Microchip Technology - <u>DSPIC33CH64MP208T-I/PT Datasheet</u> Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|----------------------------------------------------------------------------------| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit Dual-Core | | Speed | 180MHz, 200MHz | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT | | Number of I/O | 69 | | Program Memory Size | 88KB (88K x 8) | | Program Memory Type | FLASH, PRAM | | EEPROM Size | - | | RAM Size | 20K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 34x12b; D/A 4x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 80-TQFP | | Supplier Device Package | 80-TQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ch64mp208t-i-pt | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong FIGURE 1-1: SLAVE CORE CODE TRANSFER BLOCK DIAGRAM Before a POR: **Master Flash** Slave PRAM Code to Transfer the Slave Master Slave Code to the Slave PRAM CPU CPU No Code Master Code Master Slave **RAM** RAM Slave Code After a POR, it is Master code's responsibility to load the Slave PRAM with the Slave code. Once the Slave code is loaded to PRAM, the Master can enable the Slave to start Slave code execution: **Master Flash** Slave PRAM Code to Transfer the Slave Master Slave Code to the Slave PRAM CPU CPU Slave Code Master Code Master Slave RAM **RAM** Slave Code TABLE 3-6: MASTER SFR BLOCK 200h | Register | Address | All Resets | Register | Address | All Resets | Register | Address | All Resets | |------------------|---------|-------------------|-----------|---------|------------------|-----------|---------|-------------------| | I ² C | | | U1P2 | 24E | 000000000 | SPI1CON1H | 2AE | 0000000000000000 | | I2C1CONL | 200 | 0-010000000000000 | U1P3 | 250 | 0000000000000000 | SPI1CON2L | 2B0 | 00000 | | I2C1CONH | 202 | 00000000 | U1P3H | 252 | 00000000 | SPI1CON2H | 2B2 | | | I2C1STAT | 204 | 0000000000000 | U1TXCHK | 254 | 000000000 | SPI1STATL | 2B4 | 000001-1-00 | | I2C1ADD | 208 | 0000000000 | U1RXCHK | 256 | 00000000 | SPI1STATH | 2B6 | 000000000000 | | I2C1MSK | 20C | 0000000000 | U1SCCON | 258 | 00000- | SPI1BUFL | 2B8 | 00000000000000000 | | I2C1BRG | 210 | 00000000000000000 | U1SCINT | 25A | 00-00000-000 | SPI1BUFH | 2BA | 00000000000000000 | | I2C1TRN | 214 | 11111111 | U1INT | 25C | 000- | SPI1BRGL | 2BC | xxxxxxxxxx | | I2C1RCV | 218 | 000000000 | U2MODE | 260 | 0-000-000000000 | SPI1BRGH | 2BE | | | I2C2CONL | 21C | 0-01000000000000 | U2MODEH | 262 | 000000000000 | SPI1IMSKL | 2C0 | 000000-0-00 | | I2C2CONH | 21E | 0000000 | U2STA | 264 | 000000010000000 | SPI1IMSKH | 2C2 | 0-0000000-000000 | | I2C2STAT | 220 | 00000000000000 | U2STAH | 266 | -000-00000101110 | SPI1URDTL | 2C4 | 00000000000000000 | | I2C2ADD | 224 | 0000000000 | U2BRG | 268 | 0000000000000000 | SPI1URDTH | 2C6 | 00000000000000000 | | I2C2MSK | 228 | 0000000000 | U2BRGH | 26A | 0000 | SPI2CON1L | 2C8 | 0-00000000000000 | | I2C2BRG | 22C | 00000000000000000 | U2RXREG | 26C | xxxxxxxx | SPI2CON1H | 2CA | 00000000000000000 | | I2C2TRN | 230 | 11111111 | U2TXREG | 270 | xxxxxxxxx | SPI2CON2L | 2CC | 00000 | | I2C2RCV | 234 | 000000000 | U2P1 | 274 | 000000000 | SPI2CON2H | 2CE | | | UART | | | U2P2 | 276 | 000000000 | SPI2STATL | 2D0 | 000001-1-00 | | U1MODE | 238 | 0-000-0000000000 | U2P3 | 278 | 0000000000000000 | SPI2STATH | 2D2 | 000000000000 | | U1MODEH | 23A | 0000000000000 | U2P3H | 27A | 00000000 | SPI2BUFL | 2D4 | 00000000000000000 | | U1STA | 23C | 000000010000000 | U2TXCHK | 27C | 00000000 | SPI2BUFH | 2D6 | 00000000000000000 | | U1STAH | 23E | -000-00000101110 | U2RXCHK | 27E | 00000000 | SPI2BRGL | 2D8 | xxxxxxxxxxxxx | | U1BRG | 240 | 00000000000000000 | U2SCCON | 280 | 00000- | SPI2BRGH | 2DA | | | U1BRGH | 242 | 0000 | U2SCINT | 282 | 00-00000-000 | SPI2IMSKL | 2DC | 000000-0-00 | | U1RXREG | 244 | xxxxxxxx | U2INT | 284 | 000 | SPI2IMSKH | 2DE | 0-0000000-000000 | | U1TXREG | 248 | xxxxxxxxx | SPI | | | SPI2URDTL | 2E0 | 00000000000000000 | | U1P1 | 24C | 000000000 | SPI1CON1L | 2AC | 0-00000000000000 | SPI2URDTH | 2E2 | 00000000000000000 | Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address and Reset values are in hexadecimal and binary, respectively. #### 3.3.5 NVM CONTROL REGISTERS ### REGISTER 3-4: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER | R/SO-0 ⁽¹⁾ | R/W-0 ⁽¹⁾ | R/W-0 ⁽¹⁾ | R/W-0 | U-0 | U-0 | R/W-0 | R/C-0 | |-----------------------|----------------------|----------------------|------------------------|-----|-----|-------|-------| | WR | WREN | WRERR | NVMSIDL ⁽²⁾ | _ | _ | RPDF | URERR | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | R/W-0 ⁽¹⁾ | R/W-0 ⁽¹⁾ | R/W-0 ⁽¹⁾ | R/W-0 ⁽¹⁾ | |-------|-----|-----|-----|-------------------------|-------------------------|-------------------------|-------------------------| | _ | _ | _ | _ | NVMOP3 ^(3,4) | NVMOP2 ^(3,4) | NVMOP1 ^(3,4) | NVMOP0 ^(3,4) | | bit 7 | | | | | | | bit 0 | | Legend: | C = Clearable bit | SO = Settable Only bit | | |-------------------|-------------------|-----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 WR: Write Control bit⁽¹⁾ - 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete - 0 = Program or erase operation is complete and inactive - bit 14 WREN: Write Enable bit⁽¹⁾ - 1 = Enables Flash program/erase operations - 0 = Inhibits Flash program/erase operations - bit 13 WRERR: Write Sequence Error Flag bit⁽¹⁾ - 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) - 0 = The program or erase operation completed normally - bit 12 **NVMSIDL:** NVM Stop in Idle Control bit⁽²⁾ - 1 = Flash voltage regulator goes into Standby mode during Idle mode - 0 = Flash voltage regulator is active during Idle mode - bit 11-10 **Unimplemented:** Read as '0' - bit 9 **RPDF:** Row Programming Data Format bit - 1 = Row data to be stored in RAM is in compressed format - 0 = Row data to be stored in RAM is in uncompressed format - bit 8 **URERR:** Row Programming Data Underrun Error bit - 1 = Indicates row programming operation has been terminated - 0 = No data underrun error is detected - bit 7-4 **Unimplemented:** Read as '0' - Note 1: These bits can only be reset on a POR. - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational. - **3:** All other combinations of NVMOP<3:0> are unimplemented. - **4:** Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress. - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation. ### REGISTER 3-20: INTCON3: INTERRUPT CONTROL REGISTER 3 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | |--------|-----|-----|-----|-----|-----|-------|-------| | _ | _ | _ | _ | _ | _ | CAN | NAE | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | |-------|-----|-----|-------|-----|-----|-----|-------| | _ | _ | _ | DOOVR | _ | _ | _ | APLL | | bit 7 | | | | | | | bit 0 | Legend: bit 8 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 **Unimplemented:** Read as '0' bit 9 CAN: CAN Address Error Soft Trap Status bit 1 = CAN address error soft trap has occurred 0 = CAN address error soft trap has not occurred NAE: NVM Address Error Soft Trap Status bit 1 = NVM address error soft trap has occurred 0 = NVM address error soft trap has not occurred bit 7-5 **Unimplemented:** Read as '0' bit 4 DOOVR: DO Stack Overflow Soft Trap Status bit 1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred bit 3-1 Unimplemented: Read as '0' bit 0 APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit 1 = APLL lock soft trap has occurred 0 = APLL lock soft trap has not occurred **FIGURE 3-19: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE** ### REGISTER 3-53: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19 | R/W-0 |---------|---------|---------|---------|---------|---------|---------|---------| | U2DSRR7 | U2DSRR6 | U2DSRR5 | U2DSRR4 | U2DSRR3 | U2DSRR2 | U2DSRR1 | U2DSRR0 | | bit 15 | | | | | | | bit 8 | | R/W-0 |--------|--------|--------|--------|--------|--------|--------|--------| | U2RXR7 | U2RXR6 | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 **U2DSRR<7:0>:** Assign UART2 Data-Set-Ready (U2DSR) to the Corresponding RPn Pin bits See Table 3-30. bit 7-0 U2RXR<7:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits See Table 3-30. ### REGISTER 3-54: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20 | R/W-0 |--------|--------|--------|--------|--------|--------|--------|--------| | SCK1R7 | SCK1R6 | SCK1R5 | SCK1R4 | SCK1R3 | SCK1R2 | SCK1R1 | SCK1R0 | | bit 15 | | | | | | | bit 8 | | R/W-0 |--------|--------|--------|--------|--------|--------|--------|--------| | SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 SCK1R<7:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits See Table 3-30. bit 7-0 SDI1R<7:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits See Table 3-30. ### REGISTER 3-95: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW | R/W-0 | | | |--------|---------------|-------|-------|-------|-------|-------|-------|--|--|--| | | COUNTER<15:8> | | | | | | | | | | | bit 15 | | | | | | | bit 8 | | | | | R/W-0 |-------|-------|-------|--------|---------|-------|-------|-------| | | | | COUNTE | ER<7:0> | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **COUNTER<15:0>:** Read Current Contents of Lower DMT Counter bits #### REGISTER 3-96: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH | R/W-0 |--------|-------|-------|--------|-----------|-------|-------|-------| | | | | COUNTE | :R<31:24> | | | | | bit 15 | | | | | | | bit 8 | | R/W-0 |-------|-------|-------|--------|-----------|-------|-------|-------| | | | | COUNTE | :R<23:16> | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits # REGISTER 3-151: C1FLTCONxH: CAN FILTER CONTROL REGISTER x HIGH (x = 0 TO 3; c = 2, 6, 10, 14; d = 3, 7, 11, 15) | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-------|-------|-------|-------|-------| | FLTENd | _ | _ | FdBP4 | FdBP3 | FdBP2 | FdBP1 | FdBP0 | | bit 15 | | | | | | | bit 8 | | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-------|-------|-------|-------|-------| | FLTENc | _ | _ | FcBP4 | FcBP3 | FcBP2 | FcBP1 | FcBP0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTENd: Enable Filter d to Accept Messages bit 1 = Filter is enabled0 = Filter is disabled bit 14-13 **Unimplemented:** Read as '0' bit 12-8 FdBP<4:0>: Pointer to Object When Filter d Hits bits 11111 to 11000 = Reserved 00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6 . . 00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1 00000 = Reserved; Object 0 is the TX Queue and can't receive messages bit 7 FLTENc: Enable Filter c to Accept Messages bit 1 = Filter is enabled0 = Filter is disabled bit 6-5 **Unimplemented:** Read as '0' bit 4-0 FcBP<4:0>: Pointer to Object When Filter c Hits bits 11111 to 11000 = Reserved 00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6 . . . 00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1 00000 = Reserved; Object 0 is the TX Queue and can't receive messages ### REGISTER 4-5: NVMADR: SLAVE PROGRAM MEMORY LOWER ADDRESS REGISTER | R/W-x | | |--------------|-------|-------|-------|-------|-------|-------|-------|--|--| | NVMADR<15:8> | | | | | | | | | | | bit 15 | | | | | | | bit 8 | | | | R/W-x | | |-------------|-------|-------|-------|-------|-------|-------|-------|--|--| | NVMADR<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **NVMADR<15:0>:** PRAM Memory Lower Write Address bits Selects the lower 16 bits of the location to program PRAM. This register may be read or written to by the user application. #### REGISTER 4-6: NVMADRU: SLAVE PROGRAM MEMORY UPPER ADDRESS REGISTER | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/W-x |-------|-------|-------|--------|-----------|-------|-------|-------| | | | | NVMADR | :U<23:16> | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7-0 **NVMADRU<23:16>:** PRAM Memory Upper Write Address bits Selects the upper eight bits of the location to program PRAM. This register may be read or written to by the user application. ### REGISTER 4-97: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW | R/W-0 | | |------------|-------|-------|-------|-------|-------|-------|-------|--|--| | EIEN<15:8> | | | | | | | | | | | bit 15 | | | | | | | bit 8 | | | | R/W-0 | | |-----------|-------|-------|-------|-------|-------|-------|-------|--|--| | EIEN<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **EIEN<15:0>:** Early Interrupt Enable for Corresponding Analog Inputs bits 1 = Early interrupt is enabled for the channel 0 = Early interrupt is disabled for the channel #### REGISTER 4-98: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-------|-------|-------------|-------|-------| | _ | _ | _ | | | EIEN<20:16> | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 **Unimplemented:** Read as '0' bit 4-0 **EIEN<20:16>:** Early Interrupt Enable for Corresponding Analog Inputs bits 1 = Early interrupt is enabled for the channel 0 = Early interrupt is disabled for the channel Equation 6-1 provides the relationship between the PLL Input Frequency (FPLLI) and VCO Output Frequency (FVCO). ### **EQUATION 6-1:** MASTER/SLAVE CORE Fvco CALCULATION $$FVCO = FPLLI \times \left(\frac{M}{N1}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0>}\right)$$ Equation 6-2 provides the relationship between the PLL Input Frequency (FPLLI) and PLL Output Frequency (FPLLO). ### **EQUATION 6-2:** MASTER/SLAVE CORE FPLLO CALCULATION $$FPLLO = FPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0> \times POST1DIV < 2:0> \times POST2DIV < 2:0>}\right)$$ Where: M = PLLFBDIV < 7:0 > N1 = PLLPRE < 3:0 > N2 = POST1DIV < 2:0 > N3 = POST2DIV < 2:0 > **Note:** The PLL Phase Detector Input Divider Select (PLLPREx) bits and the PLL Feedback Divider (PLLFBDIVx) bits should not be changed when operating in PLL mode. Therefore, the user must start in either a non-PLL mode or clock switch to a non-PLL mode (e.g., internal FRC Oscillator) to make any necessary changes and then clock switch to the desired PLL mode. It is not permitted to directly clock switch from one PLL clock source to a different PLL clock source. The user would need to transition between PLL clock sources with a clock switch to a non-PLL clock source. ### REGISTER 6-6: ACLKCON1: AUXILIARY CLOCK CONTROL REGISTER (MASTER) | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | |-----------------------|--------|-----|-----|-----|-----|-----|--------| | APLLEN ⁽¹⁾ | APLLCK | _ | _ | _ | _ | _ | FRCSEL | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | r-0 | r-0 | R/W-0 | R/W-0 | R/W-0 | R/W-1 | |-------|-----|-----|-----|----------|----------|----------|----------| | _ | _ | _ | _ | APLLPRE3 | APLLPRE2 | APLLPRE1 | APLLPRE0 | | bit 7 | | | | | | | bit 0 | | Legend: | r = Reserved bit | | | |-------------------|------------------|-----------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit | t, read as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 APLLEN: Auxiliary PLL Enable/Bypass select bit (1) 1 = AFPLLO is connected to the APLL post-divider output (bypass disabled) 0 = AFPLLO is connected to the APLL input clock (bypass enabled) bit 14 APLLCK: APLL Phase-Locked State Status bit 1 = Auxiliary PLL is in lock 0 = Auxiliary PLL is not in lock bit 13-9 **Unimplemented:** Read as '0' bit 8 FRCSEL: FRC Clock Source Select bit 1 = FRC is the clock source for APLL 0 = Primary Oscillator is the clock source for APLL bit 7-6 **Unimplemented:** Read as '0' bit 5-4 **Reserved:** Maintain as '0' bit 3-0 APLLPRE<3:0>: Auxiliary PLL Phase Detector Input Divider bits 1111 = Reserved . . . 1001 = Reserved 1000 = Input divided by 8 0111 = Input divided by 7 0110 = Input divided by 6 0101 = Input divided by 5 0100 = Input divided by 4 0011 = Input divided by 3 0010 = Input divided by 2 0001 = Input divided by 1 (power-on default selection) 0000 = Reserved Note 1: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start. #### 7.3 Doze Mode The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely. Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting. Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. ### 7.4 Peripheral Module Disable The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid. A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC® DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default. - Note 1: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation). - 2: The PMD bits are different for the Master core and Slave core. The Master has its own PMD bits which can be disabled/ enabled independently of the Slave peripherals. The Slave has its own PMD bits which can be disabled/enabled independently of the Master peripherals. The register names are the same for the Master and the Slave, but the PMD registers have different addresses in the Master and Slave SFR. ### 7.5 Power-Saving Resources Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information. #### 7.5.1 KEY RESOURCES - "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual" - · Code Samples - · Application Notes - · Software Libraries - Webinars - All related "dsPIC33/PIC24 Family Reference Manual" Sections - · Development Tools TABLE 7-1: MASTER AND SLAVE PMD REGISTERS | Master PMD F | Registers | Slave PMD Registers | | | | |---------------|--------------|---------------------|----------|--|--| | SFR Addresses | Register | SFR Addresses | Register | | | | FA0h | FA0h PMDCONL | | PMDCONL | | | | FA4h | PMD1 | FA4h | PMD1 | | | | FA6h | PMD2 | FA6h | PMD2 | | | | FA8h | PMD3 | FA8h | 1 | | | | FAAh | PMD4 | FAAh | PMD4 | | | | FACh | _ | FACh | _ | | | | FAEh | PMD6 | FAEh | PMD6 | | | | FB0h | FB0h PMD7 | | PMD7 | | | | FB2h | PMD8 | FB2h | PMD8 | | | ### REGISTER 7-7: PMD7: MASTER PERIPHERAL MODULE DISABLE 7 CONTROL REGISTER LOW | U-0 R/W-0 | |--------|-----|-----|-----|-----|-----|-----|--------| | _ | _ | _ | _ | _ | _ | _ | CMP1MD | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | |-------|-----|-----|-----|-------|-----|-----|-------| | _ | _ | _ | _ | PTGMD | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 **Unimplemented:** Read as '0' bit 8 **CMP1MD:** Comparator 1 Module Disable bit 1 = Comparator 1 module is disabled0 = Comparator 1 module is enabled bit 7-4 **Unimplemented:** Read as '0' bit 3 **PTGMD**: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 **Unimplemented:** Read as '0' ### REGISTER 7-15: PMD8: SLAVE PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER | U-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | U-0 | |--------|--------|-----|-----|-----|--------|-----|-------| | _ | PGA3MD | _ | _ | _ | PGA2MD | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | |-------|-----|--------|--------|--------|--------|-----|-------| | _ | _ | CLC4MD | CLC3MD | CLC2MD | CLC1MD | _ | _ | | bit 7 | | | | | | | bit 0 | | Legend: | |---------| |---------| bit 9-6 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' PGA3MD: PGA3 Module Disable bit 1 = PGA3 module is disabled 0 = PGA3 module is enabled bit 13-11 Unimplemented: Read as '0' PGASMD: PGAS Module Disable bit bit 10 **PGA2MD:** PGA2 Module Disable bit 1 = PGA2 module is disabled 0 = PGA2 module is enabled **Unimplemented:** Read as '0' bit 5 **CLC4MD:** CLC4 Module Disable bit 1 = CLC4 module is disabled 0 = CLC4 module is enabled bit 4 CLC3MD: CLC3 Module Disable bit 1 = CLC3 module is disabled 0 = CLC3 module is enabled bit 3 CLC2MD: CLC2 Module Disable bit 1 = CLC2 module is disabled 0 = CLC2 module is enabled bit 2 CLC1MD: CLC1 Module Disable bit 1 = CLC1 module is disabled 0 = CLC1 module is enabled bit 1-0 **Unimplemented:** Read as '0' FIGURE 8-1: DMA FUNCTIONAL BLOCK DIAGRAM ### REGISTER 13-2: UxMODEH: UARTX CONFIGURATION REGISTER HIGH (CONTINUED) bit 2 UTXINV: UART Transmit Polarity bit 1 = Inverts TX polarity; TX is low in Idle state 0 = Output data is not inverted; TX output is high in Idle state bit 1-0 **FLO<1:0>:** Flow Control Enable bits (only valid when MOD<3:0> = 0xxx) 11 = Reserved $10 = \overline{\text{RTS-DSR}}$ (for TX side)/ $\overline{\text{CTS-DTR}}$ (for RX side) hardware flow control 01 = XON/XOFF software flow control 00 = Flow control off FIGURE 14-4: SPIX MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES) ### FIGURE 14-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM ### **REGISTER 21-21: FCFGPRB0: PORTB CONFIGURATION REGISTER** | U-1 |--------|-----|-----|-----|-----|-----|-----|--------| | _ | _ | _ | _ | _ | _ | | _ | | bit 23 | | | | | | | bit 16 | | R/PO-1 | R/PO-1 | R/P0-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 | |--------|--------|--------|--------|--------|--------|--------|--------| | | | | CPRB | <15:8> | | | | | bit 15 | | | | | | | bit 8 | | R/PO-1 | | |-----------|--------|--------|--------|--------|--------|--------|--------|--|--| | CPRB<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | **Legend:** PO = Program Once bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 23-16 **Unimplemented:** Read as '1' bit 15-0 **CPRB<15:0>:** Configure PORTB Ownership bits 1 = Master core owns pin0 = Slave core owns pin ### **REGISTER 21-22: FCFGPRC0: PORTC CONFIGURATION REGISTER** | U-1 | |---------------|-----|-----|-----|-----|-----|-----|-----|--| | _ | _ | _ | _ | _ | _ | _ | _ | | | bit 23 bit 16 | | | | | | | | | | R/PO-1 | | |------------|--------|--------|--------|--------|--------|--------|--------|--|--| | CPRC<15:8> | | | | | | | | | | | bit 15 | | | | | | | bit 8 | | | | R/PO-1 | | |-----------|--------|--------|--------|--------|--------|--------|--------|--|--| | CPRC<7:0> | | | | | | | | | | | bit 7 | | | | | | | bit 0 | | | **Legend:** PO = Program Once bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 23-16 Unimplemented: Read as '1' bit 15-0 CPRC<15:0>: Configure PORTC Ownership bits 1 = Master core owns pin 0 = Slave core owns pin