

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	•
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp206t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 8: 64-PIN TQFP/QFN (CONTINUED)

Pin #	Master Core	Slave Core
51	RP53/RC5	S1RP53/S1PWM2L/S1RC5
52	RP58/RC10	S1RP58/S1PWM1H/S1RC10
53	RP59/RC11	S1RP59/S1PWM1L/S1RC11
54	RP68 /RD4	S1RP68/S1PWM3H/S1RD4
55	RP67/RD3	S1RP67/S1PWM3L/S1RD3
56	Vss	Vss
57	Vdd	Vdd
58	RP66/RD2	S1RP66/S1PWM8L/S1RD2
59	RP65 /RD1	S1RP65/S1PWM4H/S1RD1
60	RP64/RD0	S1RP64/S1PWM4L/S1RD0
61	TMS/RP42/PWM3H/RB10	S1RP42/S1RB10
62	TCK/ RP43 /PWM3L/RB11	S1RP43 /S1RB11
63	TDI/ RP44 /PWM2H/RB12	S1RP44 /S1RB12
64	RP45/PWM2L/RB13	S1RP45 /S1RB13

Legend: RPn and S1RPn represent remappable pins for Peripheral Pin Select functions.

3.1.5 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CH128MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CH128MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-3 and Figure 3-4.

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

REGISTER 3-22: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0
—	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

| R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable I	bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-14	Unimplement	ted: Read as '0'		
bit 13	VHOLD: Vector	or Number Capture Enable b	bit	
	1 = VECNUM interrupt)	1<7:0> bits read current value	of vector number encoding tree	e (i.e., highest priority pending
	0 = Vector nu	Imber latched into VECNUM	<7:0> at Interrupt Acknowledge	and retained until next IACK
bit 12	Unimplement	ted: Read as '0'		
bit 11-8	ILR<3:0>: Ne	w CPU Interrupt Priority Leve	el bits	
	1111 = CPU I	Interrupt Priority Level is 15		
	 0001 = CPU 0000 = CPU	Interrupt Priority Level is 1 Interrupt Priority Level is 0		
bit 7-0	VECNUM<7:0	>: Vector Number of Pendin	g Interrupt bits	
	11111111 = 2	255, Reserved; do not use		
	00001001 = 9 00001000 = 8 00000111 = 7 00000110 = 8 00000101 = 9 00000101 = 9 00000011 = 1 00000010 = 2 00000010 = 1 00000001 = 1	9, IC1 – Input Capture 1 8, INT0 – External Interrupt 0 7, Reserved; do not use 6, Generic soft error trap 5, Reserved; do not use 4, Math error trap 3, Stack error trap 2, Generic hard trap 1, Address error trap 0, Oscillator fail trap)	

HSC/R-0	HSC/R-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8	
bit 15	•			•			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0	
bit 7							bit 0	
Legend:		U = Unimplem	nented bit, read	as '0'				
R = Readable	bit	W = Writable I	bit	HSC = Hardwa	are Settable/Cl	learable bit		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15 bit 14 bit 13-10 bit 9-0	 Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown REFRDY: Band Gap and Reference Voltage Ready Flag bit Band gap is ready Band gap is not ready 14 REFERR: Band Gap or Reference Voltage Error Flag bit Band gap was removed after the ADC module was enabled (ADON = 1) No band gap error was detected 13-10 Unimplemented: Read as '0' 9-0 SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC co sample time (Sample Time = (SHRSAMC<9:0> + 2) * TADCORE). 1111111111 = 1025 TADCORE 0000000001 = 3 TADCORE 0000000001 = 2 TADCORE							

REGISTER 3-160: ADCON2H: ADC CONTROL REGISTER 2 HIGH

TABLE 4-20: SLAVE INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority	
CND – Change Notice Interrupt D	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>	
CNE – Change Notice Interrupt E	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>	
Reserved	85	77	—	_	—	—	
CMP1 – Slave Comparator 1 Interrupt	86	78	0x0000B0	IFS4<14>	IEC4<14>	IPC19<10:8>	
CMP2 – Slave Comparator 2 Interrupt	87	79	0x0000B2	IFS4<15>	IEC4<15>	IPC19<14:12>	
CMP3 – Slave Comparator 3 Interrupt	88	80	0x0000B4	IFS5<0>	IEC5<0>	IPC20<2:0>	
Reserved	89	81	0x0000B6		_	_	
PTG0 – PTG Int. Trigger Master 0	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>	
PTG1 – PTG Int. Trigger Master 1	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>	
PTG2 – PTG Int. Trigger Master 2	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>	
PTG3 – PTG Int. Trigger Master 3	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>	
Reserved	94-97	86-89	0x0000C0	—	—	—	
ADC – ADC Global Interrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>	
ADCAN0 – ADC AN0 Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>	
ADCAN1 – ADC AN1 Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>	
ADCAN2 – ADC AN2 Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>	
ADCAN3 – ADC AN3 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
ADCAN4 – ADC AN4 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
ADCAN5 – ADC AN5 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
ADCAN6 – ADC AN6 Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>	
ADCAN7 – ADC AN7 Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>	
ADCAN8 – ADC AN8 Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>	
ADCAN9 – ADC AN9 Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>	
ADCAN10 – ADC AN10 Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>	
ADCAN11 – ADC AN11 Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>	
ADCAN12 – ADC AN12 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>	
ADCAN13 – ADC AN13 Interrupt	112	104	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>	
ADCAN14 – ADC AN14 Interrupt	113	105	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>	
ADCAN15 – ADC AN15 Interrupt	114	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>	
ADCAN16 – ADC AN16 Interrupt	115	107	0x0000EA	IFS6<11>	IEC6<11>	IPC26<14:12>	
ADCAN17 – ADC AN17 Interrupt	116	108	0x0000EC	IFS6<12>	IEC6<12>	IPC27<2:0>	
ADCAN18 – ADC AN18 Interrupt	117	109	0x0000EE	IFS6<13>	IEC6<13>	IPC27<6:4>	
ADCAN19 – ADC AN19 Interrupt	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>	
ADCAN20 – ADC AN20 Interrupt	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>	
Reserved	120-122	112-114	0x0000F4-0x0000F8	—	—	—	
ADFLT – ADC Fault	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>	
ADCMP0 – ADC Digital Comparator 0	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>	
ADCMP1 – ADC Digital Comparator 1	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>	
ADCMP2 – ADC Digital Comparator 2	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>	
ADCMP3 – ADC Digital Comparator 3	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12>	
ADFLTR0 – ADC Oversample Filter 0	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>	
ADFLTR1 – ADC Oversample Filter 1	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>	
ADFLTR2 – ADC Oversample Filter 2	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>	
ADFLTR3 – ADC Oversample Filter 3	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12>	
CLC1P – CLC1 Positive Edge	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>	
CLC2P – CLC2 Positive Edge	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

REGISTER 4-62: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

Legend:			
R = Readable bit	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to S1RP37 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to S1RP36 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-63: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP39R<5:0>:** Peripheral Output Function is Assigned to S1RP39 Output Pin bits (see Table 4-31 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP38R<5:0>:** Peripheral Output Function is Assigned to S1RP38 Output Pin bits (see Table 4-31 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
SHREN	—	—	—	—	—	C1EN	COEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	CLKSEL<1:0	>: ADC Module	e Clock Source	e Selection bits			
	11 = Fvco/4						
	10 = AFVCOD 01 = FOSC	IV					
	00 = FP (Fos	c/2)					
bit 13-8	CLKDIV<5:0	>: ADC Module	Clock Source	Divider bits			
	The divider fo	rms a Tcoresr	c clock used b	y all ADC cores	s (shared and d	edicated) from	the TSRC ADC
	module clock	source selecte	d by the CLKS	EL<1:0> bits. T	hen, each ADC	C core individua	ally divides the
	ICORESRC CIO	Ck to get a col	re-specific IAD	CORE CLOCK US	ing the ADCS<	6:0> bits in the	e ADCOREXH
	1111111 = 64	Source Clock I	.0- bits in the / Periods	ADCONZE legi	5(6).		
			chicae				
	000011 = 4 S	Source Clock P	eriods				
	000010 = 3 S	Source Clock P	eriods				
	000001 = 23	Source Clock P	eriod				
bit 7	SHREN: Sha	red ADC Core	Enable bit				
	1 = Shared A	DC core is ena	bled				
	0 = Shared A	DC core is disa	bled				
bit 6-2	Unimplemen	ted: Read as ')'				
bit 1	C1EN: Dedica	ated ADC Core	1 Enable bits				
	1 = Dedicated ADC Core 1 is enabled						
	0 = Dedicated	ADC Core 1 I	s disabled				
dit U	COEN: Dedica	ated ADC Core	U Enable bits				
	⊥ = Dedicated		s enabled				

REGISTER 4-88: ADCON3H: ADC CONTROL REGISTER 3 HIGH

HSC/R-0	U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0
SHRRDY	—		—			C1RDY	CORDY
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
SHRPWR	—	—	—		—	C1PWR	C0PWR
bit 7							bit 0
Legend:		U = Unimplem	nented bit, read	d as '0'			
R = Readable	e bit	W = Writable	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	SHRRDY: Sh	ared ADC Core	Ready Flag b	it			
	1 = ADC core	is powered an	d ready for ope	eration			
	0 = ADC core	is not ready to	r operation				
DIT 14-10	Unimplemen	ted: Read as 10					
bit 9	C1RDY: Dedi	cated ADC Cor	e 1 Ready Fla	g bit			
	1 = ADC Core 0 = ADC Core	e 1 is powered a	and ready for c for operation	operation			
bit 8	CORDY: Dedi	cated ADC Cor	e 0 Ready Fla	g bit			
	1 = ADC Core	e 0 is powered	and ready for c	operation			
	0 = ADC Core	e 0 is not ready	for operation				
bit 7	SHRPWR: St	nared ADC Cor	e Power Enabl	e bit			
	1 = ADC core	is powered					
	0 = ADC core	is off					
bit 6-2	Unimplemen	ted: Read as '0)'				
bit 1	C1PWR: Ded	icated ADC Co	re 1 Power En	able bit			
	1 = ADC Core	e 1 is powered					
hit 0			ro 0 Dowor En	abla bit			
	1 = ADC Core	e 0 is off					

REGISTER 4-91: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 4-97: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 4-98: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	—
bit 15					•	•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—			EIEN<20:16>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EIEN<20:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 5-3: MSI1KEY: MSI1 MASTER INTERLOCK KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			MSI1KE	EY<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 MSI1KEY<7:0>: MSI1 Key bits

The MSI1KEYx bits are monitored for specific write values.

REGISTER 5-4: MSI1MBXS: MSI1 MASTER MAILBOX DATA TRANSFER STATUS REGISTER

r							
bit 15							bit 8
_	—	_		—	—	_	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTRD	Y <h:a></h:a>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DTRDY<H:A>: Data Ready Status bits

- 1 = Data transmitter has indicated that data is available to be read by data receiver in MSI1MBXnD (DTRDYx is automatically set by a data transmitter processor write to assigned MSI1MBXnD); Meaning when configured as a:
 - Transmitter: Data is written. Waiting for receiver to read.
 - Receiver: New data is ready to read.
- 0 = No data is available to be read by receiver in MSI1MBXnD (or the handshake protocol logic block is disabled)

5.3 Slave Processor Control

The MSI contains three control bits related to Slave processor control within the MSI1CON register.

5.3.1 SLAVE ENABLE (SLVEN) CONTROL

The SLVEN (MSI1CON<15>) control bit provides a means for the Master processor to enable or disable the Slave processor.

The Slave is disabled when SLVEN (MSI1CON<15>) = 0. In this state:

- · The Slave is held in the Reset state
- The Master has access to the Slave PRAM (to load it out of a device Reset)
- The Slave Reset status bit, SLVRST (MSI1STAT<15>) = 1

The Slave is enabled when SLVEN (MSI1CON<15>) = 1. In this state:

- The Slave Reset is released and it will start to execute code in whatever mode it is configured to operate in
- The Master processor will no longer have access to the Slave PRAM
- The Slave Reset status bit, SLVRST (MSI1STAT<15>) = 0
- Note: The SLVRST (MSI1STAT<15>) status bit indicates when the Slave is in Reset. The associated interrupt only occurs when the Slave enters the Reset state after having previously not been in Reset. That is, no interrupt can be generated until the Slave is first enabled.

The SLVEN bit may only be modified after satisfying the hardware write interlock. The SLVEN bit is protected from unexpected writes through a software unlocking sequence that is based on the MSI1KEY register. Given the critical nature of the MSI control interface, the MSI macro unlock mechanism is independent from that of the Flash controller for added robustness.

Completing a predefined data write sequence to the MSI1KEY register will open a window. The SLVEN bit should be written on the first instruction that follows the unlock sequence. No other bits within the MSI1CON register are affected by the interlock. The MSI1KEY register is not a physical register. A read of the MSI1KEY register will read all '0's.

When the SLVEN bit lock is enabled (i.e., the bits are locked and cannot be modified), the instruction sequence shown in Example 5-1 must be executed to open the lock. The unlock sequence is a prerequisite to both setting and clearing the target control bit.

Note: It is recommended to enable SRSTIE (MSI1CON<7>) = 1 prior to enabling the SLVEN bit. This will make the design robust and will update the Master with the Reset state of the Slave.

EXAMPLE 5-1: MSI ENABLE OPERATION

//Unloc	ck Key to allow MSI Enable control
MOV.b	#0x55, W0
MOV.b	WREG, MSI1KEY
MOV.b	#0xAA, WO
MOV.b	WREG, MSI1KEY
// Enak	ole MSI
BSET	MSI1CON, SLVEN

EXAMPLE 5-2: MSI ENABLE OPERATION IN C CODE

#include <libpic30.h>
_start_slave();

5.4 Slave Reset Coupling Control

In all operating modes, the user may couple or decouple the Master Run-Time Resets to the Slave Reset by using the Master Slave Reset Enable (S1MSRE) fuse. The Resets are effectively coupled by directing the selected Reset source to the SLVEN bit Reset.

In all operating modes, the user may also choose whether the SLVEN bit is reset or not in the event of a Slave Run-Time Reset by using the Slave Reset Enable (S1SSRE) fuse.

A user may choose to reset SLVEN in the event of a Slave Reset because that event could be an indicator of a problem with Slave execution. The Slave would be placed in Reset and the Master alerted (via the Slave Reset event interrupt, need to make SRSTIE (MSI1CON<7> = 1) to attempt to rectify the problem. The Master must re-enable the Slave by setting the SLVEN bit again.

Alternatively, the user may choose to not halt the Slave in the event of a Slave Reset, and just allow it to restart execution after a Reset and continue operation as soon as possible. The Slave Reset event interrupt would still occur, but could be ignored by the Master.

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0	
	—	—	_	_	_		—	
bit 15	·			·			bit 8	
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	
			APLLF	BDIV<7:0>				
bit 7							bit 0	
Legend:		r = Reserved	bit					
R = Readable bit		W = Writable bit		U = Unimplen	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-12	Unimpleme	nted: Read as '	0'					
bit 11-8	Reserved: N	/laintain as '0'						
bit 7-0	APLLFBDIV	' <7:0>: APLL Fe	eedback Divide	er bits				
	11111111 =	Reserved						
			(1)					
	11001000 =	200 maximum	,					
	 10010110 =	150 (default)						
		10						
	00010000 =	16 minimum''						
	00000010 =	Reserved						
	00000001 =	Reserved						
	00000000 =	Reserved						

REGISTER 6-17: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER (SLAVE)

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

REGISTER 12-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls the position counter/timer operation 0 = External gate signal does not affect the position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	11 = Internal timer with External Gate mode

- 10 = External Clock count with External Gate mode
- 01 = External Clock count with External Up/Down mode
- 00 = Quadrature Encoder mode

REGISTER 12-2: QEIxIOCL: QEIx I/O CONTROL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	QCAPEN: QEIx Position Counter Input Capture by Index Event Enable bit
	1 = Index match event (positive edge) triggers a position capture event
	0 = Index match event (positive edge) does not trigger a position capture event
bit 14	FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit
	1 = Input pin digital filter is enabled
	0 = Input pin digital filter is disabled (bypassed)
bit 13-11	QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits
	111 = 1:128 clock divide
	110 = 1:64 clock divide
	101 = 1:32 clock divide
	100 = 1.16 CIOCK CIVIDE
	011 = 1.4 clock divide
	0.01 = 1.2 clock divide
	000 = 1:1 clock divide
bit 10-9	OUTFNC<1:0>: QEIx Module Output Function Mode Select bits
	11 = The CNTCMPx pin goes high when POSxCNT < QEIxLEC or POSxCNT > QEIxGEC
	10 = The CNTCMPx pin goes high when POSxCNT < QEIxLEC
	01 = The CNTCMPx pin goes high when $POSxCNT \ge QEIxGEC$
	00 = Output is disabled
bit 8	SWPAB: Swap QEAx and QEBx Inputs bit
	1 = QEAx and QEBx are swapped prior to Quadrature Decoder logic
	0 = QEAx and QEBx are not swapped
bit 7	HOMPOL: HOMEx Input Polarity Select bit
	1 = Input is inverted
	0 = Input is not inverted

NOTES:

REGISTER 19-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 19-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			X<3	31:24>					
bit 15 bit									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			Х<2	23:16>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FS10SCSEL	—	_	-	_	—	—	—	—	—	S1IESO	—	—	—	_	S1FN	NOSC<2:0>	
FS1OSC	_	_	_	_	_	_	_	_	r(1)	S1FCK	SM<1:0>	_	_	_	S10SCI0FNC	_	_
FS1WDT	_	S1FWDTEN		S18	SWDTPS<4:0)>		S1WDTV	VIN<1:0>	S1WINDIS	S1RCLKS	EL<1:0>		S1	RWDTPS<4:0>		
FS1POR	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
FS1ICD	_	S1NOBTSWP	_	S1ISOLAT	_	_	_	_	_	_۲ (1)	_	_	_	_	_	S1ICS	S<1:0>
FS1DEVOPT	_	S1MSRE	S1SSRE	S1SPI1PIN	_	_	_	_	_	-	_	_	_	S1ALTI2C1	_	_	_
FS1ALTREG	_	_		S1CTXT4<2:0>		_	S	1CTXT3<2:0	>	—	S	1CTXT2<2:0	>	—	S1C	TXT1<2:0>	

Legend: — = unimplemented bit, read as '1'; r = reserved bit.

Note 1: Bit is reserved, maintain as '1'.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None
8	BOOTSWP	BOOTSWP		Swap the Active and Inactive Program Flash Space	1	2	None

TABLE 22-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: Cycle times for Slave core are different for Master core, as shown in 2.

3: For dsPIC33CH128MP508 devices, the divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	4.55	4.65	4.75	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.55	4.65	4.75	
Exposed Pad Corner Chamfer	Р	-	0.35	-	
Terminal Width	b	0.25	0.30	0.35	
Corner Anchor Pad	b1	0.35	0.40	0.43	
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-385B Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Leads	Ν	48			
Lead Pitch	е	0.50 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E	9.00 BSC			
Overall Length	D	9.00 BSC			
Molded Package Width	E1	7.00 BSC			
Molded Package Length	D1	7.00 BSC			
Lead Thickness	С	0.09	-	0.16	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2