

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

2.1 Basic Connection Requirements

Getting started with the family devices of the dsPIC33CH128MP508 requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- PGCx/PGDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.4 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

2.4 ICSP Pins

The PGCx and PGDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to PICkit[™] 3, MPLAB[®] ICD 3 or MPLAB REAL ICE[™] emulator.

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE emulator connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE[™] In-Circuit Emulator" (poster) (DS51749)

2.5 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator (POSC) and a low-frequency Secondary Oscillator (SOSC). For details, see Section 6.4.1 "Master Oscillator Control Registers".

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 5-27. TIN																
Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
						POR	ΓΑ									
dsPIC33XXXMP508/208	_	_				_		_	_		_	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	_	—				—			—	_		Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	_	_			_	_		_	_	_		Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
ANSELA	—			_	—			—			_	Х	Х	Х	Х	Х
						POR	ГВ									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB	_			_		Х	Х	Х				Х	Х	Х	Х	Х
						POR	ГС									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	-	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203		_				_	_		_	_	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202		_				_	_		_	_		—		_	—	—
ANSELC	-	—		_		—	_		Х	_		—	Х	Х	Х	Х
						POR	ΓD									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP505/205	—	—	Х		_	Х	—	Х	—	—	_	—	—	—	Х	—
dsPIC33XXXMP503/203	—	—	_		_	—	_		—	—	_	—	—	—	—	—
dsPIC33XXXMP502/202	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—
ANSELD	—	—	—		—	Х	—	—	—	_	—	—	—	—	—	—
	-		-	-		POR	ΓE			-		-	-			
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	—	—	—	—	_	—	—	_	—	—	_	—	—	—	—	—
dsPIC33XXXMP505/205	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP503/203	—	_	—	_	_	_	—	—	_	—	—	—	—	_	—	_
dsPIC33XXXMP502/202	—	—		—	—	—		—	—			—	—	—	—	—

TABLE 3-27: PIN AND ANSELx AVAILABILITY

TABLE 3-28: 5V INPUT TOLERANT PORTS

PORTA	—	_	_	_		_	_		_	_	_	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0

Legend: Shaded pins are up to 5.5 VDC input tolerant.

REGISTER 3-65: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT2R7 | SENT2R6 | SENT2R5 | SENT2R4 | SENT2R3 | SENT2R2 | SENT2R1 | SENT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 3-30.bit 7-0SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

See Table 3-30.

REGISTER 3-66: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR<7:0>:** Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 3-30.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CCP			CCP2STATL	980	000xx0000	CCP3RAL	9B0	000000000000000000
CCP1CON1L	950	0-00000000000000	CCP2STATH	982	00000	CCP3RBL	9B4	000000000000000000000000000000000000000
CCP1CON1H	952	00000000000000	CCP2TMRL	984	00000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP2TMRH	986	00000000000000000	CCP3BUFH	9BA	000000000000000000000000000000000000000
CCP1CON2H	956	0100-00000	CCP2PRL	988	11111111111111111	CCP4CON1L	9BC	0-00000000000000
CCP1CON3H	95A	00000-00	CCP2PRH	98A	11111111111111111	CCP4CON1H	9BE	00000000000000
CCP1STATL	95C	000xx0000	CCP2RAL	98C	000000000000000000	CCP4CON2L	9C0	00-000000000
CCP1STATH	95E	00000	CCP2RBL	990	000000000000000000	CCP4CON2H	9C2	0100-00000
CCP1TMRL	960	000000000000000000	CCP2BUFL	994	000000000000000000	CCP4CON3H	9C6	00000-00
CCP1TMRH	962	000000000000000000	CCP2BUFH	996	000000000000000000	CCP4STATL	9C8	000xx0000
CCP1PRL	964	11111111111111111	CCP3CON1L	998	0-00000000000000	CCP4STATH	9CA	00000
CCP1PRH	966	11111111111111111	CCP3CON1H	99A	00000000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
CCP1RAL	968	000000000000000000	CCP3CON2L	99C	00-000000000	CCP4TMRH	9CE	0000000000000000000
CCP1RBL	96C	000000000000000000	CCP3CON2H	99E	0100-00000	CCP4PRL	9D0	111111111111111111
CCP1BUFL	970	000000000000000000	CCP3CON3H	9A2	00000-00	CCP4PRH	9D2	111111111111111111
CCP1BUFH	972	000000000000000000	CCP3STATL	9A4	000xx0000	CCP4RAL	9D4	0000000000000000000
CCP2CON1L	974	0-000000000000000	CCP3STATH	9A6	00000	CCP4RBL	9D8	0000000000000000000
CCP2CON1H	976	00000000000000	CCP3TMRL	9A8	000000000000000000	CCP4BUFL	9DC	0000000000000000000
CCP2CON2L	978	00-000000000	CCP3TMRH	9AA	000000000000000000	CCP4BUFH	9DE	0000000000000000000
CCP2CON2H	97A	0100-00000	CCP3PRL	9AC	1111111111111111			
CCP2CON3H	97E	00000-00	CCP3PRH	9AE	1111111111111111			

TABLE 4-9:SLAVE SFR BLOCK 900h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

TABLE 4-10: SLAVE SFR BLOCK A00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
DMA			DMACH0	AC4	0-00000000000	DMACH1	ACE	0-00000000000
DMACON	ABC	0-00	DMAINT0	AC6	000000000000000	DMAINT1	AD0	000000000000000
DMABUF	ABE	0000000000000000000	DMASRC0	AC8	000000000000000000	DMASRC1	AD2	000000000000000000000000000000000000000
DMAL	AC0	0001000000000000	DMADST0	ACA	000000000000000000	DMADST1	AD4	000000000000000000000000000000000000000
DMAH	AC2	0001000000000000	DMACNT0	ACC	000000000000000000000000000000000000000	DMACNT1	AD6	000000000000000000000000000000000000000

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively.

© 2017-2018 Microchip Technology Inc

REGISTER 4-15: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

TABLE 4-20: SLAVE INTERRUPT VECTOR DETAILS

Interrupt Source	Vector	IRQ		Inte	rrupt Bit Loca	ation
	#	#	IVI Address	Flag	Enable	Priority
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
T1 – Timer1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
CNA – Change Notice Interrupt A	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
CNB – Change Notice Interrupt B	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
DMA0 – DMA Channel 0	12	4	0x00002C	IFS0<4>	IEC0<4>	IPC1<2:0>
Reserved	13	5	0x00002E		_	—
CCP1 – Input Capture/Output Compare 1	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
CCT1 – CCP1 Timer	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
DMA1 – DMA Channel 1	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1RX – SPI1 Receiver	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1TX – SPI1 Transmitter	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ECCSBE – ECC Single Bit Error	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
NVM – NVM Write Complete	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>
INT1 – External Interrupt 1	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
Reserved	26	18	0x000038	_	—	—
CNC – Change Notice Interrupt C	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT2 – External Interrupt 2	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-30	21-22	0x00003E-0x000040	_	—	—
CCP2 – Input Capture/Output Compare 2	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>
CCT2 – CCP2 Timer	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>
Reserved	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
INT3 – External Interrupt 3	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
Reserved	35-42	27-34	0x00004A-0x000058	_	—	—
CCP3- Input Capture/Output Compare 3	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>
CCT3 – CCP3 Timer	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>
Reserved	45-47	37-39	0x00005E-0x000062	_	_	—
CCP4 – Input Capture/Output Compare 4	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>
CCT4 – CCP4 Timer	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
Reserved	50-55	42-47	0x000068-0x000072	—	_	—
QEI1 – Position Counter Compare	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
U1E – UART1 Error Interrupt	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
Reserved	58-71	50-63	0x000078-0x000092	—	_	—
I2C1BC – I2C1 Bus Collision	72	64	0x000094	IFS4<0>	IEC4<0>	IPC16<2:0>
Reserved	73-74	65-66	0x000096-0x000098		_	—
PWM1 – PWM Generator 1	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
PWM2 – PWM Generator 2	76	68	0x00009C	IFS4<4>	IEC4<4>	IPC17<2:0>
PWM3 – PWM Generator 3	77	69	0x00009E	IFS4<5>	IEC4<5>	IPC17<6:4>
PWM4 – PWM Generator 4	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
PWM5 – PWM Generator 5	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>
PWM6 – PWM Generator 6	80	72	0x0000A4	IFS4<8>	IEC4<8>	IPC18<2:0>
PWM7 – PWM Generator 7	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
PWM8 – PWM Generator 8	82	74	0x0000A8	IFS4<10>	IEC4<10>	IPC18<10:8>

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0

REGISTER 4-74: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R<5:0>: Peripheral Output Function is Assigned to S1RP61 Output Pin bits (see Table 4-31 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R<5:0>: Peripheral Output Function is Assigned to S1RP60 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 4-75: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP63R<5:0>:** Peripheral Output Function is Assigned to S1RP63 Output Pin bits (see Table 4-31 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to S1RP62 Output Pin bits (see Table 4-31 for peripheral function numbers)

REGISTER 6-2: CLKDIV: CLOCK DIVIDER REGISTER (MASTER) (CONTINUED)

- bit 3-0 **PLLPRE<3:0>:** PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)⁽⁴⁾ 11111 = Reserved
 - 1001 = Reserved 1000 = Input divided by 8 0111 = Input divided by 7 0110 = Input divided by 6 0101 = Input divided by 5 0100 = Input divided by 4 0011 = Input divided by 3 0010 = Input divided by 2 0001 = Input divided by 1 (power-on default selection) 0000 = Reserved
- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 2: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.
 - 4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

TABLE 7-2: MASTER PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCONL	—	—	—	—	PMDLOCK		—	—		—	—	—	—	—	—	_
PMD1	_	_	—	_	T1MD	QEIMD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	ADC1MD
PMD2	—	_	_	_	_		_	_	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD3	—	—	—	—	—	-	—	—	CRCMD	—	—	—	—	—	I2C2MD	_
PMD4	_	_	—	_	—	_	—	—	_	_	—	—	REFOMD	_	_	_
PMD6	_	_	DMA5MD	DMA4MD	DMA3MD	DMA2MD	DMA1MD	DMA0MD		_	_	_	_	_	_	_
PMD7	_	_	—	_	—	_	—	CMP1MD	_	_	—	—	PTGMD	_	_	_
PMD8	_	_	—	SENT2MD	SENT1MD	_	—	—	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	_

TABLE 7-3: SLAVE PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMDCON	_	_	_	—	PMDLOCK	—	—	_	_	—	—	—	—	—	—	—
PMD1	_	_	_	—	T1MD	QEIMD	PWMMD	_	I2C1MD	—	U1MD	_	SPI1MD	_		ADC1MD
PMD2	_	_	-	_	_	_	_	_	_	_	_	_	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD4	_	_	_	_	—	—	—	_	_	_	_	—	REFOMD	_	_	—
PMD6	_	_	_	_	—	—	DMA1MD	DMA0MD	_	_	_	—	_	_	_	—
PMD7	_	_	-	_	_	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_
PMD8	_	PGA3MD	_	_	_	PGA2MD	_	_	_	_	CLC4MD	CLC3MD	CLC2MD	CLC1MD		_

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
	UTXISEL2	UTXISEL1	UTXISEL0	—	URXISEL2(1)	URXISEL1("	URXISEL0("				
bit 15							bit 8				
		D/0.4	D 0	D 4	D 4	D/0.4					
HS/R/W-0	R/W-U	R/S-1	R-0	R-1	R-1	R/S-1	R-0				
	STPMD	UIXBE	UIXBF	RIDLE	XON	URXBE	URXBF				
DIT /							Dit U				
Lovendi			o Cottoblo bit	C - Cottobla	L:4						
Legena:	. h :+	HS = Hardwar		S = Settable	DIL manted hit read	aa (0'					
R = Readable		vv = vvritable	DIL	0 = 0	nented bit, read	as u	0.11/2				
-n = value at	PUR	I = Bit is set		0 = Bit is cle	ared	x = Bit is unkn	IOWN				
bit 15	hit 45										
DIL 13			mit Interrunt S	alaat hita							
DIL 14-12	111 = Sets tra	OART Trans	when there is	one empty slot	t left in the huffe	r					
			when there is	one empty side							
	010 = Sets tra	insmit interrupt	when there are	e six empty slo	ots or more in the	e buffer					
	001 = Sets tra	001 = Sets transmit interrupt when there are seven empty slots or more in the buffer									
hit 11		ed: Bood as 'o	,	e eigni empty s			empty				
bit 10_8		.eu. Reau as 0	ive Interrunt S	elect hite(1)							
DIL TO-O	111 = Triggers		int when there	are eight word	ts in the buffer:	RX buffer is ful	I				
	· · ·			are eight word	in the bullet,						
	001 = Triggers	s receive interro	upt when there	are two words	s or more in the	buffer					
	000 = Triggers	s receive interro	upt when there	is one word o	r more in the bu	ffer					
bit 7	TXWRE: TX V	Vrite Transmit E	Error Status bit								
	LIN and Parity 1 = A new byt	<u>r Modes:</u> e was written w	hen the huffer	was full or whe	$n P^{2} < 8 \cdot 0 > = 0 (1)$	must he cleared	hy software)				
	0 = No error				$111230.0^{\circ} = 0$ (1		by Soltware)				
	Address Detection	<u>ct Mode:</u>									
	1 = A new byt	te was written v	when the buffer	was full or to F	P1<8:0> when F	1x was full (mu	ust be cleared				
	by softwa	re)									
	Other Modes										
	1 = A new by	te was written v	when the buffer	r was full (musi	t be cleared by	software)					
	0 = No error										
bit 6	STPMD: Stop	Bit Detection N	lode bit								
	1 = Triggers R	XIF at the end	of the last Stop	o bit							
h :+ r			ale of the first (or secona, aep	ending on the S	515EL<1:0> se	etting) Stop bit				
DIL 5	1 - Transmit h	I IX Buller Ell	ipty Status bit		will report the TX		and countors				
	1 = Transmit b 0 = Transmit b	ouffer is not em	winnig ⊥ wine otv			FIFO FOILIEIS					
bit 4	UTXBF: UAR	T TX Buffer Ful	l Status bit								
	1 = Transmit b	ouffer is full									
	0 = Transmit b	ouffer is not full									
bit 3	RIDLE: Receiv	ve Idle bit									
	1 = UART RX	line is in the Id	le state								
	0 = UARTRX	line is receiving	g something								

REGISTER 13-4: UxSTAH: UARTx STATUS REGISTER HIGH

Note 1: The receive watermark interrupt is not set if PERIF or FERIF is set and the corresponding IE bit is set.

REGISTER 14-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit 1 = SPIxTXB is empty 0 = SPIxTXB is not empty Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB. Enhanced Buffer Mode: Indicates TXELM<5:0> = 000000. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM<5:0> = 111111. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM<5:0> = 111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
—	—	—	FRMERREN	BUSYEN	—	—	SPITUREN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
SRMTEN	SPIROVEN	SPIRBEN		SPITBEN	<u> </u>	SPITBFEN	SPIRBFEN			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-13	Unimplement	ted: Read as '	0'							
bit 12	FRMERREN:	Enable Interru	pt Events via F	RMERR bit						
	1 = Frame err	or generates a	n interrupt ever	nt runt overt						
hit 11		ol does not ge								
	1 = SPIBLISY	denerates an	interrunt event							
	0 = SPIBUSY does not generate an interrupt event									
bit 10-9	Unimplemented: Read as '0'									
bit 8	SPITUREN: E	Enable Interrup	t Events via SP	ITUR bit						
	1 = Transmit l	Jnderrun (TUF	R) generates an	interrupt even	t					
	0 = Transmit l	Jnderrun does	not generate a	n interrupt eve	nt					
bit 7	SRMTEN: En	able Interrupt I	Events via SRM	IT bit						
	1 = Shift Regi	ster Empty (SF ster Empty doe	RMT) generates	interrupt even	its ts					
bit 6		=nable Interrun	t Events via SE	PIROV bit	13					
bit 0	1 = SPIx Rece	eive Overflow (ROV) generate	es an interrupt e	event					
	0 = SPIx Rece	eive Overflow o	loes not genera	ate an interrupt	event					
bit 5	SPIRBEN: Er	able Interrupt	Events via SPI	RBE bit						
	1 = SPIx RX b	ouffer empty ge	enerates an inte	errupt event						
	0 = SPIx RX t	ouffer empty do	bes not generat	e an interrupt e	event					
bit 4	Unimplement	ted: Read as	0'							
bit 3	SPITBEN: En	able Interrupt I	Events via SPIT	BE bit	-1					
	1 = SPIx transmit buffer empty generates an interrupt event 0 = SPIx transmit buffer empty does not generate an interrupt event									
bit 2	Unimplemented: Read as '0'									
bit 1	SPITBEEN: Enable Interrupt Events via SPITBE bit									
	1 = SPIx transmit buffer full generates an interrupt event									
	0 = SPIx trans	smit buffer full o	does not genera	ate an interrup	t event					
bit 0	SPIRBFEN: E	Enable Interrup	t Events via SP	PIRBF bit						
	1 = SPIx receive buffer full generates an interrupt event									
	0 = SPIx rece	ive butter full d	oes not genera	te an interrupt	event					

REGISTER 14-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

18.0 CONFIGURABLE LOGIC CELL (CLC)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (DS70005298) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - The CLC is identical for both Master core and Slave core (where the x represents the number of the specific module being addressed in Master or Slave).
 - 3: All associated register names are the same on the Master core and the Slave core. The Slave code will be developed in a separate project in MPLAB[®] X IDE with the device selection, dsPIC33CH128MP508S1, where the S1 indicates the Slave device. The Master and Slave are CLC1 and CLC2.

FIGURE 18-1: CLCx MODULE

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Table 18-1 shows an overview of the module.

ГABLE 18-1:	CLC MODULE OVERVIEW
-------------	----------------------------

	Number of CLC Modules	Identical (Modules)				
Master	4	Yes				
Slave	4	Yes				

Figure 18-3 shows the details of the data source multiplexers and Figure 18-2 shows the logic input gate connections.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N			
bit 15							bit 8			
										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N			
bit 7							bit 0			
Legend:	1.11		• •							
R = Readable bit		vv = vvritable bit		0 = 0 implemented bit, read as 0			2011/2			
-n = value at	PUR	I = BILIS Set			ared	x = Bit is unkr	IOWI			
hit 15	GADAT: Gate	4 Data Source	4 True Enable	a hit						
bit 15	1 = Data Source 4 signal is enabled for Gate 4									
	0 = Data Source 4 signal is disabled for Gate 4									
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit						
	1 = Data Source 4 inverted signal is enabled for Gate 4									
	0 = Data Source 4 inverted signal is disabled for Gate 4									
bit 13	G4D3T: Gate 4 Data Source 3 True Enable bit									
	1 = Data Source 0 = Data Source 1	rce 3 signal is e rce 3 signal is c	lisabled for Ga	ate 4						
bit 12	G4D3N: Gate 4 Data Source 3 Negated Enable bit									
	1 = Data Sou	rce 3 inverted s	ignal is enable	ed for Gate 4						
	0 = Data Source 3 inverted signal is disabled for Gate 4									
bit 11	G4D2T: Gate 4 Data Source 2 True Enable bit									
	1 = Data Source 2 signal is enabled for Gate 4									
bit 10	0 - Data Source 2 Signal is disabled for Gate 4 G4D2N: Gate 4 Data Source 2 Negated Enable bit									
bit To	1 = Data Source 2 inverted signal is enabled for Gate 4									
	0 = Data Source 2 inverted signal is disabled for Gate 4									
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	e bit						
	1 = Data Sou	rce 1 signal is e	enabled for Ga	te 4						
	0 = Data Source 1 signal is disabled for Gate 4									
DIT 8	G4D1N: Gate	e 4 Data Source	ignal is enable	hable bit						
	0 = Data Sour	rce 1 inverted s	ignal is disable	ed for Gate 4						
bit 7	G3D4T: Gate	3 Data Source	4 True Enable	e bit						
	1 = Data Source 4 signal is enabled for Gate 3									
	0 = Data Source 4 signal is disabled for Gate 3									
bit 6	G3D4N: Gate	3 Data Source	4 Negated Er	nable bit						
	1 = Data Sou	rce 4 inverted s	ignal is enable	ed for Gate 3						
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	e bit						
bit o	1 = Data Source 3 signal is enabled for Gate 3									
	0 = Data Sour	rce 3 signal is c	lisabled for Ga	ate 3						
bit 4	G3D3N: Gate	e 3 Data Source	3 Negated Er	nable bit						
	 1 = Data Source 3 inverted signal is enabled for Gate 3 0 = Data Source 3 inverted signal is disabled for Gate 3 									

REGISTER 18-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

20.1 Current Bias Generator Control Registers

REGISTER 20-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

—									
bit 8 R/W-0									
R/W-0									
R/W-0									
10EN0									
bit 0									
x = Bit is unknown									
ON: Current Bias Module Enable bit									
I10EN3: 10 μA Enable for Output 3 bit									
$1 = 10 \mu\text{A}$ output is enabled									
$0 = 10 \ \mu A$ output is disabled									
I10EN2: 10 μA Enable for Output 2 bit									
110EN0: 10 uA Enable for Output 0 bit									
1									

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	—		_	—	—		
bit 23							bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	—		_	_	—		
bit 15							bit 8	
U-1	U-1	r-1	r-1	U-1	U-1	U-1	U-1	
—	—	—		_	_	—		
bit 7							bit 0	
Legend:		PO = Program Once bit		r = Reserved bit				
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

REGISTER 21-7: FPOR CONFIGURATION REGISTER

bit 23-6 Unimplemented: Read as '1'

bit 5-4 **Reserved:** Maintain as '1'

bit 3-0 Unimplemented: Read as '1'

REGISTER 21-31: FS1ALTREG CONFIGURATION REGISTER (SLAVE) (CONTINUED)

- bit 2-0 S1CTXT1<2:0>: Alternate Working Register Set #1 Interrupt Priority Level Selection bits
 - 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4
 - 010 = Alternate Register Set #1 is assigned to IPL Level 3
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2
 - 000 = Alternate Register Set #1 is assigned to IPL Level 1