interrupt	255,	401
ADEISTATL (ADC Early Interrupt		
Status Low)	235,	401
ADFLxCON (ADC Digital Filter x Control)		
ADIEH (ADC Interrupt Enable High)		
ADIEL (ADC Interrupt Enable Low)	238,	403
ADLVLTRGH (ADC Level-Sensitive Trigger		
Control High)	233,	399
ADLVLTRGL (ADC Level-Sensitive Trigger		
Control Low)	233.	399
	,	
		236
ADMOD0H (ADC Input Mode Control 0 High)		236
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode		
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236,	402
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low)	236,	402 237
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High)	236, 239,	402 237 404
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low)	236, 239, 239,	402 237 404
ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger	236, 239, 239, n(x)	402 237 404 404
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) 	236, 239, 239, n(x) 240,	402 237 404 404 405
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Output Divider) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) 	236, 239, 239, 1(x) 240, 116,	402 237 404 404 405 334 463 451 450
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLFBD1 (Master APLL Feedback Divider) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLFBD1 (Master APLL Feedback Divider) 	236, 239, 239, n(x) 240, 116,	402 237 404 405 334 463 451 450 462 664
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) APLLFBD1 (Slave APLL Feedback Divider) BIASCON (Current Bias Generator Control) C1BDIAG0H (CAN Bus Diagnostics 0 High) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 664 214
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) APLLFBD1 (Slave APLL Feedback Divider) BIASCON (Current Bias Generator Control) C1BDIAG0H (CAN Bus Diagnostics 0 High) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 664 214 214
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) APLLFBD1 (Master APLL Feedback Divider) BIASCON (Current Bias Generator Control) C1BDIAG0H (CAN Bus Diagnostics 0 High) C1BDIAG1H (CAN Bus Diagnostics 1 High) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 664 214 214 215
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 664 214 214 215 216
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATH (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLDIV1 (Master APLL Feedback Divider) APLLFBD1 (Master APLL Feedback Divider) BIASCON (Current Bias Generator Control) C1BDIAG0H (CAN Bus Diagnostics 0 High) C1BDIAG1H (CAN Bus Diagnostics 1 High) C1CONH (CAN Control High) 	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 463 463 462 664 214 214 215 216 180
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 463 463 462 664 214 214 215 216 180
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 214 214 215 216 180 182
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low) ADMOD1L (ADC Input Mode Control 1 Low) ADSTATH (ADC Data Ready Status High) ADSTATH (ADC Data Ready Status Low) ADSTATL (ADC Data Ready Status Low) ADTRIGnL/ADTRIGnH (ADC Channel Trigger Selection Low/High) ANSELx (Analog Select for PORTx) APLLDIV (Slave APLL Output Divider) APLLFBD1 (Master APLL Feedback Divider) APLLFBD1 (Slave APLL Feedback Divider) BIASCON (Current Bias Generator Control) C1BDIAG0H (CAN Bus Diagnostics 0 High) C1BDIAG1H (CAN Bus Diagnostics 1 High) C1CONH (CAN Control High) C1CONL (CAN Control Low) C1DBTCFGH (CAN Data Bit Time Configuration High) 	236, 239, 239, 239, n(x) 240, 116,	402 237 404 404 405 334 463 451 450 462 214 214 215 216 180 182
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116,	402 237 404 405 334 451 450 462 664 214 214 215 216 180 182 184
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116,	402 237 404 405 334 451 450 462 664 214 214 215 216 180 182 184
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116,	402 237 404 405 334 463 462 664 214 215 216 180 182 184 184
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116,	402 237 404 405 334 463 462 664 214 215 216 180 182 184 184
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 180 182 184 184 198
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 182 184 184 184 198
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 182 184 184 184 198 202
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 182 184 184 184 198 202
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 180 182 184 184 198 202 203 205
 ADMOD0H (ADC Input Mode Control 0 High) ADMOD0L (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 180 182 184 198 198 202 203 205 210
 ADMODOH (ADC Input Mode Control 0 High) ADMODOL (ADC Input Mode Control 0 Low)	236, 239, 239, 239, n(x) 240, 116, 	402 237 404 405 334 463 451 450 462 664 214 215 216 180 182 184 198 198 202 203 205 210