

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit Dual-Core
Speed	180MHz, 200MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	88KB (88K x 8)
Program Memory Type	FLASH, PRAM
EEPROM Size	•
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 34x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp208-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	21			
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	29			
3.0	Master Modules	35			
4.0	Slave Modules	. 261			
5.0	Master Slave Interface (MSI)	. 417			
6.0	Oscillator with High-Frequency PLL	. 431			
7.0	Power-Saving Features (Master and Slave)	. 471			
8.0	Direct Memory Access (DMA) Controller	. 491			
9.0	High-Resolution PWM (HSPWM) with Fine Edge Placement	. 501			
10.0	Capture/Compare/PWM/Timer Modules (SCCP)	. 535			
11.0	High-Speed Analog Comparator with Slope Compensation DAC	. 553			
12.0	Quadrature Encoder Interface (QEI) (Master/Slave)	. 565			
13.0	Universal Asynchronous Receiver Transmitter (UART)	. 583			
14.0	Serial Peripheral Interface (SPI)	. 605			
15.0	Inter-Integrated Circuit (I ² C)	. 623			
16.0	Single-Edge Nibble Transmission (SENT)	. 633			
17.0	Timer1	. 643			
18.0	Configurable Logic Cell (CLC)	. 647			
19.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	. 659			
20.0	Current Bias Generator (CBG)	. 663			
21.0	Special Features	. 667			
22.0	Instruction Set Summary	. 713			
23.0	Development Support	. 723			
24.0	Electrical Characteristics	. 727			
25.0	Packaging Information	. 767			
Appe	ndix A: Revision History	. 791			
Index		793			
The M	/licrochip Web Site	. 803			
Custo	stomer Change Notification Service				
Custo	mer Support	. 803			
Produ	Ict Identification System	. 805			

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Reset	Reset			FA4	000-0000-00	PCTRAPH	FC2	00000000
RCON	F80	00x-000000011	PMD2	FA6	00000000	FEXL	FC4	*****
Oscillator			PMD3	FA8	00-	FEXH	FC6	xxxxxxxx
OSCCON	F84	-000-yyy0-0-00	PMD4	FAA	0	DPCL	FCE	*****
CLKDIV	F86	00110000000001	PMD6	FAE	000000	DPCH	FD0	xxxxxxxx
PLLFBD	F88	000010010110	PMD7	FB0	0	APPO	FD2	*****
PLLDIV	F8A	00-011-001	PMD8	FB2	000xx000-	APPI	FD4	*****
OSCTUN	F8C	000000	WDT			APPS	FD6	xxxxx
ACLKCON1	F8E	000-000001	WDTCONL	FB4	00000000000000	STROUTL	FD8	*****
APLLFBD1	F90	000010010110	WDTCONH	FB6	000000000000000000000000000000000000000	STROUTH	FDA	*****
APLLDIV1	F92	00-011-001	REFOCONL	FB8	0-000-000000	STROVCNT	FDC	*****
CANCLKCON	F9A	xxxx-xxxxxxx	REFOCONH	FBA	-0000000000000000	JDATAH	FFA	*****
PMD			REFOTRIML	FBC	000000000000000000000000000000000000000	JDATAL	FFC	*****
PMDCON	FA0	0	PCTRAPL	FC0	000000000000000000000000000000000000000			

TABLE 3-18: MASTER SFR BLOCK F00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits; y = value set by Configuration bits. Address and Reset values are in hexadecimal and binary, respectively.

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 3-19 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 3-19:	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

0/11	Operation		Before		After		
0/0, R/W		DSRPAG	DS EA<15>	Page Description	DSRPAG	DS EA<15>	Page Description
O, Read	[++\Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last lsw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

3.3.2 RTSP OPERATION

RTSP allows the user application to program one double instruction word or one row at a time.The double instruction word write blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of one double instruction word and 64 double instruction words, respectively.

The basic sequence for RTSP programming is to first load two 24-bit instructions into the NVM write latches found in configuration memory space. Refer to Figure 3-3 through Figure 3-4 for write latch addresses. Then, the WR bit in the NVMCON register is set to initiate the write process. The processor stalls (waits) until the programming operation is finished. The WR bit is automatically cleared when the operation is finished.

Double instruction word writes are performed by manually loading both write latches, using TBLWTL and TBLWTH instructions, and then initiating the NVM write while the NVMOPx bits are set to '0x1'. The program space destination address is defined by the NVMADR/U registers.

```
//Sample code for writing 0x123456 to address locations 0x10000 / 10002
   NVMCON = 0 \times 4001;
   TBLPAG = 0 \times FA;
                                  // write latch upper address
  NVMADR = 0 \times 0000;
                                  // set target write address of general segment
  NVMADRU = 0 \times 0001;
   __builtin_tblwtl(0, 0x3456);
                                  // load write latches
   __builtin_tblwth (0,0x12);
   __builtin_tblwtl(2, 0x3456);
                                  // load write latches
   __builtin_tblwth (2,0x12);
   asm volatile ("disi #5");
   __builtin_write_NVM();
   while(_WR == 1 ) ;
//Sample code to read the Flash content of address 0x10000
// readDataL/ readDataH variables need to defined
   TBLPAG = 0 \times 0001;
   readDataL = __builtin_tblrdl(0x0000);
   readDataH = __builtin_tblrdh(0x0000);
```

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			BRP	<7:0>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0			
			TSEG	1<7:0>						
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable t	bit	U = Unimpler	mented bit, rea	ad as 'O'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-8	BRP<7.0>	Baud Rate Pres	aler hite							
51110-0	1111 1111	1 = TQ = 256/Fsystem	S							
	 0000 0000) = TQ = 1/Fsys								
bit 7-0	TSEG1<7:0)>: Time Segmen	t 1 bits (Propa	agation Segme	nt + Phase Se	gment 1)				
	1111 1111	1 = Length is 256	χ Το							

REGISTER 3-104: C1NBTCFGH: CAN NOMINAL BIT TIME CONFIGURATION REGISTER HIGH⁽¹⁾

0000 0000 = Length is 1 x TQ

REGISTER 3-105: C1NBTCFGL: CAN NOMINAL BIT TIME CONFIGURATION REGISTER LOW⁽¹⁾

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
—				TSEG2<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
—				SJW<6:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-8	TSEG2<6:0	>: Time Segment	t 2 bits (Phase	e Segment 2)			
	111 1111:	= Length is 128 x	ΤQ				
	 000 0000=	= Lenath is 1 x Ta	2				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-0	SJW<6:0>:	Synchronization	Jump Width b	oits			
	111 1111:	= Length is 128 x	TQ				
		-					
	000 0000	= Length is 1 x To	2				

Note 1: These bits can only be modified in Configuration mode (OPMOD<2:0> = 100).

REGISTER 3-122: C1TXIFH: CAN TRANSMIT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clear	ed	x = Bit is unkr	nown

bit 15-0 TFIF<31:16>: Unimplemented

Note 1: C1TXIFH: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).

REGISTER 3-123: C1TXIFL: CAN TRANSMIT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF	<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 **TFIF<15:8>:** Unimplemented

bit 7-0 **TFIF<7:0>:** Transmit FIFO/TXQ Interrupt Pending bits⁽²⁾

1 = One or more enabled transmit FIFO/TXQ interrupts are pending

0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: C1TXIFL: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).
 2: TFIF0 is for the transmit queue.

REGISTER 3-138: C1TEFSTA: CAN TRANSMIT EVENT FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	S/HC-0	R-0	R-0	R-0
	—	—	—	TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	S = Settable	by '1' bit		
R = Readable bit W = Writab		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 1	Unimplomor	tad: Dood on '0'					

DIT 15-4	Unimplemented: Read as 0
bit 3	TEFOVIF: Transmit Event FIFO Overflow Interrupt Flag bit
	1 = Overflow event has occurred
	0 = No overflow event has occurred
bit 2	TEFFIF: Transmit Event FIFO Full Interrupt Flag bit ⁽¹⁾
	1 = FIFO is full
	0 = FIFO is not full
bit 1	TEFHIF: Transmit Event FIFO Half Full Interrupt Flag bit ⁽¹⁾
	1 = FIFO is \geq half full
	0 = FIFO is < half full
bit 0	TEFNEIF: Transmit Event FIFO Not Empty Interrupt Flag bit ⁽¹⁾
	1 = FIFO is not empty
	0 = FIFO is empty

Note 1: These bits are read-only and reflect the status of the FIFO.

REGISTER 3-189: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	.IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	ented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 3-190: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

'0' = Bit is cleared

Note 1: These bits are read-only when the module is executing Step commands.

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				

REGISTER 4-17: CORCON: SLAVE CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 4-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0

REGISTER 4-45: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8PCI11R<7:0>: Assign PWM Input 11 (S1PCI11) to the Corresponding S1RPn Pin bits
See Table 4-27.bit 7-0PCI10R<7:0>: Assign PWM Input 10 (S1PCI10) to the Corresponding S1RPn Pin bits

See Table 4-27.

REGISTER 4-46: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 **QEIB1R<7:0>:** Assign QEI Input B (S1QEIB1) to the Corresponding S1RPn Pin bits See Table 4-27.

bit 7-0 **QEIA1R<7:0>:** Assign QEI Input A (S1QEIA1) to the Corresponding S1RPn Pin bits See Table 4-27.

HSC/R-0	HSC/R-0	U-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	r	r	r	SHRSAMC9	SHRSAMC8
bit 15				·		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0
bit 7							bit 0
Legend: r = Reserved bit			bit	U = Unimplem	ented bit, read	as '0'	
R = Readable	bit	W = Writable I	oit	HSC = Hardw	are Settable/C	earable bit	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15	REFRDY: Bar	nd Gap and Re	ference Voltage	e Ready Flag b	bit		
	1 = Band gap	is ready					
L: + 4 4	0 = Band gap	is not ready		Farra a Flana hit			
DIT 14	REFERR: Bar	a Gap or Refe	rence voltage	Error Flag bit		- 1)	
	1 = Band gap 0 = No band g	was removed a Jap error was d	etected	noquie was ena	abied (ADON =	• 1)	
bit 13	Unimplement	ted: Read as 'd)'				
bit 12-10	Reserved: Ma	aintain as '0'					
bit 9-0	SHRSAMC<9	:0>: Shared Al	DC Core Samp	le Time Selecti	on bits		
	These bits spe sample time.	ecify the numbe	er of shared Al	OC Core Clock	Periods (TADCO	DRE) for the sha	ared ADC core
	1111111111	= 1025 TADCOF	RE				
		= 3 TADCORE					
	0000000000	= 2 TADCORE					

REGISTER 4-86: ADCON2H: ADC CONTROL REGISTER 2 HIGH

Example 6-7 illustrates code for using the Slave PLL with an 8 MHz internal FRC.

EXAMPLE 6-7: CODE EXAMPLE FOR USING SLAVE PLL WITH 8 MHz INTERNAL FRC

```
//code example for 60 MIPS system clock using 8MHz FRC
// Select FRC on POR
#pragma config S1FNOSC = FRC
                                        // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config SllESO = OFF
                                         // Two-speed Oscillator Start-up Enable bit (Start up
                                           with user-selected oscillator source)
// Enable Clock Switching
#pragma config S1FCKSM = CSECMD
int
       main()
{
       // Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
       CLKDIVbits.PLLPRE = 1; // N1=1
       PLLFBDbits.PLLFBDIV = 150;
                                        // M = 150
       PLLDIVbits.POST1DIV = 5;
                                        // N2=5
       PLLDIVbits.POST2DIV = 1;
                                        // N3=1
       // Initiate Clock Switch to FRC with PLL (NOSC=0b001)
       __builtin_write_OSCCONH(0x01);
       __builtin_write_OSCCONL(OSCCON | 0x01);
       // Wait for Clock switch to occur
       while (OSCCONbits.OSWEN!= 0);
       // Wait for PLL to lock
       while (OSCCONbits.LOCK!= 1);
}
Note: FPLLO = FPLLI * M/(N1 * N2 * N3); FPLLI = 8; M = 150; N1 = 1; N2 = 5; N3 = 1;
      so FPLLO = 10 * 100/(1 * 5 * 1) = 240 \text{ MHz} or 60 MIPS.
```

11.2 Features Overview

- Four Rail-to-Rail Analog Comparators
- Up to Five Selectable Input Sources per Comparator:
 - Three external inputs
- Two internal inputs from PGA module
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Interrupt Generation Capability
- Dedicated Pulse Density Modulation DAC for each Analog Comparator:
 - PDM unit followed by a digitally controlled multimode multipole RC filter
- Multimode Multipole RC Output Filter:
 - Transition mode: Provides the fastest response
 - Fast mode: For tracking DAC slopes
 - Steady-State mode: Provides 12-bit resolution
- Slope Compensation along with each DAC:
 - Slope Generation mode
 - Hysteretic Control mode
 - Triangle Wave mode
- Functional Support for the High-Speed PWM module which Includes:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

11.3 DAC Control Registers

The DACCTRL1L and DACCTRL2H/L registers are common configuration registers for Master and Slave DAC modules. The Master and Slave DAC modules are controlled by separate sets of DACCTRL1/2 registers. The DACxCON, DACxDAT, SLPxCON and SLPxDAT registers specify the operation of individual modules. Note that x = 1 for the Master module and x = 1-3 for the Slave modules.

REGISTER 11-6: DACxDATH: DACx DATA HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DACD	AT<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DACD	AT<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared					

bit 15-0 DACDAT<15:0>: DACx Data bits

This register specifies the high DACx data value.

REGISTER 11-7: DACxDATL: DACx DATA LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			DACLC)W<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	DACLOW<7:0>									
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplen	U = Unimplemented bit, read as '0'					
-n = Value at I	a = Value at POR (1' = Bit is set (0' = Bit is cleared									

bit 15-0 DACLOW<15:0>: DACx Low Data bits

In Hysteretic mode, Slope Generator mode and Triangle mode, this register specifies the low data value and/or limit for the DACx module.

REGISTER 12-2: QEIXIOCL: QEIX I/O CONTROL LOW REGISTER (CONTINUED)

bit 6	IDXPOL: INDXx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 5	QEBPOL: QEBx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 4	QEAPOL: QEAx Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 3	 HOME: Status of HOMEx Input Pin after Polarity Control bit (read-only) 1 = Pin is at logic '1' if the HOMPOL bit is set to '0'; pin is at logic '0' if the HOMPOL bit is set to '1' 0 = Pin is at logic '0' if the HOMPOL bit is set to '0'; pin is at logic '1' if the HOMPOL bit is set to '1'
bit 2	 INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only) 1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1' 0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'
bit 1	 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1';
bit 0	 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only) 1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1' 0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; p

physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'

REGISTER 15-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN				
bit 7							bit 0				
Logondi											
D - Doodok	No hit	M = Mritable b	.i+		antad hit raa						
		vv = vviilable L	nt	0 = 0	arod	ias u v = Ditio upkr					
-n = value a	IL POR	I = BILIS SEL		0 = Bit is clea	ared	x = Bit is unkr	IOWN				
hit 15-7	Unimplemen	ted: Read as 'o	,								
bit 6	PCIE: Stop C	condition Interrur	ot Enable bit (I	² C Slave mode	only).						
	1 = Enables i	1 = Enables interrupt on detection of Stop condition									
	0 = Stop dete	0 = Stop detection interrupts are disabled									
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)										
	1 = Enables i	1 = Enables interrupt on detection of Start or Restart conditions									
	0 = Start dete	0 = Start detection interrupts are disabled									
bit 4	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)										
	1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the state										
	0 = 12CXRCV is only updated when 12COV is clear										
bit 3	SDAHT: SDAx Hold Time Selection bit										
	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx										
	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx										
bit 2	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)										
	If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the										
	BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit										
	sequences. 1 = Enables Slave bus collision interrupts										
	0 = Slave bus collision interrupts are disabled										
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)										
	1 = Following the 8th falling edge of SCLx for a matching received address byte; SCLREL bit										
	(I2CxCONL<12>) will be cleared and the SCLx will be held low										
	0 = Address nolding is disabled										
h :+ 0			(1 ² 0 0)								
bit 0	DHEN: Data	Hold Enable bit	(I ² C Slave mo	de only)	ata hyte: Slava	hardwaro closr	e the SCI DEI				

0 = Data holding is disabled

16.0 SINGLE-EDGE NIBBLE TRANSMISSION (SENT)

- Note 1: This data sheet summarizes the features of this group of dsPIC33CH128MP508 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Single-Edge Nibble Transmission (SENT) Module" (DS70005145) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 3.2 "Master Memory Organization" in this data sheet for device-specific register and bit information.
 - **3:** This SENT module is available only on the Master.

Table 16-1 shows an overview of the SENT module.

	Number of SENT Modules	Identical (Modules)		
Master Core	2	Yes		
Slave Core	None	NA		

16.1 Module Introduction

The Single-Edge Nibble Transmission (SENT) module is based on the SAE J2716, "SENT – Single-Edge Nibble Transmission for Automotive Applications". The SENT protocol is a one-way, single wire time modulated serial communication, based on successive falling edges. It is intended for use in applications where high-resolution sensor data needs to be communicated from a sensor to an Engine Control Unit (ECU).

The SENTx module has the following major features:

- · Selectable Transmit or Receive mode
- Synchronous or Asynchronous Transmit modes
- Automatic Data Rate Synchronization
- Optional Automatic Detection of CRC Errors in Receive mode
- Optional Hardware Calculation of CRC in Transmit mode
- Support for Optional Pause Pulse Period
- Data Buffering for One Message Frame
- Selectable Data Length for Transmit/Receive from Three to Six Nibbles
- Automatic Detection of Framing Errors

SENT protocol timing is based on a predetermined time unit, TTICK. Both the transmitter and receiver must be preconfigured for TTICK, which can vary from 3 to 90 μ s. A SENT message frame starts with a Sync pulse. The purpose of the Sync pulse is to allow the receiver to calculate the data rate of the message encoded by the transmitter. The SENT specification allows messages to be validated with up to a 20% variation in TTICK. This allows for the transmitter and receiver to run from different clocks that may be inaccurate, and drift with time and temperature. The data nibbles are four bits in length and are encoded as the data value + 12 ticks. This yields a 0 value of 12 ticks and the maximum value, 0xF, of 27 ticks.

A SENT message consists of the following:

- A synchronization/calibration period of 56 tick times
- · A status nibble of 12-27 tick times
- Up to six data nibbles of 12-27 tick times
- A CRC nibble of 12-27 tick times
- An optional pause pulse period of 12-768 tick times

Figure 16-1 shows a block diagram of the SENTx module.

Figure 16-2 shows the construction of a typical 6-nibble data frame, with the numbers representing the minimum or maximum number of tick times for each section.

REGISTER 20-2: IBIASCONH: CURRENT BIAS GENERATOR 50 μA CURRENT SOURCE CONTROL HIGH REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	SHRSRCEN3	SHRSNKEN3	GENSRCEN3	GENSNKEN3	SRCEN3	SNKEN3
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		SHRSRCEN2	SHRSNKEN2	GENSRCEN2	GENSNKEN2	SRCEN2	SNKEN2
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable bi	t	U = Unimpleme	ented hit read a	s 'O'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unl	known
bit 15-14	Unimpleme	nted: Read as '0	,				
bit 13	SHRSRCEN	3: Share Source	Enable for Ou	utput #3 bit			
	1 = Sourcing	Current Mirror	node is enable	ed (uses referen	ce from another	source)	
hit 12		3. Share Sink Fi	noue is uisable	eu ut #3 bit			
51(12	1 = Sinkina (Current Mirror me	ode is enabled	l (uses reference	e from another so	ource)	
	0 = Sinking (Current Mirror me	ode is disabled	Ĺ		,	
bit 11	GENSRCEN	3: Generated So	ource Enable f	or Output #3 bit			
	1 = Source g 0 = Source d	enerates the cui loes not generate	rrent source m e the current s	irror reference ource mirror ref	erence		
bit 10	GENSNKEN	3: Generated Si	nk Enable for	Output #3 bit			
	1 = Source g 0 = Source d	enerates the cui loes not generate	rrent source m e the current s	irror reference ource mirror ref	erence		
bit 9	SRCEN3: So	ource Enable for	Output #3 bit				
	1 = Current s 0 = Current s	source is enable source is disable	d d				
bit 8	SNKEN3: Si	nk Enable for Ou	utput #3 bit				
	1 = Current s 0 = Current s	sink is enabled sink is disabled					
bit 7-6	Unimplemen	nted: Read as '0	,				
bit 5	SHRSRCEN2: Share Source Enable for Output #2 bit						
	1 = Sourcing 0 = Sourcing	Current Mirror r Current Mirror r	node is enable node is disable	ed (uses referen ed	ce from another	source)	
bit 4	SHRSNKEN	2: Share Sink E	nable for Outp	ut #2 bit			
	1 = Sinking (0 = Sinking (Current Mirror mo Current Mirror mo	ode is enabled ode is disabled	l (uses reference d	e from another so	ource)	
bit 3	GENSRCEN	2: Generated So	ource Enable f	or Output #2 bit			
	1 = Source g 0 = Source d	enerates the cui loes not generate	rrent source m e the current s	irror reference ource mirror ref	erence		
bit 2	GENSNKEN	2: Generated Si	nk Enable for	Output #2 bit			
	1 = Source g 0 = Source d	enerates the cui loes not generate	rrent source m e the current s	irror reference ource mirror ref	erence		
bit 1	SRCEN2: So	ource Enable for	Output #2 bit				
	1 = Current s 0 = Current s	source is enable source is disable	d d				
bit 0	SNKEN2: Si	nk Enable for Ou	utput #2 bit				
	1 = Current s 0 = Current s	sink is enabled sink is disabled					

FIGURE 24-17: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 24-42: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67			ns		
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500			ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2