

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp208-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	21
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	29
3.0	Master Modules	35
4.0	Slave Modules	. 261
5.0	Master Slave Interface (MSI)	. 417
6.0	Oscillator with High-Frequency PLL	. 431
7.0	Power-Saving Features (Master and Slave)	. 471
8.0	Direct Memory Access (DMA) Controller	. 491
9.0	High-Resolution PWM (HSPWM) with Fine Edge Placement	. 501
10.0	Capture/Compare/PWM/Timer Modules (SCCP)	. 535
11.0	High-Speed Analog Comparator with Slope Compensation DAC	. 553
12.0	Quadrature Encoder Interface (QEI) (Master/Slave)	. 565
13.0	Universal Asynchronous Receiver Transmitter (UART)	. 583
14.0	Serial Peripheral Interface (SPI)	. 605
15.0	Inter-Integrated Circuit (I ² C)	. 623
16.0	Single-Edge Nibble Transmission (SENT)	. 633
17.0	Timer1	. 643
18.0	Configurable Logic Cell (CLC)	. 647
19.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	. 659
20.0	Current Bias Generator (CBG)	. 663
21.0	Special Features	. 667
22.0	Instruction Set Summary	. 713
23.0	Development Support	. 723
24.0	Electrical Characteristics	. 727
25.0	Packaging Information	. 767
Appe	ndix A: Revision History	. 791
Index		793
The M	/licrochip Web Site	. 803
Custo	mer Change Notification Service	. 803
Custo	mer Support	. 803
Produ	Ict Identification System	. 805

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

$$f = \frac{1}{2}$$
 (i.e., ADC Conversion Rate.

$$f = \frac{1}{(2\pi\sqrt{LC})}$$

$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

2.2.1 BULK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the bulk capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components, as shown in Figure 2-2, within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

ACLR from the external capacitor, C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM1R7 | ICM1R6 | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-39: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI1R7 | TCKI1R6 | TCKI1R5 | TCKI1R4 | TCKI1R3 | TCKI1R2 | TCKI1R1 | TCKI1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM1R<7:0>: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI1<7:0>:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-40: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM2R<7:0>: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **TCKI2R<7:0>:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 3-30.

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFBR7 | OCFBR6 | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

REGISTER 3-47: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **OCFBR<7:0>:** Assign SCCP Fault B (OCFB) Input to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 **OCFAR<7:0>:** Assign SCCP Fault A (OCFA) Input to the Corresponding RPn Pin bits See Table 3-30.

REGISTER 3-48: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI9R7 | PCI9R6 | PCI9R5 | PCI9R4 | PCI9R3 | PCI9R2 | PCI9R1 | PCI9R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI8R7 | PCI8R6 | PCI8R5 | PCI8R4 | PCI8R3 | PCI8R2 | PCI8R1 | PCI8R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **PCI9R<7:0>:** Assign PWM Input 9 (PCI9) to the Corresponding RPn Pin bits See Table 3-30.

bit 7-0 PCI8R<7:0>: Assign PWM Input 8 (PCI8) to the Corresponding RPn Pin bits See Table 3-30.

4.2.1.1 Program Memory Organization

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-4).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented, or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.1.2 Interrupt and Trap Vectors

All dsPIC33CH128MP508S1 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of PRAM memory, with the actual address for the start of code at address, 0x000200, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in Table 4-20.

FIGURE 4-4: PROGRAM MEMORY ORGANIZATION

6.3 Slave Oscillator Configuration Registers

Table 6-2 lists the configuration settings that select the device's Slave core oscillator source and operating mode at a POR.

Oscillator Source	Oscillator Mode	S1FNOSC<2:0> Value	POSCMD<1:0> Value ⁽³⁾	Notes
S0	Fast RC Oscillator (FRC)	000	XX	1
S1	Fast RC Oscillator with PLL (FRCPLL)	001	XX	1
S2	Primary Oscillator (EC)	010	00	1
S2	Primary Oscillator (XT)	010	01	
S2	Primary Oscillator (HS)	010	10	
S3	Primary Oscillator with PLL (ECPLL)	011	00	1
S3	Primary Oscillator with PLL (XTPLL)	011	01	
S3	Primary Oscillator with PLL (HSPLL)	011	10	
S4	Reserved	100	XX	1
S5	Low-Power RC Oscillator (LPRC)	101	XX	1
S6	Backup FRC (BFRC)	110	XX	1
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	xx	1, 2

TABLE 6-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION FOR THE SLAVE

Note 1: The OSCO pin function is determined by the S1OSCIOFNC Configuration bit. If both the Master core OSCIOFNC and Slave core S1OSCIOFNC bits are set, the Master core OSCIOFNC bit has priority.

2: This is the default oscillator mode for an unprogrammed (erased) device.

3: The POSCMD<1:0> bits are only available in the Master Oscillator Configuration register, FOSC. This setting configures the Primary Oscillator for use by either core.

REGISTER 6-6:	ACLKCON1: AUXILIARY CLOCK CONTROL REGISTER (I	MASTER)
---------------	---	---------

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
APLLEN ⁽¹⁾	APLLCK	—	—	—	—	—	FRCSEL
bit 15							bit 8
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1
	<u> </u>		_	APLLPRE3	APLLPRE2	APLLPRE1	APLLPRE0
bit 7							bit 0
Legend:		r = Reserved b	it				
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	APLLEN: Aux 1 = AFPLLO is 0 = AFPLLO is	iliary PLL Enat	ble/Bypass sele he APLL post- he APLL input	ect bit ⁽¹⁾ divider output (clock (bypass	(bypass disable enabled)	ed)	
bit 14	APLLCK: APL 1 = Auxiliary I 0 = Auxiliary I	L Phase-Locke PLL is in lock PLL is not in loc	ed State Status	s bit			
bit 13-9	Unimplement	ed: Read as '0	,				
bit 8	FRCSEL: FRC 1 = FRC is the 0 = Primary C	C Clock Source e clock source Oscillator is the	Select bit for APLL clock source fo	or APLL			
bit 7-6	Unimplement	ed: Read as '0	,				
bit 5-4	Reserved: Ma	aintain as '0'					
bit 3-0	APLLPRE<3: 1111 = Reser	0>: Auxiliary Pl ved	L Phase Dete	ctor Input Divic	ler bits		
	1001 = Reser 1000 = Input of 0111 = Input of 0110 = Input of 0101 = Input of 0100 = Input of 0011 = Input of 0010 = Input of 0001 = Input of 0000 = Reser	ved divided by 8 divided by 7 divided by 6 divided by 5 divided by 4 divided by 3 divided by 2 divided by 1 (po ved	ower-on defaul	t selection)			

Note 1: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
_	_	—	—	_	_	_	
bit 15				·			bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
			APLLF	BDIV<7:0>			
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read a	as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15-12	Unimpleme	nted: Read as '	0'				
bit 11-8	Reserved: N	/laintain as '0'					
bit 7-0	APLLFBDIV	' <7:0>: APLL Fe	eedback Divid	er bits			
	11111111 =	Reserved					
		200 maximum	(1)				
	10010110 =	150 (default)					
	 00010000 =	• 16 minimum ⁽¹⁾					
	 00000010 =	Reserved					
	00000001 =	Reserved					
	00000000 =	Reserved					

REGISTER 6-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER (MASTER)

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

REGISTER 6-8: APLLDIV1: APLL OUTPUT DIVIDER REGISTER (MASTER)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AVCODIV<1:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
—	APO)<71010<2:0>	1,2)		APC)ST2DIV<2:0>	<mark>⊳(1,2)</mark>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 bit 9-8	Unimplemented: Read as '0' AVCODIV<1:0>: APLL VCO Output Divider Select bits 11 = AFvco 10 = AFvco/2 01 = AFvco/3 00 = AFvco/4
bit 7	Unimplemented: Read as '0'
bit 6-4	APOST1DIV<2:0>: APLL Output Divider #1 Ratio bits ^(1,2)
	APOST1DIV<2:0> can have a valid value, from 1 to 7 (the APOST1DIVx value should be greater than or equal to the APOST2DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.
bit 3	Unimplemented: Read as '0'
bit 2-0	APOST2DIV<2:0>: APLL Output Divider #2 Ratio bits ^(1,2)
	APOST2DIV<2:0> can have a valid value, from 1 to 7 (the APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx values must not be changed while the PLL is operating.
 - **2:** The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

REGISTER 6-20: REFOCONH: REFERENCE CLOCK CONTROL HIGH REGISTER (SLAVE)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RODIV<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RODI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
<u>.</u>							
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-0	RODIV<14:	0>: Reference C	lock Integer Di	vider Select bit	s		
	Divider for the	ne selected input	clock source i	is two times the	selected value	.	
	111 1111	1111 1111 = B	ase clock valu	e divided by 65	.534 (2 * 7FFF	h)	
	111 1111	1111 1110 = B	ase clock valu	e divided by 65	532 (2 * 7FFF	h)	
	111 1111	1111 1101 = B	ase clock valu	e divided by 65	530 (2 * 7FFC)h)	
	<u> </u>	D			,	,	
	000 0000	0000 0010 = B	ase clock valu	e divided bv 4 ((2 * 2)		
		0000 0001 = B	ase clock valu	e divided by 2 ((2 * 1)		
					'/		

000 0000 0000 0000 = Base clock value

REGISTER 7-10: PMD1: SLAVE PERIPHERAL MODULE DISABLE 1 CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
		_		T1MD	QEIMD	PWMMD	—
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	—	U1MD	_	SPI1MD		—	ADC1MD
bit 7							bit 0
Legend:]
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-12	Unimplement	ted: Read as '0	,				
bit 11	T1MD: Timer1	I Module Disabl	e bit				
	1 = Timer1 more 1 = Timer1 more 1	odule is disable	d I				
bit 10	QEIMD: QEI N	Module Disable	- bit				
	1 = QEI modu	le is disabled					
	0 = QEI modu	le is enabled					
bit 9	PWMMD: PW	M Module Disa	ble bit				
	1 = PWM mod $0 = PWM mod$	dule is disabled					
bit 8	Unimplement	ted: Read as '0	,				
bit 7	12C1MD: 12C1	Module Disabl	e bit				
	1 = I2C1 mod	ule is disabled					
	0 = I2C1 mod	ule is enabled					
bit 6	Unimplement	ted: Read as '0	,				
bit 5	U1MD: UART	1 Module Disab	ole bit				
	1 = UART1 m	odule is disable	d				
hit 4			u ,				
DIL 4			L				
DIT 3	5PI1MD: 5PI ¹	I MODULE DISAD	ie dit				
	0 = SPI1 mod	ule is enabled					
bit 2-1	Unimplement	ted: Read as '0	,				
bit 0	ADC1MD: AD	C Module Disa	ble bit				
	1 = ADC mod	ule is disabled					
	0 = ADC mod	ule is enabled					

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
	PGA3MD	—		_	PGA2MD	_		
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
_	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	—	
bit 7						·	bit 0	
Legend:								
R = Readable	e bit	W = Writable b	pit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	Unimplement	ted: Read as 'o)'					
bit 14	PGA3MD: PG	GA3 Module Dis	able bit					
	1 = PGA3 mo	dule is disabled	ł					
	0 = PGA3 mo	dule is enabled						
bit 13-11	Unimplemented: Read as '0'							
bit 10	PGA2MD: PG	GA2 Module Dis	able bit					
	1 = PGA2 mo	dule is disabled	ł					
	0 = PGA2 mo	dule is enabled						
bit 9-6	Unimplement	ted: Read as '0)'					
bit 5	CLC4MD: CL	C4 Module Dis	able bit					
	$1 = CLC4 \mod 0$	dule is disabled						
bit 4			abla bit					
DIL 4	1 = CLC3 mod	dule is disabled						
	0 = CLC3 mo	dule is enabled	I					
bit 3	CLC2MD: CL	C2 Module Dis	able bit					
	1 = CLC2 mo	dule is disabled						
	0 = CLC2 mod	dule is enabled						
bit 2	CLC1MD: CL	C1 Module Disa	able bit					
	1 = CLC1 mod	dule is disabled	l					
	0 = CLC1 mod	dule is enabled						
bit 1-0	Unimplement	ted: Read as '0)'					

REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

12.1 QEI Control and Status Registers

DAM 0		DAA/ A	DAA/ O	DMM	D /4/ 0		DAMA
R/W-0	0-0	R/W-0	R/W-U	R/W-0		R/W-0	R/VV-0
QEIEN	—	QEISIDL	PIMOD2	PIMOD1		IMV1	
DIT 15							DIT 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	INTDIV2	INTDIV1	INTDIV0	CNTPOL	GATEN	CCM1	ССМО
bit 7						<u> </u>	bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15	QEIEN: Quad	drature Encoder	Interface Mod	dule Enable bit			
	1 = QEI modi	ule is enabled	nowever SED	s can be read c	or written		
bit 14		ted: Pood as '	, ,	s can be read c	or written		
bit 13		El Ston in Idle M	, ode hit				
DIL 15	1 = Discontin	ues module one	eration when d	levice enters Id	le mode		
	0 = Continue	s module opera	tion in Idle mo	de			
bit 12-10	PIMOD<2:0>	: Position Coun	ter Initializatio	n Mode Select	bits		
	111 = Module	o Count mode f	or position cou	unter and every	Index event re	sets the positio	on counter
	110 = Module	o Count mode f	or position cou				
	101 = Resets 100 = Secon	d Index event a	after Home ev	ent initializes th	he position cou	inter with the c	contents of the
	QEIxIC	C register					
	011 = First In	idex event after	Home event ir	nitializes the pos	sition counter w	ith the contents	of the QEIxIC
	010 = Next Ir	ndex input even	t initializes the	position count	er with the cont	ents of the QE	IxIC register
	001 = Every	Index input eve	nt resets the p	osition counter	,		
	000 = Index i	input event doe	s not affect the	e position count	ter		
bit 9-8	IMV<1:0>: In	dex Match Valu	e bits				
	11 = Index m 10 = Index m	atch occurs whe	en QEBX = 1 a	and QEAX = 1 and OEAX = 0			
	01 = Index m	atch occurs wh	en QEBx = 0 a	and QEAx = 1			
	00 = Index m	atch occurs whe	en QEBx = 0 a	and QEAx = 0			
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-4	INTDIV<2:0> velocity count	: Timer Input C ter and Index co	lock Prescale	e Select bits (ir clock divider se	nterval timer, m elect)	ain timer (pos	ition counter),
	111 = 1:128	prescale value					
	110 = 1:64 pi	rescale value					
	101 = 1:32 pr 100 = 1:16 pr	rescale value					
	011 = 1:8 pre	escale value					
	010 = 1:4 pre	escale value					
	001 = 1:2 pre	escale value					
bit 3		sition Velocity	and Index Cou	Inter/Timer Dire	ction Select bit	ł	
	1 = Counter o	direction is near	tive unless m	odified by an ex	ternal up/dowr	signal	
	0 = Counter o	direction is posit	ive unless mo	dified by an ext	ternal up/down	signal	

REGISTER 12-1: QEIXCON: QEIX CONTROL REGISTER

REGISTER 12-11: VELxHLDL: VELOCITY x COUNTER HOLD REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at I	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown

bit 15-0 VELHLD<15:0>: Velocity Counter Hold Value bits

REGISTER 12-12: VELXHLDH: VELOCITY x COUNTER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			VELHLD)<31:24>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VELHLD<23:16>									
bit 7							bit 0			

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 VELHLD<31:16>: Velocity Counter Hold Value bits

REGISTER 13-14: UXRXCHK: UARTX RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—		—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RXCH	<<7:0>			
bit 7							bit 0
							
Legend:							
R = Readable bit W = Wri		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8	Unimplement	ed: Read as '0	,				
bit 7-0	RXCHK<7:0>	: Receive Cheo	cksum bits (cal	culated from R	X words)		
	LIN Modes:						
	COEN = 1: Su	m of all receive	d data + additi	on carries, incl	uding PID.		
	CUEN = 0: Su	m of all receive		on cames, exc	luaing PID.		
	LIN Slave: Cleared when Break is detected.						
	LIN Master/Slave: Cleared when Break is detected.						
	<u>Other Modes:</u> C0EN = 1: Su	m of every byte	e received + ad	dition carries.			

C0EN = 0: Value remains unchanged.

REGISTER 14-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the Slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6		CKP: Clock Polarity Select bit
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode 0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3		DISSCK: Disable SCKx Output Port bit
		 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0		ENHBUF: Enhanced Buffer Enable bit
		 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note	1:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1, SSEN is not used.

- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

20.0 CURRENT BIAS GENERATOR (CBG)

- Note 1: This data sheet summarizes the features of the dsPIC33CH128MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (DS70005253) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.

The Current Bias Generator (CBG) consists of two classes of current sources: 10 μ A and 50 μ A sources. The major features of each current source are:

- 10 µA Current Sources:
 - Current sourcing only
 - Up to four independent sources
- 50 µA Current Sources:
 - Selectable current sourcing or sinking
 - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 20-1.

REGISTER 21-19: FMBXHSEN CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			HS <f< td=""><td>I:A>EN</td><td></td><td></td><td></td></f<>	I:A>EN			
bit 7							bit 0
Legend:		PO = Program	n Once bit				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8 Unimplemented: Read as '1'

```
bit 7-0 HS<H:A>EN: Mailbox Data Flow Control Protocol Block x Enable Fuses bits (x = A, B, C, D, E, F, G, H)
1 = Mailbox data flow control handshake protocol block is disabled
```

0 = Mailbox data flow control handshake protocol block is enabled

REGISTER 21-20: FCFGPRA0: PORTA CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—			—		—		
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—		—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
—	—	—			CPRA<4:0>		
bit 7							bit 0
Legend:		PO = Progran	n Once bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 23-5	Unimplemen	ted: Read as ':	1'				
bit 4-0	CPRA<4:0>:	Configure POF	RTA Ownershi	o bits			
	1 = Master co	ore owns pin					
	0 = Slave cor	e owns pin					

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A